3. Basic Concepts: Consequences and Properties

Size: px
Start display at page:

Download "3. Basic Concepts: Consequences and Properties"

Transcription

1 : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8 ad.0. of the course book []. Telecomm. Laboratory Course Overvew Basc cocepts ad tools troducto Etropy relatve etropy ad mutual formato 3 Asymptotc equpartto property 4 Etropy rates of a stochastc process Source codg or data compresso 5 Data compresso Chael capacty 8 Chael capacty 9 Dfferetal etropy 0 The Gaussa chael Other applcatos Mamum etropy ad spectral estmato 3 Rate dstorto theory 4 Network formato theory Telecomm. Laboratory Outle of the Lecture Revew of the last lecture troducto Jese s equalty The log-sum equalty Data processg equalty Suffcet statstcs Fao s equalty Summary Data source Revew of Last Lecture Dscrete valued radom varable X Realzato Probablty mass fuctos (PMF s): ( ) = Pr[ X ] p = ( y ) = Pr[ X = Y y ] p = X X y Y X deotes the cardalty (the umber of elemets) of set X. Telecomm. Laboratory 3 Telecomm. Laboratory 4

2 Summary of Basc Cocepts () Summary of Basc Cocepts () ( ) ( ) [ ( )]. Etropy X = p log p measure of ucertaty X o-egatve upper-bouded by uform dstrbuto. Base ca be ay the default assumpto s. Relatve etropy p ( ) ( ) ( ) p X D p q = p log E log ( ) = p q q X measure of smlarty of dstrbutos o-egatve dstace-lke measure ( ) ( ). Mutual formato ( X Y ) = p ( y ) specal case of relatve etropy o-egatve smlarty measure of jot ad product PMF s Cha rules etropy X X K X = X X mutual formato = ( y ) ( ) p ( ) p ; log y p y ( X ; Y ) = ( X ) ( X Y ) = ( Y ) ( Y X ) ( Y ; X ). = relatve etropy ( ) ( X K X ). ( X X K X ; Y ) ( X ; Y X X K X ). = = ( p ( y ) q ( y )) = D ( p ( ) q ( )) D ( p ( y ) q ( y )). D + Telecomm. Laboratory 5 Telecomm. Laboratory 6 (X) ucertaty of X llustratos (XY) jot ucertaty of X ad Y (X Y) ucertaty of X whe Y kow (X;Y) (Y X) ucertaty of Y whe X kow formato X carres o Y ad vce versa (Y) ucertaty of X Telecomm. Laboratory 7 troducto Basc deftos: etropy relatve etropy mutual formato Basc tools: relatoshps cha rules Jese s equalty log-sum equalty data processg equalty Fao s equalty Basc deftos ad tools are gve to be used later chapters. Telecomm. Laboratory 8

3 Jese s equalty Jese s equalty s used very wdely formato theory. The very basc theorems are based o Jese s equalty. Used also wdely optmzato ad other felds. Covety Fucto f() s cove over (ab) f ( a b ) 0 λ : f ( λ + ( λ) ) λ f ( ) + ( λ) f ( ). Fucto f() s strctly cove over (ab) f t s cove ad ( a b ) 0 λ : f ( λ + ( λ) ) = λf ( ) + ( λ) f ( ) λ = 0 λ =. Cove fucto f() les below ay chord. f() Telecomm. Laboratory 9 Telecomm. Laboratory 0 Eamples of Cove Fuctos Cocavty Fucto f() s cocave over (ab) f -f() s cove or a b 0 λ : ( ) ( λ + ( λ) ) λ ( ) + ( λ) ( ) f f f. Fucto f() s strctly cocave over (ab) f -f() s strctly cove. Cocave fucto f() les above ay chord. f() Telecomm. Laboratory Telecomm. Laboratory

4 Eamples of Cocave Fuctos Test for Covety ad Cocavty f fucto f() has a secod dervatve f () whch s o-egatve (postve) everywhere the f() s cove (strctly cove). Proof: See the tetbook. Telecomm. Laboratory 3 Telecomm. Laboratory 4 Jese s equalty For a cove fucto f() ad radom varable X: E [ f ( X )] f ( E( X )). For a strctly cove fucto f() ad radom varable X: [ f ( X )] = f ( E( X )) Pr[ X = E( X )]. E = Proof: See the tetbook. Cosequeces: formato equalty Jese s equalty formato equalty: D D ( p q ) 0 ( p q ) = 0 p ( ) = q ( ). No-egatvty of mutual formato: ( X ; Y ) 0 ( X ; Y Z ) 0 wth equalty f ad oly f X ad Y are (codtoally) depedet. Proofs: See the tetbook. Telecomm. Laboratory 5 Telecomm. Laboratory 6

5 Cosequeces: Mamum Etropy Dstrbuto Uform PMF mamzes the etropy: ( X ) log( X ) ( X ) = log( X ) p ( ) = u ( ) =. X Proof: p ( ) ( ) ( ) D p u = p log = p ( ) log p ( ) p ( ) logu ( ) u ( ) = log( X ) ( X ). By o-egatvty of relatve etropy: 0 D ( p u ) = log( X ) ( X ) ( X ) log( X ). Note the coecto to the secod law of thermodyamcs. Cosequeces: Codtog Reduces Etropy Codtog reduces etropy: because depedece boud: ( X Y ) ( X ) ( X ) ( X ). 0 ( X; Y ) = Y ( X X K X ) ( X ). = wth equalty ff X are depedet. Telecomm. Laboratory 7 Telecomm. Laboratory 8 Jot PMF: Eample #: Codtog Reduces Etropy Y\X 0 3/4 /8 /8 ( X ) = ( 7) 8 8 ( X Y = ) = 0 log( ) ( X Y = ) = log( ) ( ) 3 X Y = ( X Y = ) + ( X Y = ) 4 4 Log-Sum equalty For o-egatve umbers a a a ad b b b : a a = a log a log = b = b = ( X ) = bts ( X Y = ) = 0 bts ( X Y = ) = bt ( X Y ) = 0.5 bts Etropy of X decreases gve Y=. Etropy of X creases gve Y=. Etropy of X decreases o average. wth equalty ff Proof: See the tetbook. a = costat. b Telecomm. Laboratory 9 Telecomm. Laboratory 0

6 D Cosequeces Covety of relatve etropy: D(p q) s cove the par (pq): ( λp + ( λ) p λq + ( λ) q ) D ( p q ) + ( λ) D ( p ). q Proof: See the tetbook. Cocavty of etropy: (p) s a cocave fucto of p. Proof: D ( p u ) = log( X ) ( p ) ( p ) = log( X ) D ( p u ). Cocavty follow ow from covety of D. Mutual formato s a cocave fucto of p() for fed p(y ) cove fucto of p(y ) for fed p(). Data Processg equalty Radom varables X Y Z form a Markov cha (X Y Z ) f p y z = p p y p z y Cosequeces: ( z y ) ( ) ( ) ( ) ( ). ( y z ) p ( y ) p ( y ) p ( y ) ( y ) p ( z y ) p ( y ) p ( z ) p ( y ) p p p = = = y X Y Z Z Y X Z = f ( Y ) X Y Z. Telecomm. Laboratory Telecomm. Laboratory Data Processg equalty Data processg equalty: X Y Z ( X ; Y ) ( X ; Z ). (A clever) mapulato of data caot crease ts formato. Corollares: Z = g ( Y ) ( X ; Y ) ( X ; g ( Y )) ( X ; Y Z ) ( X ; Y ). Data mapulato caot crease the depedece of the orgal RV s. Note that ths apples to Markov chas oly. New observatos ca crease formato. Suffcet Statstcs Cosder a famly of PMF s {p θ ()} parameterzed by θ. Parameter θ s ofte a ukow parameter to be estmated. Form statstcs T(X) based o the observed RV X. θ X T(X) ( θ; X ) ( θ; T ( X )). Suffcet statstcs f ( θ ; X ) = θ; T ( X ) ( ). Mapulato of data does ot decrease ts formato may eable data compresso. Mmal suffcet statstcs provde the best compresso. Telecomm. Laboratory 3 Telecomm. Laboratory 4

7 Data source Fao s equalty Y Observe dscrete valued radom varable Y. Estmate a correlated RV X based o Y. ( ). Estmate: ˆ X = g Y Probablty of error: P Pr ˆ e = ( X X ). Fao s equalty: Pe + Pe log X X Y A weaker form: ( ) ( ) ( X Y ) + Pe log X X Y Pe. log( X ) Note: P e = 0 ( X Y ) = 0 as s tutvely pleasg. Proof: See the tetbook. ( ) ( ) ( ). Summary Jese s equalty. For a cove fucto: [ ( )] ( ( )). E f X f E X Log-sum equalty: a log log a = a a b = = b = Data processg equalty: ( ). ( ) ( ). X Y Z X ; Y X ; Z Suffcet statstcs f ( θ ; X ) = ( θ; T ( X )). Fao s equalty: ( P ) + P log( X ) ( X Y ). e e Telecomm. Laboratory 5 Telecomm. Laboratory 6

Chain Rules for Entropy

Chain Rules for Entropy Cha Rules for Etroy The etroy of a collecto of radom varables s the sum of codtoal etroes. Theorem: Let be radom varables havg the mass robablty x x.x. The...... The roof s obtaed by reeatg the alcato

More information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information : Markku Jutt Overvew Te basc cocepts o ormato teory lke etropy mutual ormato ad EP are eeralzed or cotuous-valued radom varables by troduc deretal etropy ource Te materal s maly based o Capter 9 o te

More information

ESE 523 Information Theory

ESE 523 Information Theory ESE 53 Iformato Theory Joseph A. O Sullva Samuel C. Sachs Professor Electrcal ad Systems Egeerg Washgto Uversty Urbauer Hall 0E Gree Hall 34-935-473 jao@wustl.edu 09// J. A. O'Sullva, ESE 53, Lecture -6

More information

Entropy, Relative Entropy and Mutual Information

Entropy, Relative Entropy and Mutual Information Etro Relatve Etro ad Mutual Iformato rof. Ja-Lg Wu Deartmet of Comuter Scece ad Iformato Egeerg Natoal Tawa Uverst Defto: The Etro of a dscrete radom varable s defed b : base : 0 0 0 as bts 0 : addg terms

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

5. Data Compression. Review of Last Lecture. Outline of the Lecture. Course Overview. Basics of Information Theory: Markku Juntti

5. Data Compression. Review of Last Lecture. Outline of the Lecture. Course Overview. Basics of Information Theory: Markku Juntti : Markku Jutt Overvew The deas of lossless data copresso ad source codg are troduced ad copresso lts are derved. Source The ateral s aly based o Sectos 5. 5.5 of the course book []. Teleco. Laboratory

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information : Maru Jutt Overvew he propertes of adlmted Gaussa chaels are further studed, parallel Gaussa chaels ad Gaussa chaels wth feedac are solved. Source he materal s maly ased o Sectos.4.6 of the course oo

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

arxiv: v1 [math.st] 24 Oct 2016

arxiv: v1 [math.st] 24 Oct 2016 arxv:60.07554v [math.st] 24 Oct 206 Some Relatoshps ad Propertes of the Hypergeometrc Dstrbuto Peter H. Pesku, Departmet of Mathematcs ad Statstcs York Uversty, Toroto, Otaro M3J P3, Caada E-mal: pesku@pascal.math.yorku.ca

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Entropies & Information Theory

Entropies & Information Theory Etropes & Iformato Theory LECTURE II Nlajaa Datta Uversty of Cambrdge,U.K. See lecture otes o: http://www.q.damtp.cam.ac.uk/ode/223 quatum system States (of a physcal system): Hlbert space (fte-dmesoal)

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

A New Measure of Probabilistic Entropy. and its Properties

A New Measure of Probabilistic Entropy. and its Properties Appled Mathematcal Sceces, Vol. 4, 200, o. 28, 387-394 A New Measure of Probablstc Etropy ad ts Propertes Rajeesh Kumar Departmet of Mathematcs Kurukshetra Uversty Kurukshetra, Ida rajeesh_kuk@redffmal.com

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ.

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ. CS70: Lecture 21. Revew: Dstrbutos Revew: Idepedece Varace; Iequaltes; WLLN 1. Revew: Dstrbutos 2. Revew: Idepedece 3. Varace 4. Iequaltes Markov Chebyshev 5. Weak Law of Large Numbers U[1,...,] : Pr[X

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

1 Review and Overview

1 Review and Overview CS9T/STATS3: Statstcal Learg Teory Lecturer: Tegyu Ma Lecture #7 Scrbe: Bra Zag October 5, 08 Revew ad Overvew We wll frst gve a bref revew of wat as bee covered so far I te frst few lectures, we stated

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

NP!= P. By Liu Ran. Table of Contents. The P vs. NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P vs. NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Strategy 3. Prelmary theorem 4. Proof 5. Expla 6. Cocluso. Itroduce The P vs. NP problem s a major usolved problem computer scece. Iformally, t asks whether

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates Joural of Moder Appled Statstcal Methods Volume Issue Artcle 8 --03 Comparso of Parameters of Logormal Dstrbuto Based O the Classcal ad Posteror Estmates Raja Sulta Uversty of Kashmr, Sragar, Ida, hamzasulta8@yahoo.com

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Exchangeable Sequences, Laws of Large Numbers, and the Mortgage Crisis.

Exchangeable Sequences, Laws of Large Numbers, and the Mortgage Crisis. Exchageable Sequeces, Laws of Large Numbers, ad the Mortgage Crss. Myug Joo Sog Advsor: Prof. Ja Madel May 2009 Itroducto The law of large umbers for..d. sequece gves covergece of sample meas to a costat,.e.,

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y. .46. a. The frst varable (X) s the frst umber the par ad s plotted o the horzotal axs, whle the secod varable (Y) s the secod umber the par ad s plotted o the vertcal axs. The scatterplot s show the fgure

More information

The expected value of a sum of random variables,, is the sum of the expected values:

The expected value of a sum of random variables,, is the sum of the expected values: Sums of Radom Varables xpected Values ad Varaces of Sums ad Averages of Radom Varables The expected value of a sum of radom varables, say S, s the sum of the expected values: ( ) ( ) S Ths s always true

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE (STATISTICS) STATISTICAL INFERENCE COMPLEMENTARY COURSE B.Sc. MATHEMATICS III SEMESTER ( Admsso) UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY P.O., MALAPPURAM, KERALA, INDIA -

More information

The Mathematics of Portfolio Theory

The Mathematics of Portfolio Theory The Matheatcs of Portfolo Theory The rates of retur of stocks, ad are as follows Market odtos state / scearo) earsh Neutral ullsh Probablty 0. 0.5 0.3 % 5% 9% -3% 3% % 5% % -% Notato: R The retur of stock

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

Regresso What s a Model? 1. Ofte Descrbe Relatoshp betwee Varables 2. Types - Determstc Models (o radomess) - Probablstc Models (wth radomess) EPI 809/Sprg 2008 9 Determstc Models 1. Hypothesze

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

Large and Moderate Deviation Principles for Kernel Distribution Estimator

Large and Moderate Deviation Principles for Kernel Distribution Estimator Iteratoal Mathematcal Forum, Vol. 9, 2014, o. 18, 871-890 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.12988/mf.2014.4488 Large ad Moderate Devato Prcples for Kerel Dstrbuto Estmator Yousr Slaou Uversté

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

TWO NEW WEIGHTED MEASURES OF FUZZY ENTROPY AND THEIR PROPERTIES

TWO NEW WEIGHTED MEASURES OF FUZZY ENTROPY AND THEIR PROPERTIES merca. Jr. of Mathematcs ad Sceces Vol., No.,(Jauary 0) Copyrght Md Reader Publcatos www.jouralshub.com TWO NEW WEIGTED MESURES OF FUZZY ENTROPY ND TEIR PROPERTIES R.K.Tul Departmet of Mathematcs S.S.M.

More information

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn:

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn: Chapter 3 3- Busess Statstcs: A Frst Course Ffth Edto Chapter 2 Correlato ad Smple Lear Regresso Busess Statstcs: A Frst Course, 5e 29 Pretce-Hall, Ic. Chap 2- Learg Objectves I ths chapter, you lear:

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

1. BLAST (Karlin Altschul) Statistics

1. BLAST (Karlin Altschul) Statistics Parwse seuece algmet global ad local Multple seuece algmet Substtuto matrces Database searchg global local BLAST Seuece statstcs Evolutoary tree recostructo Gee Fdg Prote structure predcto RNA structure

More information

4. Standard Regression Model and Spatial Dependence Tests

4. Standard Regression Model and Spatial Dependence Tests 4. Stadard Regresso Model ad Spatal Depedece Tests Stadard regresso aalss fals the presece of spatal effects. I case of spatal depedeces ad/or spatal heterogeet a stadard regresso model wll be msspecfed.

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

7. Joint Distributions

7. Joint Distributions 7. Jot Dstrbutos Chrs Pech ad Mehra Saham Ma 2017 Ofte ou wll work o problems where there are several radom varables (ofte teractg wth oe aother. We are gog to start to formall look at how those teractos

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

Randomness and uncertainty play an important

Randomness and uncertainty play an important CHAPTER 3 Probablty, Statstcs, ad Iformato Theory Radomess ad ucertaty play a mportat role scece ad egeerg. Most spoke laguage processg problems ca be characterzed a probablstc framework. Probablty theory

More information

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance Chapter, Part A Aalyss of Varace ad Epermetal Desg Itroducto to Aalyss of Varace Aalyss of Varace: Testg for the Equalty of Populato Meas Multple Comparso Procedures Itroducto to Aalyss of Varace Aalyss

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation.

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation. Whe solvg a vetory repleshmet problem usg a MDP model, kowg that the optmal polcy s of the form (s,s) ca reduce the computatoal burde. That s, f t s optmal to replesh the vetory whe the vetory level s,

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Chapter 13 Student Lecture Notes 13-1

Chapter 13 Student Lecture Notes 13-1 Chapter 3 Studet Lecture Notes 3- Basc Busess Statstcs (9 th Edto) Chapter 3 Smple Lear Regresso 4 Pretce-Hall, Ic. Chap 3- Chapter Topcs Types of Regresso Models Determg the Smple Lear Regresso Equato

More information

On Exponentially Concave Functions and Their Impact in Information Theory

On Exponentially Concave Functions and Their Impact in Information Theory O Epoetally Cocave Fuctos ad Ther Impact Iformato Theory Abstract Cocave fuctos play a cetral role optmzato So-called epoetally cocave fuctos are of smlar mportace formato theory I ths paper, we comprehesvely

More information