Electricity & Magnetism Lecture 5: Electric Potential Energy

Size: px
Start display at page:

Download "Electricity & Magnetism Lecture 5: Electric Potential Energy"

Transcription

1 Electricity & Magnetism Lecture 5: Electric Potential Energy Toay... Ø Ø Electric Poten1al Energy Unit 21 session Gravita1onal an Electrical PE Electricity & Magne/sm Lecture 5, Slie 1

2 Stuff you aske about: Ø Ø recap all the formulas so far an how they can be use in ifficult ques/ons please. An o so perhaps every 5 lectures (if we have /me) because a lot are popping up. I'll buy a ozen onuts for the class if nee be. In the first prelecture ques/on: where i gravity come from? Isn't gravity perpenicular to the mo/on, thus has no effect. Ø An on't we have a 10minute break at 1.20? My scheule says so ;( There s now a irectory of Main Points You can take a break, if you want. :) Electricity & Magne/sm Lecture 5, Slie 2

3 CheckPoint Result: EPE of Point Charge A charge of +Q is fixe in space. A secon charge of +q was first place at a istance r 1 away from +Q. Then it was move along a straight line to a new posi/on at a istance R away from its star/ng posi/on. The final loca/on of +q is at a istance r 2 from +Q. What is the change in the poten/al energy of charge +q uring this process? A. kqq/r B. kqqr/r 1 2 C. kqqr/r 2 2 D. kqq((1/r 2 )-(1/r 1 )) E. kqq((1/r 1 )-(1/r 2 )) kqq/r is the poten1al at a point so the ifference in these two poten1als will be foun by oing kqq((1/r2)-(1/r1)) Since the par1cle is move away from the fixe charge, the poten1al energy must increase. The part 1/r1-1/r2 woul yiel a posi1ve answer because 1/r1>1/r2 Electricity & Magne/sm Lecture 5, Slie 12

4 CheckPoint Result: EPE of Point Charge A charge of +Q is fixe in space. A secon charge of +q was first place at a istance r 1 away from +Q. Then it was move along a straight line to a new posi/on at a istance R away from its star/ng posi/on. The final loca/on of +q is at a istance r 2 from +Q. What is the change in the poten/al energy of charge +q uring this process? A. kqq/r B. kqqr/r 1 2 C. kqqr/r 2 2 D. kqq((1/r 2 )-(1/r 1 )) E. kqq((1/r 1 )-(1/r 2 )) Note: +q moves AWAY from +Q. Its Poten1al energy MUST DECREASE ΔU < 0 Electricity & Magne/sm Lecture 5, Slie 13

5 W = R~r 2 ~r 1 ~F ~r Recall from Mechanics: F r W > 0 Object spees up ( ΔK > 0 ) or F r F r W < 0 Object slows own ( ΔK < 0 ) F r W = 0 Constant spee ( ΔK = 0 ) Electricity & Magne/sm Lecture 5, Slie 3

6 Dot Prouct (review) If you know A an B in rectangular coorinates, then you can fin the angle between them.

7 Potential Energy If gravity oes nega1ve work, poten1al energy increases! Same iea for Coulomb force if Coulomb force oes nega1ve work, poten1al energy increases. + + F + + Δx Coulomb force oes nega1ve work Poten1al energy increases Electricity & Magne/sm Lecture 5, Slie 4

8 CheckPoint: Motion of Point Charge Electric Fiel A charge is release from rest in a region of electric fiel. The charge will start to move A) In a irec1on that makes its poten1al energy increase. B) In a irec1on that makes its poten1al energy ecrease. C) Along a path of constant poten1al energy. It will move in the same irec1on as F F Work one by force is posi1ve Δx ΔU = Work is nega1ve Nature wants things to move in such a way that PE ecreases Electricity & Magne/sm Lecture 5, Slie 5

9 Clicker Question You hol a posi1vely charge ball an walk ue west in a region that contains an electric fiel irecte ue east. East F E F H r West W H is the work one by the han on the ball W E is the work one by the electric fiel on the ball Which of the following statements is true: A) W H > 0 an W E > 0 B) W H > 0 an W E < 0 C) W H < 0 an W E < 0 D) W H < 0 an W E > 0 Electricity & Magne/sm Lecture 5, Slie 6

10 Clicker Question Conserva/ve force: ΔU = W E Not a conserva/ve force. Does not have any ΔU. E F E F H r B) W H > 0 an W E < 0 Is ΔU posi1ve or nega1ve? A) Posi1ve B) Nega1ve Electricity & Magne/sm Lecture 5, Slie 7

11 Checkpoint Masses M 1 an M 2 are ini1ally separate by a istance R a. Mass M 2 is now move further away from mass M 1 such that their final separa1on is R b. Which of the following statements best escribes the work W ab one by the force of gravity on M 2 as it moves from R a to R b? A) W ab > 0 B) W ab = 0 C) W ab < 0

12 Checkpoint ~r ~F g ~F g ~r > 0 ~F g ~r = 0 ~F g ~r < 0 A) W ab > 0 B) W ab = 0 C) W ab < 0

13 Example: Two Point Charges Calculate the change in poten/al energy for two point charges originally very far apart move to a separa/on of q 1 q 2 Charge par/cles with the same sign have an increase in poten/al energy when brought closer together. ε is another epsilon For point charges oeen choose r = infinity as zero poten/al energy. Electricity & Magne/sm Lecture 5, Slie 8

14 Clicker Question Case A Case B 2 In case A two nega/ve charges which are equal in magnitue are separate by a istance. In case B the same charges are separate by a istance 2. Which configura/on has the highest poten/al energy? A) Case A B) Case B Electricity & Magne/sm Lecture 5, Slie 9

15 Clicker Question Discussion As usual, choose U = 0 to be at infinity: Case A Case B U(r) 2 U A > U B U() U(2) 0 r Electricity & Magne/sm Lecture 5, Slie 10

16 Potential Energy of Many Charges Two charges are separate by a istance. What is the change in poten/al energy when a thir charge q is brought from far away to a istance from the original two charges? Q 2 (superposi/on) Q 1 q Electricity & Magne/sm Lecture 5, Slie 14

17 Potential Energy of Many Charges What is the total energy require to bring in three ien/cal charges, from infinitely far away to the points on an equilateral triangle shown. A) 0 B) Q C) D) E) Q Work to bring in first charge: W 1 = 0 Work to bring in secon charge : Q Work to bring in thir charge : Electricity & Magne/sm Lecture 5, Slie 15

18 Potential Energy of Many Charges Suppose one of the charges is nega/ve. Now what is the total energy require to bring the three charges in infinitely far away? Q 2 A) 0 B) C) D) E) 1 Q Q Work to bring in first charge: W 1 = 0 Work to bring in secon charge : Work to bring in thir charge : Electricity & Magne/sm Lecture 5, Slie 16

19 CheckPoint: EPE of a System of Point Charges 1 Two charges which are equal in magnitue, but opposite in sign, are place at equal istances from point A as shown. If a thir charge is ae to the system an place at point A, how oes the electric poten/al energy of the charge collec/on change? A. Poten/al energy increases B. Poten/al energy ecreases C. Poten/al energy oes not change D. The answer epens on the sign of the thir charge If the new charge has a poten1al energy cause by charge 1 equal to charge 2, when we sum them up, it will a up to 0, resul1ng in no change in total poten1al energy. thir charge will a kq 1 q 3 / an kq 2 q 3 / to the total U, unless q 3 is zero, it will efinitely change the total poten1al energy of the system. Electricity & Magne/sm Lecture 5, Slie 17

20 CheckPoint: EPE of a System of Point Charges 2 Two point charges are separate by some istance as shown. The charge of the first is posi/ve. The charge of the secon is nega/ve an its magnitue is twice as large as the first. Is it possible fin a place to bring a thir charge in from infinity without changing the total poten/al energy of the system? A. YES, as long as the thir charge is posi/ve B. YES, as long as the thir charge is nega/ve C. YES, no maker what the sign of the thir charge D. NO HOW? LET S DO THE CALCULATION! It is possible to bring a thir char in from infinity without changing the total poten1al energy of the system if this thir char is place a istance twice as far way from the nega1ve charge than from the posi1ve charge (an q1 an q2 must be equal in magnitue?). The potential energies the thir charge will contribute to the system have opposite signs but NOT equal magnitues. So the net potential energy will not equal 0. Electricity & Magne/sm Lecture 5, Slie 18

21 Example A posi/ve charge q is place at x = 0 an a nega/ve charge 2q is place at x =. At how many ifferent places along the x axis coul another posi/ve charge be place without changing the total poten/al energy of the system? A) 0 B) 1 C) 2 D) 3 Q X = 0 2Q X = x Electricity & Magne/sm Lecture 5, Slie 19

22 Example At which two places can a posi/ve charge be place without changing the total poten/al energy of the system? Q 2Q A X = 0 B C X = D x A) A & B B) A & C C) B & C D) B & D E) A & D Let s calculate the posi1ons of A an B Electricity & Magne/sm Lecture 5, Slie 20

23 Lets work out where A is r A Q X = 0 2Q X = x Set ΔU = 0 Makes Sense! Q is twice as far from 2q as it is from +q Electricity & Magne/sm Lecture 5, Slie 21

24 Lets work out where B is r r Q X = 0 B 2Q X = x Seeng ΔU = 0 Makes Sense! Q is twice as far from 2q as it is from +q Electricity & Magne/sm Lecture 5, Slie 22

25 What about D? Can you prove that is not possible to put another charge at posi/on D without changing U? r Q X = 0 2Q X = D x 1 r+ = 2 r (r must be posi/ve)

26 Summary For a pair of charges: r Just evaluate Q 1 Q 2 (We usually choose U = 0 to be where the charges are far apart) For a collec1on of charges: Sum up for all pairs Electricity & Magne/sm Lecture 5, Slie 23

Electricity & Magnetism Lecture 5: Electric Potential Energy

Electricity & Magnetism Lecture 5: Electric Potential Energy Electricity & Magnetism Lecture 5: Electric Potential Energy Toay... Ø Ø Ø Ø Recap of Unit 19 graing This unit s (21) wri=en Homework Electric PotenDal Energy Unit 21 session GravitaDonal an Electrical

More information

Electricity & Magnetism Lecture 5: Electric Potential Energy

Electricity & Magnetism Lecture 5: Electric Potential Energy Electricity & Magnetism Lecture 5: Electric Potential Energy Today... Ø Ø Electric Poten1al Energy Unit 21 session Gravita1onal and Electrical PE Electricity & Magne/sm Lecture 5, Slide 1 Stuff you asked

More information

Physics 2112 Unit 5: Electric Potential Energy

Physics 2112 Unit 5: Electric Potential Energy Physics 11 Unit 5: Electric Potential Energy Toay s Concept: Electric Potential Energy Unit 5, Slie 1 Stuff you aske about: I on't like this return to mechanics an the potential energy concept, but this

More information

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field Slie 1 / 29 Slie 2 / 29 lectric Potential Slie 3 / 29 Work one in a Uniform lectric Fiel Slie 4 / 29 Work one in a Uniform lectric Fiel point a point b The path which the particle follows through the uniform

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Conductors & Capacitance

Conductors & Capacitance Conuctors & Capacitance PICK UP YOUR EXAM;; Average of the three classes is approximately 51. Stanar eviation is 18. It may go up (or own) by a point or two once all graing is finishe. Exam KEY is poste

More information

Last Time: Chapter 6 Today: Chapter 7

Last Time: Chapter 6 Today: Chapter 7 Last Time: Chapter 6 Today: Chapter 7 Last Time Work done by non- constant forces Work and springs Power Examples Today Poten&al Energy of gravity and springs Forces and poten&al energy func&ons Energy

More information

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2?

Second Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of 2.77 µf. What is C 2? Secon Major Solution Q1. The three capacitors in the figure have an equivalent capacitance of.77 µf. What is C? C 4.0 µf.0 µf A) 7 µf B) µf C) 4 µf D) 3 µf E) 6 µf Q. When the potential ifference across

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 UNIT 10: WORK AND ENERGY Approximate Classroom Time: Three 100 minute sessions Today s Concepts: Work & Kine6c Energy ES "Knowing is not enough; we must apply. Willing is

More information

Classical Mechanics Lecture 8

Classical Mechanics Lecture 8 Classical Mechanics Lecture 8 Today's Concepts: a) Poten2al Energy b) Mechanical Energy Mechanics Lecture 8, Slide 1 Stuff you asked about: Gravity is the law. violators will be brought down. How were

More information

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

1. An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric fiel During this isplacement: i f E A the work one by the fiel is positive an the potential

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Karate Will not do Session 3 of Unit 8. It is a Karate thing. We will only mark Session 2 of unit 8. You

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Electric Potential & Potential Energy

Electric Potential & Potential Energy Electric Potential & Potential Energy I) ELECTRIC POTENTIAL ENERGY of a POINT CHARGE Okay, remember from your Mechanics: Potential Energy (U) is gaine when you o work against a fiel (like lifting a weight,

More information

Electricity & Magnetism Lecture 4: Gauss Law

Electricity & Magnetism Lecture 4: Gauss Law Electricity & Magnetism Lecture 4: Gauss Law Today s Concepts: A) Conductors B) Using Gauss Law Electricity & Magne/sm Lecture 4, Slide 1 Another question... whats the applica=on to real life? Stuff you

More information

Problem Set 2: Solutions

Problem Set 2: Solutions UNIVERSITY OF ALABAMA Department of Physics an Astronomy PH 102 / LeClair Summer II 2010 Problem Set 2: Solutions 1. The en of a charge rubber ro will attract small pellets of Styrofoam that, having mae

More information

Electricity & Magnetism Lecture 2: Electric Fields

Electricity & Magnetism Lecture 2: Electric Fields Electricity & Magnetism Lecture 2: Electric Fields Today s Concepts: A) The Electric Field B) Con9nuous Charge Distribu9ons Electricity & Magne9sm Lecture 2, Slide 1 Your Comments Suddenly, terrible haiku:

More information

Solution. ANSWERS - AP Physics Multiple Choice Practice Kinematics. Answer

Solution. ANSWERS - AP Physics Multiple Choice Practice Kinematics. Answer NSWRS - P Physics Multiple hoice Practice Kinematics Solution nswer 1. Total istance = 60 miles, total time = 1.5 hours; average spee = total istance/total time 2. rea boune by the curve is the isplacement

More information

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9 Oregon State University PH 213 Spring Term 2018 Prep 1 Suggeste finish ate: Monay, April 9 The formats (type, length, scope) of these Prep problems have been purposely create to closely parallel those

More information

Electricity & Magnetism Lecture 2: Electric Fields

Electricity & Magnetism Lecture 2: Electric Fields Electricity & Magnetism Lecture 2: Electric Fields Today s Concepts: A) The Electric Field B) Con3nuous Charge Distribu3ons Electricity & Magne3sm Lecture 2, Slide 1 Your Comments Suddenly, terrible haiku:

More information

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines

Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Electricity & Magnetism Lecture 3: Electric Flux and Field Lines Today s Concepts: A) Electric Flux B) Field Lines Gauss Law Electricity & Magne@sm Lecture 3, Slide 1 Your Comments What the heck is epsilon

More information

Experiment I Electric Force

Experiment I Electric Force Experiment I Electric Force Twenty-five hunre years ago, the Greek philosopher Thales foun that amber, the harene sap from a tree, attracte light objects when rubbe. Only twenty-four hunre years later,

More information

V q.. REASONING The potential V created by a point charge q at a spot that is located at a

V q.. REASONING The potential V created by a point charge q at a spot that is located at a 8. REASONING The electric potential at a istance r from a point charge q is given by Equation 9.6 as kq / r. The total electric potential at location P ue to the four point charges is the algebraic sum

More information

Exam #2, Electrostatics

Exam #2, Electrostatics Exam #2, Electrostatics Prof. Maurik Holtrop Department of Physics PHYS 408 University of New Hampshire March 27 th, 2003 Name: Stuent # NOTE: There are 5 questions. You have until 9 pm to finish. You

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

Bohr Model of the Hydrogen Atom

Bohr Model of the Hydrogen Atom Class 2 page 1 Bohr Moel of the Hyrogen Atom The Bohr Moel of the hyrogen atom assumes that the atom consists of one electron orbiting a positively charge nucleus. Although it oes NOT o a goo job of escribing

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Notices Midterm Exam Friday Feb 8 will cover stuff we do un6l today. 10 mul6ple choice + 2 problems, 2

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Numerical Integrator. Graphics

Numerical Integrator. Graphics 1 Introuction CS229 Dynamics Hanout The question of the week is how owe write a ynamic simulator for particles, rigi boies, or an articulate character such as a human figure?" In their SIGGRPH course notes,

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

Classical Mechanics Lecture 8

Classical Mechanics Lecture 8 Classical Mechanics Lecture 8 Name St.No. - Date(YY/MM/DD) / / Section Today's Concepts: a) Poten)al Energy b) Mechanical Energy UNIT 11: ENERGY CONSERVATION Approximate Classroom Time: Two 100 minute

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

Ch.7 #4 7,11,12,18 21,24 27

Ch.7 #4 7,11,12,18 21,24 27 Ch.7 #4 7,,,8,4 7 4. Picture the Problem: The farmhan pushes the hay horizontally. 88 N Strategy: Multiply the force by the istance because in this case the two point along the same irection. 3.9 m Solution:

More information

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics Lecture 1 Energy, Force, an ork in Electro an MagnetoQuasistatics n this lecture you will learn: Relationship between energy, force, an work in electroquasistatic an magnetoquasistatic systems ECE 303

More information

Topic 2.3: The Geometry of Derivatives of Vector Functions

Topic 2.3: The Geometry of Derivatives of Vector Functions BSU Math 275 Notes Topic 2.3: The Geometry of Derivatives of Vector Functions Textbook Sections: 13.2 From the Toolbox (what you nee from previous classes): Be able to compute erivatives scalar-value functions

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Physics 2212 GJ Quiz #4 Solutions Fall 2015

Physics 2212 GJ Quiz #4 Solutions Fall 2015 Physics 2212 GJ Quiz #4 Solutions Fall 215 I. (17 points) The magnetic fiel at point P ue to a current through the wire is 5. µt into the page. The curve portion of the wire is a semicircle of raius 2.

More information

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions

ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions ACCELERATION, FORCE, MOMENTUM, ENERGY : solutions to higher level questions 015 Question 1 (a) (i) State Newton s secon law of motion. Force is proportional to rate of change of momentum (ii) What is the

More information

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE ELECTRIC CHARGE Introuction: Orinary matter consists of atoms. Each atom consists of a nucleus, consisting of protons an neutrons, surroune by a number of electrons. In electricity, the electric charge

More information

Electric Fields. Lyzinski Physics

Electric Fields. Lyzinski Physics lectric Fiels Lyzinski Physics Objects near the earth are attracte to the earth (an thus experience a force irecte towars the earth) because they lie within the earth s GRAVITATIOAL FILD. As you move away

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Physics General Physics II Electricity, Magne/sm, Op/cs and Modern Physics Review Lecture Chapter Spring 2017 Semester

Physics General Physics II Electricity, Magne/sm, Op/cs and Modern Physics Review Lecture Chapter Spring 2017 Semester Physics 21900 General Physics II Electricity, Magne/sm, Op/cs and Modern Physics Review Lecture Chapter 14.1-4 Spring 2017 Semester Prof. Andreas Jung Reminder Addi=onal help session tonight: 6:30-8:30pm,

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

Day 4: Motion Along a Curve Vectors

Day 4: Motion Along a Curve Vectors Day 4: Motion Along a Curve Vectors I give my stuents the following list of terms an formulas to know. Parametric Equations, Vectors, an Calculus Terms an Formulas to Know: If a smooth curve C is given

More information

Statics. There are four fundamental quantities which occur in mechanics:

Statics. There are four fundamental quantities which occur in mechanics: Statics Mechanics isabranchofphysicsinwhichwestuythestate of rest or motion of boies subject to the action of forces. It can be ivie into two logical parts: statics, where we investigate the equilibrium

More information

2-7. Fitting a Model to Data I. A Model of Direct Variation. Lesson. Mental Math

2-7. Fitting a Model to Data I. A Model of Direct Variation. Lesson. Mental Math Lesson 2-7 Fitting a Moel to Data I BIG IDEA If you etermine from a particular set of ata that y varies irectly or inversely as, you can graph the ata to see what relationship is reasonable. Using that

More information

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim.

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim. Math 7 Solutions for Spring 5 Final Exam ) We are gien an infinite sequence for which the general term is a n 3 + 5n n + n an are 3 + 5n aske to fin the limit of the sequence. This is equialent to ealuating

More information

TEST 2 (PHY 250) Figure Figure P26.21

TEST 2 (PHY 250) Figure Figure P26.21 TEST 2 (PHY 250) 1. a) Write the efinition (in a full sentence) of electric potential. b) What is a capacitor? c) Relate the electric torque, exerte on a molecule in a uniform electric fiel, with the ipole

More information

Physics 115C Homework 4

Physics 115C Homework 4 Physics 115C Homework 4 Problem 1 a In the Heisenberg picture, the ynamical equation is the Heisenberg equation of motion: for any operator Q H, we have Q H = 1 t i [Q H,H]+ Q H t where the partial erivative

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1

Phys102 Second Major-122 Zero Version Coordinator: Sunaidi Sunday, April 21, 2013 Page: 1 Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters. Initially the electrostatic force

More information

Electricity & Magnetism Lecture 13

Electricity & Magnetism Lecture 13 Electricit & Magnetism Lecture 13 Toda s Concept: Torques Electricit & Magne9sm Lecture 13, Slide 1 Extra Deadlines Extra deadlines have been set up for Prelectures and Checkpoints that happened last week.

More information

ABCD42BEF F2 F8 5 4D658 CC89

ABCD42BEF F2 F8 5 4D658 CC89 ABCD BEF F F D CC Vetri Velan GSI, Physics 7B Miterm 2: Problem Solution. Outsie sphere, E looks like a point charge. E = The total charge on the sphere is Q sphere = ρ 4 3 πr3 Thus, outsie the sphere,

More information

1. An electron moves from point i to point f, in the direction of a uniform electric eld. During this displacement: ² ² i

1. An electron moves from point i to point f, in the direction of a uniform electric eld. During this displacement: ² ² i Chapter 24: ELECTRIC POTENTIAL 1 An electron moves from point i to point f, in the irection of a uniform electric el During this isplacement: ² ² i f ~E A the work one by the el is positive an the potential

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Electricity & Magnetism Lecture 10: Kirchhoff s Rules

Electricity & Magnetism Lecture 10: Kirchhoff s Rules Electricity & Magnetism Lecture 10: Kirchhoff s Rules Today s Concept: Kirchhoff s Rules Electricity & Magne

More information

Physics 1A, Lecture 3: One Dimensional Kinema:cs Summer Session 1, 2011

Physics 1A, Lecture 3: One Dimensional Kinema:cs Summer Session 1, 2011 Your textbook should be closed, though you may use any handwrieen notes that you have taken. You will use your clicker to answer these ques:ons. If you do not yet have a clicker, please turn in your answers

More information

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b)

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b) LPC Physics A 00 Las Positas College, Physics Department Staff Purpose: To etermine that, for a boy in equilibrium, the following are true: The sum of the torques about any point is zero The sum of forces

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Calculus I Homework: Related Rates Page 1

Calculus I Homework: Related Rates Page 1 Calculus I Homework: Relate Rates Page 1 Relate Rates in General Relate rates means relate rates of change, an since rates of changes are erivatives, relate rates really means relate erivatives. The only

More information

Electricity & Magnetism Lecture 9: Conductors and Capacitance

Electricity & Magnetism Lecture 9: Conductors and Capacitance Electricity & Magnetism Lecture 9: Conductors and Capacitance Today s Concept: A) Conductors B) Capacitance ( Electricity & Magne7sm Lecture 7, Slide 1 Some of your comments This chapter makes absolute

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

Electricity & Magnetism Lecture 1: Coulomb s Law

Electricity & Magnetism Lecture 1: Coulomb s Law Electricity & Magnetism Lecture 1: Coulomb s Law Today s Concepts: A) Coulomb s Law B) Superposi

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically.

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically. NAME : F.5 ( ) MARS: /70 FORM FIVE PHYSICS TEST on MECHANICS Time Allowe: 70 minutes This test consists of two sections: Section A (structure type questions, 50 marks); Section B (multiple choice, 20 marks)

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Calculus Class Notes for the Combined Calculus and Physics Course Semester I

Calculus Class Notes for the Combined Calculus and Physics Course Semester I Calculus Class Notes for the Combine Calculus an Physics Course Semester I Kelly Black December 14, 2001 Support provie by the National Science Founation - NSF-DUE-9752485 1 Section 0 2 Contents 1 Average

More information

It's often useful to find all the points in a diagram that have the same voltage. E.g., consider a capacitor again.

It's often useful to find all the points in a diagram that have the same voltage. E.g., consider a capacitor again. 17-7 (SJP, Phys 22, Sp ') It's often useful to fin all the points in a iagram that have the same voltage. E.g., consier a capacitor again. V is high here V is in between, here V is low here Everywhere

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/

New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/ Important Informa+on Instructor: Dr. Ty S(egler Office: ENPH 211 (Office Hours TBD) Email: tyana@physics.tamu.edu New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/

More information

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones.

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones. Relate Rates Introuction We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones For example, for the sies of a right triangle we have a 2 + b 2 = c 2 or

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Chapter 24: Magnetic Fields and Forces Solutions

Chapter 24: Magnetic Fields and Forces Solutions Chapter 24: Magnetic iels an orces Solutions Questions: 4, 13, 16, 18, 31 Exercises & Problems: 3, 6, 7, 15, 21, 23, 31, 47, 60 Q24.4: Green turtles use the earth s magnetic fiel to navigate. They seem

More information

Classical Mechanics Lecture 21

Classical Mechanics Lecture 21 Classical Mechanics Lecture 21 Today s Concept: Simple Harmonic Mo7on: Mass on a Spring Mechanics Lecture 21, Slide 1 The Mechanical Universe, Episode 20: Harmonic Motion http://www.learner.org/vod/login.html?pid=565

More information

Electricity & Magnetism Lecture 8: Capacitors

Electricity & Magnetism Lecture 8: Capacitors Electricity & Magnetism Lecture 8: apacitors Today s oncept: apacitors (apacitors in a circuits, Dielectrics, Energy in capacitors) Alternate terms: condensors, capacitators,... Electricity & Magne/sm

More information

PERMANENT MAGNETS CHAPTER MAGNETIC POLES AND BAR MAGNETS

PERMANENT MAGNETS CHAPTER MAGNETIC POLES AND BAR MAGNETS CHAPTER 6 PERAET AGET 6. AGETIC POLE AD BAR AGET We have seen that a small current-loop carrying a current i, prouces a magnetic fiel B o 4 ji ' at an axial point. Here p ia is the magnetic ipole moment

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

Physics 170 Week 7, Lecture 2

Physics 170 Week 7, Lecture 2 Physics 170 Week 7, Lecture 2 http://www.phas.ubc.ca/ goronws/170 Physics 170 203 Week 7, Lecture 2 1 Textbook Chapter 12:Section 12.2-3 Physics 170 203 Week 7, Lecture 2 2 Learning Goals: Learn about

More information

five moments Moments Moments Moments 8 a force acting at a different point causes a different moment:

five moments Moments Moments Moments 8 a force acting at a different point causes a different moment: ELEENTS O RCHITECTURL STRUCTURES: OR, EHVIOR, ND DESIGN DR. NNE NICHOLS SPRING 2014 forces have the tenency to make a boy rotate about an ais lecture five moments http://www.physics.um.eu same translation

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically.

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically. NAME : F.5 ( ) MARS: /70 FORM FIVE PHYSICS TEST on MECHANICS Time Allowe: 70 minutes This test consists of two sections: Section A (structure type questions, 50 marks); Section B (multiple choice, 20 marks)

More information

ECE341 Test 2 Your Name: Tue 11/20/2018

ECE341 Test 2 Your Name: Tue 11/20/2018 ECE341 Test Your Name: Tue 11/0/018 Problem 1 (1 The center of a soli ielectric sphere with raius R is at the origin of the coorinate. The ielectric constant of the sphere is. The sphere is homogeneously

More information

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F

Q1. A) 3F/8 B) F/4 C) F/2 D) F/16 E) F The charge on A will be Q 2. Ans: The charge on B will be 3 4 Q. F = k a Q r 2. = 3 8 k Q2 r 2 = 3 8 F Phys10 Secon Major-1 Zero Version Coorinator: Sunaii Sunay, April 1, 013 Page: 1 Q1. Two ientical conucting spheres A an B carry eual charge Q, an are separate by a istance much larger than their iameters.

More information

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b.

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b. b. Partial erivatives Lecture b Differential operators an orthogonal coorinates Recall from our calculus courses that the erivative of a function can be efine as f ()=lim 0 or using the central ifference

More information

qq 1 1 q (a) -q (b) -2q (c)

qq 1 1 q (a) -q (b) -2q (c) 1... Multiple Choice uestions with One Correct Choice A hollow metal sphere of raius 5 cm is charge such that the potential on its surface to 1 V. The potential at the centre of the sphere is (a) zero

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

Answers to Coursebook questions Chapter 5.6

Answers to Coursebook questions Chapter 5.6 Answers to Courseook questions Chapter 56 Questions marke with a star (*) use the formula for the magnetic fiel create y a current μi ( = ) which is not on the syllaus an so is not eaminale See Figure

More information

Worksheet 8, Tuesday, November 5, 2013, Answer Key

Worksheet 8, Tuesday, November 5, 2013, Answer Key Math 105, Fall 2013 Worksheet 8, Tuesay, November 5, 2013, Answer Key Reminer: This worksheet is a chance for you not to just o the problems, but rather unerstan the problems. Please iscuss ieas with your

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

Related Rates. Introduction

Related Rates. Introduction Relate Rates Introuction We are familiar with a variet of mathematical or quantitative relationships, especiall geometric ones For eample, for the sies of a right triangle we have a 2 + b 2 = c 2 or the

More information

A Second Time Dimension, Hidden in Plain Sight

A Second Time Dimension, Hidden in Plain Sight A Secon Time Dimension, Hien in Plain Sight Brett A Collins. In this paper I postulate the existence of a secon time imension, making five imensions, three space imensions an two time imensions. I will

More information

ARCH 614 Note Set 5 S2012abn. Moments & Supports

ARCH 614 Note Set 5 S2012abn. Moments & Supports RCH 614 Note Set 5 S2012abn Moments & Supports Notation: = perpenicular istance to a force from a point = name for force vectors or magnitue of a force, as is P, Q, R x = force component in the x irection

More information

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector Multivariable Calculus: Chapter 13: Topic Guie an Formulas (pgs 800 851) * line segment notation above a variable inicates vector The 3D Coorinate System: Distance Formula: (x 2 x ) 2 1 + ( y ) ) 2 y 2

More information

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v Math Fall 06 Section Monay, September 9, 06 First, some important points from the last class: Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v passing through

More information