CS 109 Lecture 8 April 13th, 2016

Size: px
Start display at page:

Download "CS 109 Lecture 8 April 13th, 2016"

Transcription

1 CS 109 Lecture 8 Aprl 13th, 2016

2

3 Storg Data o DNA We wat to kow the probablty of 100 base pars beg corrupted? Probablty of each base par beg corrupted s base-pars X umber of bts corrupted. X ~ B(4, 0.1) I real etworks, sed large bt strgs (legth 10 4 ) Probablty of bt corrupto s very small p 10-6 X ~ B(10 4, 10-6 ) s uweldy to compute Extreme ad p values arse may cases # bt errors fle wrtte to dsk (# of typos a book) # vstors to a popular webste # of servers crashes a day gat data ceter

4

5 Facebook Lkes Let s try ad calculate the probablty of dfferet u N s the umber of people who see your post Maxmum Lkelhood estmate Set N to be value that maxmzes: N m N m X P ) (

6 Beroull vs Bomal Beroull s a type of RV that ca take o two values, 1 (for success) wth probablty p ad 0 (for falure) wth probablty (1- p) Bomal s the sum of Beroulls

7 Storg Data o DNA All the moves, mages, emals ad other dgtal data from more tha 600 basc smartphoes (10,000 ggabytes) ca be stored the fat pk smear of DNA at the ed of ths test tube.

8 Whther the Bomal Recall example of sedg bt strg over etwork 4 bts set over etwork where each bt had depedet probablty of corrupto p 0.1 X umber of bts corrupted. X ~ B(4, 0.1) I DNA (ad real etworks), sed large strgs (legth 10 4 ) Probablty of corrupto s very small p 10-6 X ~ B(10 4, 10-6 ) s uweldy to compute Extreme ad p values arse may cases # bt errors steam set over a etwork # vstors to a popular webste # of servers crashes a day gat data ceter # Facebook log requests that go to partcular server

9 Recall the Bomal dstrbuto Let p (equvaletly: p /) Whe s large, p s small, ad s moderate : Yeldg: p p X P ) (1 )!!(! ) ( X P ) / (1 ) / (1! 1 )!!(! ) ( 1) 1)...( ( + e ) / (1 1 1) 1)...( ( + 1 ) / 1 ( e e X P! 1! 1 ) ( Bomal the Lmt

10 X s a Posso Radom Varable: X ~ Po() X takes o values 0, 1, 2 ad, for a gve parameter > 0, has dstrbuto (PMF): Note Taylor seres: So:! ) ( e X P !... 2! 1!! 0 e 1!! ) ( e e e e X P Posso Radom Varable

11 Sedg Data o Network Redux Recall example of sedg bt strg over etwork P( X Sed bt strg of legth 10 4 Probablty of (depedet) bt corrupto p 10-6 X ~ Po( 10 4 * ) What s probablty that message arrves ucorrupted? 0) e! e Usg Y ~ B(10 4, 10-6 ): P( Y 0) 0.01 (0.01) 0! Caveat emptor: Bomal computed wth bult- fucto pytho software package, so some approxmatos may have occurred. Approxmatos are closer to you tha they may appear some software packages.

12 Smeo-Des Posso Smeo-Des Posso ( ) was a prolfc Frech mathematca Publshed hs frst paper at 18, became professor at 21, ad publshed over 300 papers hs lfe He reportedly sad Lfe s good for oly two thgs, dscoverg mathematcs ad teachg mathematcs. I m gog wth Frech Mart Freema

13 Posso s Bomal the Lmt Posso approxmates Bomal where s large, p s small, ad p s moderate Dfferet terpretatos of "moderate" > 20 ad p < 0.05 > 100 ad p < 0.1 Really, Posso s Bomal as à ad p à 0, where p

14 B(10,0.3) vs B(100,0.03) vs Po(3) 0.3 P(X k) B(10, 0.3) B(100, 0.03) Po(3) k

15 Teder (Cetral) Momets wth Posso Recall: Y ~ B(, p) E[Y] p Var(Y) p(1 p) X ~ Po() where p ( à ad p à 0) E[X] p Var(X) p(1 p) (1 0) Yes, expectato ad varace of Posso are same o It brgs a tear to my eye

16 A Real Lcese Plate See at Staford No, t s ot me but I kd of wsh t was.

17 It s Really All About Ras Cake Bake a cake usg may rass ad lots of batter Cake s eormous ( fact, ftely so ) Cut slces of moderate sze (w.r.t. # rass/slce) Probablty p that a partcular ras s a certa slce s very small (p 1/# cake slces) Let X umber of rass a certa cake slce total # rass X ~ Po(), where # cake slces

18 CS Bakg Ras Cake wth Code Hash tables strgs rass buckets cake slces Server crashes data ceter servers rass lst of crashed maches partcular slce of cake Facebook log requests (.e., web server requests) requests rass server recevg request cake slce

19 Defectve Chps Computer chps are produced p 0.1 that a chp s defectve Cosder a sample of 10 chps What s P(sample cotas 1 defectve chp)? Usg Y ~ B(10, 0.1): P( Y 1) 10 (0.1) 0 0 (1 0.1) (0.1) 1 1 (1 0.1) Usg X ~ Po( (0.1)(10) 1) P( X 1) e + e 0! 1! 2e

20 Effcetly Computg Posso Let X ~ Po() Wat to compute P(X ) for multple values of E.g., Computg Iteratve formulato: Compute P(X + 1) from P(X ) Use recurrece relato: 1! / 1)! /( ) ( 1) ( e e X P X P ) ( 1 1) ( X P X P + + e e X P 0! 0) ( 0 a X P a X P 0 ) ( ) (

21 Posso s all about the Meh Posso ca stll provde a good approxmato eve whe assumptos are mldly volated Posso Paradgm Ca apply Posso approxmato whe... Successes trals are ot etrely depedet o Example: # etres each bucket large hash table Probablty of Success each tral vares (slghtly) o o Small relatve chage a very small p Example: average # requests to web server/sec. may fluctuate slghtly due to load o etwork

22 Brthday Problem Redux What s the probablty that of m people, oe share the same brthday (regardless of year)? l( e trals, oe for each par of people (x, y), x y Let E x,y x ad y have same brthday (tral success) P(E x,y ) p 1/365 (ote: all E x,y ot depedet) m 1 m( m 1) X ~ Po() where m( m1)/730 ( m( m 1) / 730) m( m P( X 0) e e 0! m( m1)/ 730 Solve for smallest teger m, s.t.: e 0.5 m m 2 ( m1)/730 ) l(0.5) Same as before! 1)/730 m( m 1) 730l(0.5) m 23

23 Posso Process Cosder rare evets that occur over tme Earthquakes, radoactve decay, hts to web server, etc. Have tme terval for evets (1 year, 1 sec, whatever...) Evets arrve at rate: evets per terval of tme Splt tme terval to à sub-tervals Assume at most oe evet per sub-terval Evet occurreces sub-tervals are depedet Wth may sub-tervals, probablty of evet occurrg ay gve sub-terval s small N(t) # evets orgal tme terval ~ Po()

24 Web Server Load Cosder requests to a web server 1 secod I past, server load averages 2 hts/secod X # hts server receves a secod What s P(X 5)? Model Assume server caot ackowledge > 1 ht/msec. 1 sec 1000 msec. ( large ) P(ht server 1 msec) 2/1000 ( small p) X ~ Po( 2) P( X 5) e !

25

26 Hurrcaes per Year sce Number of Hurrcaes Atlatc

27 Four Prototypcal Trajectores To the code!

28 Hstorcally ~ Posso(8.5) Predcted ad Actual Frequecy Utl 1966, thgs look pretty Posso Lambda Num Hurrcaes

29 Improbablty Drve What s the probablty of over 15 hurrcaes a seaso gve that the dstrbuto does t chage? Let X # hurrcaes a year. X ~ Po(8.5) Soluto: P (X >15) 1 P (X apple 15) 1 X P (X ) Ths s the pdf of a Posso. Your favorte programmg laguage has a fucto for t

30 Four Prototypcal Trajectores Twce sce 1966 there have bee years wth over 30 hurrcaes

31 Improbablty Drve What s the probablty of over 30 hurrcaes a seaso gve that the dstrbuto does t chage? Let X # hurrcaes a year. X ~ Po(8.5) Soluto: P (X >30) 1 P (X apple 30) 1 X30 0 P (X ) e 09 Ths s the pdf of a Posso. Your favorte programmg laguage has a fucto for t

32 The Dstrbuto has Chaged 8 Predcted ad Actual Frequecy Sce 1966, looks lke the dstrbuto has chaged Lambda 16.6? # Hurrcaes

33 What s Up?

34 Four Prototypcal Trajectores Pause

35 Dscrete Dstrbutos Do t have to memorze all of the followg dstrbutos. We wat you to get a sese of how radom varables work

36 Geometrc Radom Varable X s Geometrc Radom Varable: X ~ Geo(p) X s umber of depedet trals utl frst success p s probablty of success o each tral X takes o values 1, 2, 3,, wth probablty: P( X ) (1 p) 1 p E[X] 1/p Var(X) (1 p)/p 2 Examples: Flppg a co (P(heads) p) utl frst heads appears Ur wth N black ad M whte balls. Draw balls (wth replacemet, p N/(N + M)) utl draw frst black ball Geerate bts wth P(bt 1) p utl frst 1 geerated

37 Negatve Bomal Radom Varable X s Negatve Bomal RV: X ~ NegB(r, p) X s umber of depedet trals utl r successes p s probablty of success o each tral X takes o values r, r + 1, r + 2, wth probablty: E[X] r/p Var(X) r(1 p)/p 2 Note: Geo(p) ~ NegB(1, p) Examples: 1 r r P( X ) p (1 p), where r, r + 1,... r 1 # of co flps utl r-th heads appears # of strgs to hash to table utl bucket 1 has r etres

38 Hypergeometrc Radom Varable X s Hypergeometrc RV: X ~ HypG(, N, m) Ur wth N balls: (N m) black ad m whte Draw balls wthout replacemet X s umber of whte balls draw m N m P ( X ), where 0,1,..., N E[X] (m/n) Var(X) [m(n )(N m)]/[n 2 (N 1)] Let p m/n (probablty of drawg whte o 1 st draw) Note: HypG(, N, m) à B(, m/n) As N à ad m/n remas costat

39 Edagered Speces Determe N how may of some speces rema Radomly tag m of speces (e.g., wth whte pat) Allow amals to mx radomly (assumg o breedg) Later, radomly observe aother of the speces X umber of tagged amals observed group of X ~ HypG(, N, m) Maxmum Lkelhood estmate Set N to be value that maxmzes: P ( X ) m N N m

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

The Occupancy and Coupon Collector problems

The Occupancy and Coupon Collector problems Chapter 4 The Occupacy ad Coupo Collector problems By Sarel Har-Peled, Jauary 9, 08 4 Prelmares [ Defto 4 Varace ad Stadard Devato For a radom varable X, let V E [ X [ µ X deote the varace of X, where

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University Poisson Chris Piech CS109, Stanford University Piech, CS106A, Stanford University Probability for Extreme Weather? Piech, CS106A, Stanford University Four Prototypical Trajectories Review Binomial Random

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

BIOREPS Problem Set #11 The Evolution of DNA Strands

BIOREPS Problem Set #11 The Evolution of DNA Strands BIOREPS Problem Set #11 The Evoluto of DNA Strads 1 Backgroud I the md 2000s, evolutoary bologsts studyg DNA mutato rates brds ad prmates dscovered somethg surprsg. There were a large umber of mutatos

More information

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ.

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ. CS70: Lecture 21. Revew: Dstrbutos Revew: Idepedece Varace; Iequaltes; WLLN 1. Revew: Dstrbutos 2. Revew: Idepedece 3. Varace 4. Iequaltes Markov Chebyshev 5. Weak Law of Large Numbers U[1,...,] : Pr[X

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK.

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK. adom Varate Geerato ENM 307 SIMULATION Aadolu Üverstes, Edüstr Mühedslğ Bölümü Yrd. Doç. Dr. Gürka ÖZTÜK 0 adom Varate Geerato adom varate geerato s about procedures for samplg from a varety of wdely-used

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 01 Sgals & Systems Prof. Mark Fowler Note Set #9 Computg D-T Covoluto Readg Assgmet: Secto. of Kame ad Heck 1/ Course Flow Dagram The arrows here show coceptual flow betwee deas. Note the parallel

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN EP2200 Queueg theory ad teletraffc systems Queueg etworks Vktora Fodor Ope ad closed queug etworks Queug etwork: etwork of queug systems E.g. data packets traversg the etwork from router to router Ope

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

(b) By independence, the probability that the string 1011 is received correctly is

(b) By independence, the probability that the string 1011 is received correctly is Soluto to Problem 1.31. (a) Let A be the evet that a 0 s trasmtted. Usg the total probablty theorem, the desred probablty s P(A)(1 ɛ ( 0)+ 1 P(A) ) (1 ɛ 1)=p(1 ɛ 0)+(1 p)(1 ɛ 1). (b) By depedece, the probablty

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1, Lecture (Part II) Materals Covered Ths Lecture: Chapter 2 (2.6 --- 2.0) The umber of ways of parttog dstct obects to dstct groups cotag, 2,, obects, respectvely, where each obect appears exactly oe group

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

7. Joint Distributions

7. Joint Distributions 7. Jot Dstrbutos Chrs Pech ad Mehra Saham Ma 2017 Ofte ou wll work o problems where there are several radom varables (ofte teractg wth oe aother. We are gog to start to formall look at how those teractos

More information

SPECIAL CONSIDERATIONS FOR VOLUMETRIC Z-TEST FOR PROPORTIONS

SPECIAL CONSIDERATIONS FOR VOLUMETRIC Z-TEST FOR PROPORTIONS SPECIAL CONSIDERAIONS FOR VOLUMERIC Z-ES FOR PROPORIONS Oe s stctve reacto to the questo of whether two percetages are sgfcatly dfferet from each other s to treat them as f they were proportos whch the

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

STA 105-M BASIC STATISTICS (This is a multiple choice paper.)

STA 105-M BASIC STATISTICS (This is a multiple choice paper.) DCDM BUSINESS SCHOOL September Mock Eamatos STA 0-M BASIC STATISTICS (Ths s a multple choce paper.) Tme: hours 0 mutes INSTRUCTIONS TO CANDIDATES Do ot ope ths questo paper utl you have bee told to do

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

A Markov Chain Competition Model

A Markov Chain Competition Model Academc Forum 3 5-6 A Marov Cha Competto Model Mchael Lloyd, Ph.D. Mathematcs ad Computer Scece Abstract A brth ad death cha for two or more speces s examed aalytcally ad umercally. Descrpto of the Model

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

CS 109 Lecture 12 April 22th, 2016

CS 109 Lecture 12 April 22th, 2016 CS 09 Lecture Aprl th 06 Four rototypcal Traectores Today:. Mult varable RVs. Expectato wth multple RVs 3. Idepedece wth multple RVs Four rototypcal Traectores Revew Dscrete Jot Mass Fucto For two dscrete

More information

Application of Generating Functions to the Theory of Success Runs

Application of Generating Functions to the Theory of Success Runs Aled Mathematcal Sceces, Vol. 10, 2016, o. 50, 2491-2495 HIKARI Ltd, www.m-hkar.com htt://dx.do.org/10.12988/ams.2016.66197 Alcato of Geeratg Fuctos to the Theory of Success Rus B.M. Bekker, O.A. Ivaov

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

Hard Core Predicates: How to encrypt? Recap

Hard Core Predicates: How to encrypt? Recap Hard Core Predcates: How to ecrypt? Debdeep Mukhopadhyay IIT Kharagpur Recap A ecrypto scheme s secured f for every probablstc adversary A carryg out some specfed kd of attack ad for every polyomal p(.),

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Lecture 08: Poisson and More. Lisa Yan July 13, 2018

Lecture 08: Poisson and More. Lisa Yan July 13, 2018 Lecture 08: Poisson and More Lisa Yan July 13, 2018 Announcements PS1: Grades out later today Solutions out after class today PS2 due today PS3 out today (due next Friday 7/20) 2 Midterm announcement Tuesday,

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

IS 709/809: Computational Methods in IS Research. Simple Markovian Queueing Model

IS 709/809: Computational Methods in IS Research. Simple Markovian Queueing Model IS 79/89: Comutatoal Methods IS Research Smle Marova Queueg Model Nrmalya Roy Deartmet of Iformato Systems Uversty of Marylad Baltmore Couty www.umbc.edu Queueg Theory Software QtsPlus software The software

More information

CHAPTER 2. = y ˆ β x (.1022) So we can write

CHAPTER 2. = y ˆ β x (.1022) So we can write CHAPTER SOLUTIONS TO PROBLEMS. () Let y = GPA, x = ACT, ad = 8. The x = 5.875, y = 3.5, (x x )(y y ) = 5.85, ad (x x ) = 56.875. From equato (.9), we obta the slope as ˆβ = = 5.85/56.875., rouded to four

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues Lkelhood Rato, Wald, ad Lagrage Multpler (Score) Tests Soccer Goals Europea Premer Leagues - 4 Statstcal Testg Prcples Goal: Test a Hpothess cocerg parameter value(s) a larger populato (or ature), based

More information