Security Constrained Optimal Power Flow

Size: px
Start display at page:

Download "Security Constrained Optimal Power Flow"

Transcription

1 Security Constrained Optimal Power Flow 1. Introduction and notation Fiure 1 below compares te optimal power flow (OPF wit te security-constrained optimal power flow (SCOPF. Fi. 1 Some comments about tese different formulations: SCOPF solution will always ave a cost > OPF solution. If we inore losses, ten we can say tat an OPF solution differs from an EDC solution (economic dispatc calculation, i.e., no transmission only wen a normal transmission constraint becomes bindin. o Occurs wen normal flow moves from just < 1% to >1% of continuous ratin. SCOPF differs from an OPF solution only wen a continency transmission constraint becomes bindin. o Occurs wen post-continency flow moves from just < 1% to >1% of emerency ratin. 1

2 We will cane notation now. Instead of usin te notation (prime to indicate te constraints under continencies, we will subscript te constraints, were te subscript indicates te continency state. For example, te optimal power flow (OPF problem can be written as below. We will call tis problem P. P Min f Here, (x,u = represents te power flow equations; (x,u represents te branc-flow constraints; represent branc continuous ratin Te state variables x denote te bus voltae manitudes and anles under pre-continency condition Te index = indicates tis problem is posed for only te pre-continency condition, i.e., te condition wit no continencie Tus, tis problem is just te OPF. Now let s consider te security-constrained OPF (SCOPF. Its problem statement is iven as problem P p : P p Min f,1,2,..., c Notice tat tere are c continencies to be addressed in te SCOPF, and tat tere are a complete new set of constraints for eac of tese c continencie Observe: Eac set of continency-related equality constraints is exactly lie te oriinal set of equality constraints (tose for problem P, except it corresponds to te system wit an element removed.,1,2,..., c 2

3 Eac set of continency-related inequality constraints is exactly lie te oriinal set of inequality constraints (tose for problem P, except it corresponds to te system wit an element removed and, for branc flow constraints and for voltae manitudes, te limits will be differen Also notice tat te constraints are a function of x, te voltae manitudes and anles under te pre-continency (= and continency conditions (>1,2,,c, and u, te controls wic were set under te pre-continency conditions (=. 2. Reducin computation time for SCOPF Denote te number of constraints for te OPF, Problem P, as N. Assumption: Let s assume tat runnin time T of te aloritm we use to solve te above problem is proportional to te square of te number of constraints, i.e., N 2. For simplicity, we assume te constant of proportionality is 1, so tat T=N 2. So te SCOPF must deal wit te oriinal N constraints, and also anoter set of N constraints for every continency. Terefore, te total number of constraints for Problem P p is N+cN=(c+1N. Under our assumption tat runnin time is proportional to te square of te number of constraints, ten te runnin time will be proportional to [(c+1n] 2 =(c+1 2 N 2 =(c+1 2 T. Wat does tis mean? It means tat te runnin time of te SCOPF is (c+1 2 times te runnin time of te OPF. So if it taes OPF 1 minute to run, and you want to run SCOPF wit 1 continencies, it will tae you 11 2 minutes, or 1,21 minutes to run te SCOPF. Tis is 17 ours, about 1 wee!!!! 3

4 Many systems need to address 1 continencie Tis would tae about 2 years! So tis is wat you do.. Solve OPF = (normal condition Solve OPF =1 (continency 1 Solve OPF = (continency 2 Solve OPF = (continency 3 Solve OPF =c (continency c Fi. 1: Decomposition solution stratey Te solution stratey first solves te OPF (master problem and ten taes continency 1 and re-solves te OPF, ten continency 2 and resolves te OPF, and so on (tese are te subproblem For any continency-opfs wic require a redispatc, relative to te = OPF, an appropriate constraint is enerated, at te end of te cycle, tese constraints are atered and applied to te = OPF. Ten te = OPF is resolved, and te cycle starts aain. Experience as it tat suc an approac usually requires only 2-3 cycle Denote te number of cycles as m. Eac of te individual problems as only N constraints and terefore requires only T minute Tere are (c+1 individual problems for every cycle. Tere are m cycle So te amount of runnin time is m(c+1t. 4

5 If c=1 and m=3, T=1 minute, tis approac requires 33 minute Tat would be about 5 ours (instead of 1 wee. If c=1 and m=3, T=1 minute, tis approac requires about 5 ours (instead of 2 year In addition, tis approac is easily parallelizable, i.e., eac individual OPF problem can be sent to its own CPU. Tis will save even more time. Fiure 2 [1] compares computin time for a 6-bus system (Fi. 2a and a 24 bus test system (Fi. 2b. Te comparison is between a full SCOPF, a decomposed SCOPF (DSCOPF, and a decomposed SCOPF were individual OPF problems are sent to separate CPU Tis ind of aloritm is formalized as Benders decomposition. Fi. 2 Tere is a ric literature on usin decomposition metods for solvin SCOPF and SCUC. Searcin on Benders and (optimal power flow or unit commitment returns 54 its in IEEE Xplore. 5

6 3. Preventive v Corrective In tis section, we desire to distinuis between two inds of security-related actions, i.e., two inds of control. Consider te security-state diaram of Fi. 3. Fi. 3 Preventive control is an action taen to move from te alert state to te normal state. Preventive control is taen to prevent an undesirable operatin condition from occurrin if a continency occur Since tere is no immediate consequence of suc a state, preventive control is not typically concerned wit ow muc time a particular action require Corrective control is an action taen to move from te emerency state to te alert state or from te emerency state to te normal state. Since an emerency state is experiencin an existin undesirable operatin condition, it is important to move out of te emerency state quicly. As a result, corrective control is eavily concerned wit ow muc time a particular action will tae. 6

7 4. Preventive SCOPF Te preventive SCOPF is te one we ave already posed as problem P p, repeated below for convenience. P p Min f,1,2,..., c As already mentioned in Section 1., te constraints are a function of x, te voltae manitudes and anles under te pre-continency (= and continency (>1,2,,c conditions, and u, te controls wic were set under te pre-continency conditions (=. But wat maes tis a preventive SCOPF?,1,2,..., c Te fact tat te controls are restricted to teir pre-continency condition settins, tus denoted u, maes tis a preventive SCOPF. Tat is, we must position te power system wile in te normal condition (i.e., no continency to prevent operatin conditions followin occurrence of a continency to exceed emerency ratin Note tat ere and elsewere in tese notes, continency refers to any continency on a specified continency list but not a continency tat is not on te specified continency lis Tat is, we do not account for all possible continencies but rater just a certain set, enerally all N-1 continencie 7

8 5. Fully corrective SCOPF Te fully corrective SCOPF is posed below as problem P c1. P c1 Min f u u K 1,2,..., c 1,2,..., c 1,2,..., c Here, K is a vector of very lare positive number Observations: Tis problem is considered corrective because postcontinency (=1,2, c controls u are allowed to move in order to satisfy te post-continency constraint Te problem is considered fully corrective because we allow post-continency constraints to be satisfied independent of precontinency conditions, i.e., and, >, include u as an arument instead of u (compare to prob P p. Two implications: o Post-continency controls may move as muc as needed, witin bounds of te control capabilities (usually te & min en values to satisfy post-continency constraint Tis is made possible by settin te elements of K to +, i.e., te difference between post-continency control levels u and pre-continency control levels u are unrestricted. o Post-continency controls must move as muc as needed, witin bounds of te control capabilities (usually te & min en values to satisfy post-continency constraint In oter words, we do not allow preventive control in tis problem, i.e., we do not allow settin pre-continency controls u to satisfy post-continency constraint So postcontinency constraints must be satisfied entirely by postcontinency control. 8

9 Because te post-continency conditions are independent of precontinency variables, Problem P c1 is really Problem P (te OPF, unless one of te continency problems >1 is infeasible. In tis case, te entire problem is considered infeasible because tere is a continency wic leads to an infeasible condition and cannot be made feasible no matter wat post-continency control we tae. Question: Wat is te order of tese problems, P, P p, P c1, in terms of decreasin production cost? Answer: Cost(P p >Cost(P c1 =Cost(P. Question: Wat is te order of tese problems, P, P p, P c1, in terms of increasin system ris? Here, we must imaine tat we ave an acceptable measure of system ri Answer: Ris(P p <Ris(P c1 <Ris(P. Observe: Production costs decrease as ris increase 6. Preventive-corrective SCOPF Te preventive-corrective SCOPF is posed below as problem P c2. Min f P c2 u u u 1,2,..., c 1,2,..., c 1,2,..., c Here, te amount of corrective control tat can be expended is limited by an amount u and te pre-continency control 9

10 settin u trou te last constrain Te followin observations are made: 1. Te rit-and side of te last constraint, u, is te imum cane for te post-continency control variable It is computed as a product of te assumed time orizon allowed for corrective actions T and an assumed rate (typically imum of cane of control variables in response to continency, du /dt, i.e., du u T 1,2,..., c dt 2. Te post-continency control levels u do not appear in te objective function, i.e., te only values tat affect te objective function are u. 3. If tere are no violated post-continency constraints, ten u will be selected based only on te objective function and te pre-continency constraint 4. If tere are violated post-continency constraints, te aloritm will try to satisfy tem usin only post-continency control levels u, because tis does not affect te objective function. Tis is usin te corrective control part of te aloritm. 5. If te violated post-continency constraints cannot be satisfied usin only post-continency control levels u, ten te aloritm uses pre-continency control levels u to satisfy tem. Tis is usin te preventive control part of te aloritm. 6. It is important to realize tat te reason we use corrective control first, and preventive control only if necessary, is tat Te corrective control is perceived not to cost very muc if te continency occurs, because te continency state is not expected to last very lon. In addition, te continency liely will not occur, in wic case te corrective control will cost notin at all! In contrast to te previous bullet, any cane to precontinency control variables u, a preventive control, 1

11 moves te system away from te optimal economic point independent of weter a continency occurs or not, and terefore, tis cane will always cost money! 7. Because post-continency control levels u are not included in te objective function, it is possible to find different corrective controls tat will provide feasibility for te same objective function value. Tus, we see tat te preventivecorrective SCOPF can ave multiple solution To distinuis between te various solutions, one can add postcontinency control costs to te objective function, but since te continencies mit or mit not appen, one must condition tose post-continency control costs for eac continency on te continency probability. Tis problem is provided below as Problem P c3. c Min p f p f 1 P c3 u u u 1,2,..., c 1,2,..., c 1,2,..., c [1] Y. Li, Decision main under uncertainty in power system usin Benders decomposition. PD Dissertation, Iowa State University,

More on Security Constrained Optimal Power Flow

More on Security Constrained Optimal Power Flow More on Serity Constrained Optimal Power Flow 1. Notation In te last lass we represented te OPF and te SCOPF as below. We will ange notation now. Instead of sing te notation prime to indiate te onstraints

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

1.5 Function Arithmetic

1.5 Function Arithmetic 76 Relations and Functions.5 Function Aritmetic In te previous section we used te newly deined unction notation to make sense o epressions suc as ) + 2 and 2) or a iven unction. It would seem natural,

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

CMU Fall VLSI CAD

CMU Fall VLSI CAD CMU Fall 00 8-760 VLSI CAD [5 pts] HW 5. Out: Tue Nov 7, Due: Tu. Dec 0, in class. (V). Quadratic Placement [5 pts] Consider tis simple netlist wit fixed pins, wic as placeable objects. All te -point wires

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

INTERSECTION THEORY CLASS 17

INTERSECTION THEORY CLASS 17 INTERSECTION THEORY CLASS 17 RAVI VAKIL CONTENTS 1. Were we are 1 1.1. Reined Gysin omomorpisms i! 2 1.2. Excess intersection ormula 4 2. Local complete intersection morpisms 6 Were we re oin, by popular

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES. Sangwon Park

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES. Sangwon Park Korean J. Mat. 16 (2008), No. 3, pp. 323 334 INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES Sanwon Park Abstract. We define injective and projective representations of quivers

More information

Financial Econometrics Prof. Massimo Guidolin

Financial Econometrics Prof. Massimo Guidolin CLEFIN A.A. 2010/2011 Financial Econometrics Prof. Massimo Guidolin A Quick Review of Basic Estimation Metods 1. Were te OLS World Ends... Consider two time series 1: = { 1 2 } and 1: = { 1 2 }. At tis

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

The Measurement of the Gravitational Constant g with Kater s Pendulum

The Measurement of the Gravitational Constant g with Kater s Pendulum e Measurement of te Gravitational Constant wit Kater s Pendulum Abstract A Kater s pendulum is set up to measure te period of oscillation usin a lamppotocell module and a ektronix oscilloscope. Usin repeated

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

5.62 Spring 2004 Lecture #34, Page 1. Transition-State Theory

5.62 Spring 2004 Lecture #34, Page 1. Transition-State Theory 5.6 Spring 004 Lecture #34, Page 1 Transition-State Teory A good teory must tae into account te internal degrees of freedom of te reactants and teir angle of approac. An approac nown as transition state

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

General Solution of the Stress Potential Function in Lekhnitskii s Elastic Theory for Anisotropic and Piezoelectric Materials

General Solution of the Stress Potential Function in Lekhnitskii s Elastic Theory for Anisotropic and Piezoelectric Materials dv. Studies Teor. Pys. Vol. 007 no. 8 7 - General Solution o te Stress Potential Function in Lenitsii s Elastic Teory or nisotropic and Pieoelectric Materials Zuo-en Ou StateKey Laboratory o Explosion

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Quasi-geostrophic motion

Quasi-geostrophic motion Capter 8 Quasi-eostropic motion Scale analysis for synoptic-scale motions Simplification of te basic equations can be obtained for synoptic scale motions. Consider te Boussinesq system ρ is assumed to

More information

Analytic Functions. Differentiable Functions of a Complex Variable

Analytic Functions. Differentiable Functions of a Complex Variable Analytic Functions Differentiable Functions of a Complex Variable In tis capter, we sall generalize te ideas for polynomials power series of a complex variable we developed in te previous capter to general

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

Dynamics and Relativity

Dynamics and Relativity Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site www.damtp.cam.ac.uk/user/stcs/dynamics.tml Lecture notes,

More information

Math 312 Lecture Notes Modeling

Math 312 Lecture Notes Modeling Mat 3 Lecture Notes Modeling Warren Weckesser Department of Matematics Colgate University 5 7 January 006 Classifying Matematical Models An Example We consider te following scenario. During a storm, a

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

The Electron in a Potential

The Electron in a Potential Te Electron in a Potential Edwin F. Taylor July, 2000 1. Stopwatc rotation for an electron in a potential For a poton we found tat te and of te quantum stopwatc rotates wit frequency f given by te equation:

More information

These errors are made from replacing an infinite process by finite one.

These errors are made from replacing an infinite process by finite one. Introduction :- Tis course examines problems tat can be solved by metods of approximation, tecniques we call numerical metods. We begin by considering some of te matematical and computational topics tat

More information

Physics Courseware Physics I

Physics Courseware Physics I Definition of pressure: Force Area ysics Courseware ysics I Bernoulli Hydrostatics equation: B A Bernoulli s equation: roblem.- In a carburetor (scematically sown in te fiure) calculate te minimum speed

More information

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide Matematics 05 Calculus I Exam February, 009 Your Name: Solution Guide Tere are 6 total problems in tis exam. On eac problem, you must sow all your work, or oterwise torougly explain your conclusions. Tere

More information

Computational Solution to Discrete Time-Dependent Schrodinger s Equation:

Computational Solution to Discrete Time-Dependent Schrodinger s Equation: Computational Solution to Discrete Time-Dependent Scrodinger s Equation: Wave pacet s Interactions wit Potential Wells and Barriers In Griffit s Problem., you were able to analytically find te time dependence

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition an Cain Rules James K. Peterson Department of Biological Sciences an Department of Matematical Sciences Clemson University November 2, 2018 Outline Function Composition an Continuity

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

IEOR 165 Lecture 10 Distribution Estimation

IEOR 165 Lecture 10 Distribution Estimation IEOR 165 Lecture 10 Distribution Estimation 1 Motivating Problem Consider a situation were we ave iid data x i from some unknown distribution. One problem of interest is estimating te distribution tat

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Fractional Derivatives as Binomial Limits

Fractional Derivatives as Binomial Limits Fractional Derivatives as Binomial Limits Researc Question: Can te limit form of te iger-order derivative be extended to fractional orders? (atematics) Word Count: 669 words Contents - IRODUCIO... Error!

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

7 Semiparametric Methods and Partially Linear Regression

7 Semiparametric Methods and Partially Linear Regression 7 Semiparametric Metods and Partially Linear Regression 7. Overview A model is called semiparametric if it is described by and were is nite-dimensional (e.g. parametric) and is in nite-dimensional (nonparametric).

More information

ASSOCIATIVITY DATA IN AN (, 1)-CATEGORY

ASSOCIATIVITY DATA IN AN (, 1)-CATEGORY ASSOCIATIVITY DATA IN AN (, 1)-CATEGORY EMILY RIEHL A popular sloan is tat (, 1)-cateories (also called quasi-cateories or - cateories) sit somewere between cateories and spaces, combinin some o te eatures

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Name: Sept 21, 2017 Page 1 of 1

Name: Sept 21, 2017 Page 1 of 1 MATH 111 07 (Kunkle), Eam 1 100 pts, 75 minutes No notes, books, electronic devices, or outside materials of an kind. Read eac problem carefull and simplif our answers. Name: Sept 21, 2017 Page 1 of 1

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information