Applied Multivariate and Longitudinal Data Analysis

Size: px
Start display at page:

Download "Applied Multivariate and Longitudinal Data Analysis"

Transcription

1 Applied Multivariate and Longitudinal Data Analysis Chapter 2: Inference about the mean vector(s) II Ana-Maria Staicu SAS Hall 5220; ; 1

2 1 Compare Means from More Than Two Populations 1.1 Multivariate Analysis of Variance (one-way MANOVA) Wisconsin nursing home (Johnson and Wichern, 2007 ). The Wisconsin Dept of Health and Social Services reimburses nursing homes in the state for the services provided. The department develops a set of formulas for rates for each facility based on factors such as level of care, mean wage rate, and average wage rate in the state. Nursing homes can be classified on the basis of ownership (private, nonprofit, government). One purpose of a recent study was to investigate the effects of ownership on costs. Four costs computed on a per-patient day basis and measured in hours per patient day were selected for analysis: X 1 = cost of nursing labor, X 2 = cost of dietary labor, X 3 = cost of plant operation and maintenance labor, X 4 = cost of housekeeping and laundry labor. A total of n = 516 observations on each of p = 4 cost variables were initially separated according to ownership: n 1 = 271, n 2 = 138, n 3 = 107. Goal: evaluate the effects of ownership on costs. Review of univariate one-way analysis of variance or one-way ANOVA: Assumptions: independent populations; equal variances σ 1 =... = σ g ; normal; g 2 Want to test H 0 : µ 1 =... = µ g X 11,... X 1n1 N(µ 1, σ 2 1) X 21,... X 2n2 N(µ 2, σ 2 2)... X g1,... X gng N(µ g, σ 2 g) One-way ANOVA from a model perspective: write µ l = µ + τ l and thus posit the model X lj = µ + τ l + ɛ lj, l = 1,..., g; j = 1,..., n l with the constraint n l τ l = 0; here ɛ lj N(0, σ 2 ). 2

3 One-way ANOVA Table: Source of variation Sum of squares Degrees of freedom Treatment SSTr = n l ( x l x) 2 g 1 Residual (error) SSE = Total SST = H 0 : τ 1 =... = τ g = 0 Test statistic: F = n l (x lj x l ) 2 g n l g j=1 n l (x lj x) 2 g n l 1 j=1 SSTr/(g 1) SSE/( g n l g) F g 1, g n l g. Tell your neighbor what is x l? and what is x? Reject H 0 if F > F g 1, g n l g(α) Intuitively, we reject H 0 when SSTr/SSE is very large, or equivalently, SSE/SST is small. The multivariate version of ANOVA uses a direct generalization of this latter statistics to higher dimensions. 3

4 One-way MANOVA Assumptions: independent populations; equal covariances Σ 1 =... = Σ g = Σ; multivariate normal; g 2 X 11,... X 1n1 N p (µ 1, Σ) X 21,... X 2n2 N p (µ 2, Σ)... X g1,... X gng N p (µ g, Σ) H 0 : µ 1 =... = µ g One-way MANOVA model: X lj = µ + τ l + ɛ lj, l = 1,..., g; j = 1,..., n l with the constraint n l τ l = 0; here ɛ lj N p (0, Σ). Thus the above null hypothesis is equivalent to H 0 : τ 1 =... = τ g = 0 One-way MANOVA Table: Source Sum of squares and Df cross-products matrix Treatment B = n l ( x l x)( x l x) T g 1 Residual W = n l (x lj x l )(x lj x l ) T g n l g Total B + W = j=1 n l (x lj x)(x lj x) T g n l 1 j=1 To test H 0 : µ 1 =... = µ g use the statistic (Wilks lambda): Λ = W B + W = 1 W 1 B + I p the null distribution of this statistic can be derived in special cases of p and g. For other cases, a modification of Λ is used along with large sample approximations, which are in the F -family. For example when p = 2 and g 2 the test statistic is nl g 1 g 1 and its null distribution is F 2(g 1),2( nl g 1). 1 Λ ; Λ 4

5 Remark. We reject the null if Λ is very small. The Wilks lambda statistics is related to the likelihood ratio statistics. The Wilks lambda statistics is a multivariate generalization of the univariate F-distribution, generalizing the F-distribution in the same way that the Hotelling s T 2 distribution generalizes Student s t-distribution. There are other forms of test statistics: Pillai s statistic, the Lawley-Hotelling statistic, and Roy s largest root statistic. These statistics can be written as particular functions (of the eigenvalues) of W 1 B. Remark For protection against nonnormality and heterogeneity of covariance matrices, the largestroot test should be avoided, while the Pillai-Bartlett trace (Pillai s) test may be recommended as the most robust of the MANOVA tests, with adequate power to detect true differences in a variety of situations (Olson, 1974). Remark For visual assessment use covellipses() function in the heplots package. For more details see Visualizing Tests for Equality of Covariance Matrices by Michael Friendly and Matthew Sigal. Pairwise treatment effect comparison: Question: If we reject H 0, then which effects led to the rejection? Target: c kl = µ l µ k = τ l τ k for l, k = 1,..., g; l < k Estimates of treatment effects: τ l = x l x for l = 1,..., g Estimates of pairwise differences: ĉ kl = x l x k Bonferroni-corrected confidence interval (simultaneous inference): ( ) ( α W jj 1 ( x lj x kj ) ± t n g + 1 ), pg(g 1) n g n l n k l = 1,..., g, j = 1,..., p, where W jj is the j-th diagonal element of W and n = n n g. In class exercise: Why the upper tail probability used in determining the critical value of t is α/{pg(g 1)}? 5

6 1.2 Two-way Multivariate Analysis of Variance (two-way MANOVA) Extrusion of plastic film example (Johnson and Wichern, 2007 ). The optimum conditions for extruding plastic film have been examined using a technique called Evolutionary Operations. In the course of the study, three responses X 1 -tear resistance, X 2 -gloss, and X 3 -opacity, were measured at two levels of the factors rate of extrusion and amount of an additive. The measurements were repeated five times at each combinations of the factor levels. 3 variables: X 1 = tear resistance, X 2 = gloss, X 3 = opacity 2 factors: change in rate of extrusion (low/high); amount of additive (low/high) Number or replications for each combinations of factor levels = 5 Goal: to evaluate main effects of the two factors and their interaction Univariate two-way ANOVA from a model perspective: two-way fixed-effects model with interaction There are g levels of factor 1 There are b levels of factor 2 We observe n independent observations for each of the gb combinations of levels Denote the rth observation at level l of factor 1 and level k of factor 2 by X lkr Population mean at level l of factor 1 and level k of factor 2 is denoted by µ lk Decomposition µ lk = µ + τ l + β k + γ lk, where µ is the overall mean, τ l is the fixed effect of factor 1, β k is the fixed effect of factor 2, and γ lk is the interaction between the two factors We need constraints τ l = β k = γ lk = γ lk = 0 k=1 k=1 6

7 Two-way ANOVA Table: Source of variation Sum of squares Degrees of freedom Factor 1 SS fac1 = bn( x l x) 2 g 1 Factor 2 SS fac2 = Interaction SS int = Residual SS res = Total (Corrected) SS c.tot = gn( x k x) 2 b 1 k=1 k=1 n(x lk x l x k + x) 2 (g 1)(b 1) k=1 r=1 k=1 r=1 n (x lkr x lk ) 2 gb(n 1) n (x lkr x) 2 gbn 1 where the subscript reflects the sum of squares for the main factors, the interactions, the residual and the total (corrected). To test the main effect of factor 1; of factor 2; or the interaction between the two use the test statistics: SS fac1 /(g 1) SS res /{gb(n 1)}, SS fac2 /(b 1) SS res /{gb(n 1)}, SS int /{(g 1)(b 1)} SS res /{gb(n 1)} These tests statsitics follow an F distribution with corresponding degrees of freedom, when the null hypothesis is true. Two-way MANOVA Table is obtained by replacing ( x l x) 2 with ( x l x)( x l x) T, and so on... Denote SS (=sum of square) by SSP (=matrix for sum of squares and cross-products) The analogous test statistics for testing the same null hypothesis are: Λ fac1 = Λ int = SSP res SSP fac1 + SSP res, Λ fac2 = SSP res SSP int + SSP res SSP res SSP fac2 + SSP res, their null distributions is far more complex and will not be given here. 7

8 Some Discussion One multivariate test vs. p univariate tests Individual tests ignore correlation among the p variables, and may give misleading results A single multivariate test is preferable over p univariate tests The result determines whether one should look closer (individual variables or groups) MANOVA: different test statistics Wilks lambda, Lawley-Hotelling trace, Pillai s trace, Roy s largest square root All these tests are nearly equivalent for very large sample sizes For moderate sample sizes, the first three tests behave similarly MANOVA: non-normality and unequal covariance matrices For large sample sizes, non-normality has little effect on the tests If the sample sizes are equal in each group, some difference in the covariance matrices has little effect on tests in MANOVA 8

Lecture 5: Hypothesis tests for more than one sample

Lecture 5: Hypothesis tests for more than one sample 1/23 Lecture 5: Hypothesis tests for more than one sample Måns Thulin Department of Mathematics, Uppsala University thulin@math.uu.se Multivariate Methods 8/4 2011 2/23 Outline Paired comparisons Repeated

More information

Chapter 7, continued: MANOVA

Chapter 7, continued: MANOVA Chapter 7, continued: MANOVA The Multivariate Analysis of Variance (MANOVA) technique extends Hotelling T 2 test that compares two mean vectors to the setting in which there are m 2 groups. We wish to

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Chapter 2: Inference about the mean vector(s) Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 In this chapter we will discuss inference

More information

Other hypotheses of interest (cont d)

Other hypotheses of interest (cont d) Other hypotheses of interest (cont d) In addition to the simple null hypothesis of no treatment effects, we might wish to test other hypothesis of the general form (examples follow): H 0 : C k g β g p

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2012, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2012, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2012, Mr. Ruey S. Tsay Lecture 3: Comparisons between several multivariate means Key concepts: 1. Paired comparison & repeated

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Comparisons of Several Multivariate Populations Edps/Soc 584 and Psych 594 Applied Multivariate Statistics Carolyn J Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS

More information

5 Inferences about a Mean Vector

5 Inferences about a Mean Vector 5 Inferences about a Mean Vector In this chapter we use the results from Chapter 2 through Chapter 4 to develop techniques for analyzing data. A large part of any analysis is concerned with inference that

More information

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models EPSY 905: Multivariate Analysis Spring 2016 Lecture #12 April 20, 2016 EPSY 905: RM ANOVA, MANOVA, and Mixed Models

More information

Multivariate analysis of variance and covariance

Multivariate analysis of variance and covariance Introduction Multivariate analysis of variance and covariance Univariate ANOVA: have observations from several groups, numerical dependent variable. Ask whether dependent variable has same mean for each

More information

Example 1 describes the results from analyzing these data for three groups and two variables contained in test file manova1.tf3.

Example 1 describes the results from analyzing these data for three groups and two variables contained in test file manova1.tf3. Simfit Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. http://www.simfit.org.uk MANOVA examples From the main SimFIT menu choose [Statistcs], [Multivariate],

More information

Comparisons of Several Multivariate Populations

Comparisons of Several Multivariate Populations Comparisons of Several Multivariate Populations Edps/Soc 584, Psych 594 Carolyn J Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees,

More information

MANOVA MANOVA,$/,,# ANOVA ##$%'*!# 1. $!;' *$,$!;' (''

MANOVA MANOVA,$/,,# ANOVA ##$%'*!# 1. $!;' *$,$!;' ('' 14 3! "#!$%# $# $&'('$)!! (Analysis of Variance : ANOVA) *& & "#!# +, ANOVA -& $ $ (+,$ ''$) *$#'$)!!#! (Multivariate Analysis of Variance : MANOVA).*& ANOVA *+,'$)$/*! $#/#-, $(,!0'%1)!', #($!#$ # *&,

More information

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 29 Multivariate Linear Regression- Model

More information

Group comparison test for independent samples

Group comparison test for independent samples Group comparison test for independent samples The purpose of the Analysis of Variance (ANOVA) is to test for significant differences between means. Supposing that: samples come from normal populations

More information

Analysis of variance, multivariate (MANOVA)

Analysis of variance, multivariate (MANOVA) Analysis of variance, multivariate (MANOVA) Abstract: A designed experiment is set up in which the system studied is under the control of an investigator. The individuals, the treatments, the variables

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 17 for Applied Multivariate Analysis Outline Multivariate Analysis of Variance 1 Multivariate Analysis of Variance The hypotheses:

More information

POWER AND TYPE I ERROR RATE COMPARISON OF MULTIVARIATE ANALYSIS OF VARIANCE

POWER AND TYPE I ERROR RATE COMPARISON OF MULTIVARIATE ANALYSIS OF VARIANCE POWER AND TYPE I ERROR RATE COMPARISON OF MULTIVARIATE ANALYSIS OF VARIANCE Supported by Patrick Adebayo 1 and Ahmed Ibrahim 1 Department of Statistics, University of Ilorin, Kwara State, Nigeria Department

More information

MULTIVARIATE ANALYSIS OF VARIANCE

MULTIVARIATE ANALYSIS OF VARIANCE MULTIVARIATE ANALYSIS OF VARIANCE RAJENDER PARSAD AND L.M. BHAR Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 lmb@iasri.res.in. Introduction In many agricultural experiments,

More information

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA:

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA: 1 Neuendorf MANOVA /MANCOVA Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y1 Y2 Y3 Y4 Like ANOVA/ANCOVA: 1. Assumes equal variance (equal covariance matrices) across cells (groups defined by

More information

STAT 501 Assignment 2 NAME Spring Chapter 5, and Sections in Johnson & Wichern.

STAT 501 Assignment 2 NAME Spring Chapter 5, and Sections in Johnson & Wichern. STAT 01 Assignment NAME Spring 00 Reading Assignment: Written Assignment: Chapter, and Sections 6.1-6.3 in Johnson & Wichern. Due Monday, February 1, in class. You should be able to do the first four problems

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

Multivariate Linear Models

Multivariate Linear Models Multivariate Linear Models Stanley Sawyer Washington University November 7, 2001 1. Introduction. Suppose that we have n observations, each of which has d components. For example, we may have d measurements

More information

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA)

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Rationale and MANOVA test statistics underlying principles MANOVA assumptions Univariate ANOVA Planned and unplanned Multivariate ANOVA

More information

Stevens 2. Aufl. S Multivariate Tests c

Stevens 2. Aufl. S Multivariate Tests c Stevens 2. Aufl. S. 200 General Linear Model Between-Subjects Factors 1,00 2,00 3,00 N 11 11 11 Effect a. Exact statistic Pillai's Trace Wilks' Lambda Hotelling's Trace Roy's Largest Root Pillai's Trace

More information

Multivariate Linear Regression Models

Multivariate Linear Regression Models Multivariate Linear Regression Models Regression analysis is used to predict the value of one or more responses from a set of predictors. It can also be used to estimate the linear association between

More information

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA:

Neuendorf MANOVA /MANCOVA. Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y4. Like ANOVA/ANCOVA: 1 Neuendorf MANOVA /MANCOVA Model: X1 (Factor A) X2 (Factor B) X1 x X2 (Interaction) Y1 Y2 Y3 Y4 Like ANOVA/ANCOVA: 1. Assumes equal variance (equal covariance matrices) across cells (groups defined by

More information

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test la Contents The two sample t-test generalizes into Analysis of Variance. In analysis of variance ANOVA the population consists

More information

M A N O V A. Multivariate ANOVA. Data

M A N O V A. Multivariate ANOVA. Data M A N O V A Multivariate ANOVA V. Čekanavičius, G. Murauskas 1 Data k groups; Each respondent has m measurements; Observations are from the multivariate normal distribution. No outliers. Covariance matrices

More information

Multivariate Analysis of Variance

Multivariate Analysis of Variance Chapter 15 Multivariate Analysis of Variance Jolicouer and Mosimann studied the relationship between the size and shape of painted turtles. The table below gives the length, width, and height (all in mm)

More information

z = β βσβ Statistical Analysis of MV Data Example : µ=0 (Σ known) consider Y = β X~ N 1 (β µ, β Σβ) test statistic for H 0β is

z = β βσβ Statistical Analysis of MV Data Example : µ=0 (Σ known) consider Y = β X~ N 1 (β µ, β Σβ) test statistic for H 0β is Example X~N p (µ,σ); H 0 : µ=0 (Σ known) consider Y = β X~ N 1 (β µ, β Σβ) H 0β : β µ = 0 test statistic for H 0β is y z = β βσβ /n And reject H 0β if z β > c [suitable critical value] 301 Reject H 0 if

More information

ANOVA Longitudinal Models for the Practice Effects Data: via GLM

ANOVA Longitudinal Models for the Practice Effects Data: via GLM Psyc 943 Lecture 25 page 1 ANOVA Longitudinal Models for the Practice Effects Data: via GLM Model 1. Saturated Means Model for Session, E-only Variances Model (BP) Variances Model: NO correlation, EQUAL

More information

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective Second Edition Scott E. Maxwell Uniuersity of Notre Dame Harold D. Delaney Uniuersity of New Mexico J,t{,.?; LAWRENCE ERLBAUM ASSOCIATES,

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation Using the least squares estimator for β we can obtain predicted values and compute residuals: Ŷ = Z ˆβ = Z(Z Z) 1 Z Y ˆɛ = Y Ŷ = Y Z(Z Z) 1 Z Y = [I Z(Z Z) 1 Z ]Y. The usual decomposition

More information

Neuendorf MANOVA /MANCOVA. Model: MAIN EFFECTS: X1 (Factor A) X2 (Factor B) INTERACTIONS : X1 x X2 (A x B Interaction) Y4. Like ANOVA/ANCOVA:

Neuendorf MANOVA /MANCOVA. Model: MAIN EFFECTS: X1 (Factor A) X2 (Factor B) INTERACTIONS : X1 x X2 (A x B Interaction) Y4. Like ANOVA/ANCOVA: 1 Neuendorf MANOVA /MANCOVA Model: MAIN EFFECTS: X1 (Factor A) X2 (Factor B) Y1 Y2 INTERACTIONS : Y3 X1 x X2 (A x B Interaction) Y4 Like ANOVA/ANCOVA: 1. Assumes equal variance (equal covariance matrices)

More information

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti

Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Prepared by: Prof. Dr Bahaman Abu Samah Department of Professional Development and Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Use in experiment, quasi-experiment

More information

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร Analysis of Variance ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร pawin@econ.tu.ac.th Outline Introduction One Factor Analysis of Variance Two Factor Analysis of Variance ANCOVA MANOVA Introduction

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

You can compute the maximum likelihood estimate for the correlation

You can compute the maximum likelihood estimate for the correlation Stat 50 Solutions Comments on Assignment Spring 005. (a) _ 37.6 X = 6.5 5.8 97.84 Σ = 9.70 4.9 9.70 75.05 7.80 4.9 7.80 4.96 (b) 08.7 0 S = Σ = 03 9 6.58 03 305.6 30.89 6.58 30.89 5.5 (c) You can compute

More information

On MANOVA using STATA, SAS & R

On MANOVA using STATA, SAS & R On MANOVA using STATA, SAS & R Department of Internal Medicine Division of Epidemiology, Biostatistics, & Preventive Medicine University of New Mexico Health Sciences Center July 13, 2015 On MANOVA (Department

More information

4.1 Computing section Example: Bivariate measurements on plants Post hoc analysis... 7

4.1 Computing section Example: Bivariate measurements on plants Post hoc analysis... 7 Master of Applied Statistics ST116: Chemometrics and Multivariate Statistical data Analysis Per Bruun Brockhoff Module 4: Computing 4.1 Computing section.................................. 1 4.1.1 Example:

More information

M M Cross-Over Designs

M M Cross-Over Designs Chapter 568 Cross-Over Designs Introduction This module calculates the power for an x cross-over design in which each subject receives a sequence of treatments and is measured at periods (or time points).

More information

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED Maribeth Johnson Medical College of Georgia Augusta, GA Overview Introduction to longitudinal data Describe the data for examples

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

STAT 730 Chapter 5: Hypothesis Testing

STAT 730 Chapter 5: Hypothesis Testing STAT 730 Chapter 5: Hypothesis Testing Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 28 Likelihood ratio test def n: Data X depend on θ. The

More information

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Comparisons of Two Means Edps/Soc 584 and Psych 594 Applied Multivariate Statistics Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN c

More information

Multivariate Data Analysis Notes & Solutions to Exercises 3

Multivariate Data Analysis Notes & Solutions to Exercises 3 Notes & Solutions to Exercises 3 ) i) Measurements of cranial length x and cranial breadth x on 35 female frogs 7.683 0.90 gave x =(.860, 4.397) and S. Test the * 4.407 hypothesis that =. Using the result

More information

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economic Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 13, Part A: Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis

More information

Introduction. Chapter 8

Introduction. Chapter 8 Chapter 8 Introduction In general, a researcher wants to compare one treatment against another. The analysis of variance (ANOVA) is a general test for comparing treatment means. When the null hypothesis

More information

Multiple comparisons - subsequent inferences for two-way ANOVA

Multiple comparisons - subsequent inferences for two-way ANOVA 1 Multiple comparisons - subsequent inferences for two-way ANOVA the kinds of inferences to be made after the F tests of a two-way ANOVA depend on the results if none of the F tests lead to rejection of

More information

Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation

Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation Daniel B Rowe Division of Biostatistics Medical College of Wisconsin Technical Report 40 November 00 Division of Biostatistics

More information

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie Extending the Robust Means Modeling Framework Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie One-way Independent Subjects Design Model: Y ij = µ + τ j + ε ij, j = 1,, J Y ij = score of the ith

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

Data Analyses in Multivariate Regression Chii-Dean Joey Lin, SDSU, San Diego, CA

Data Analyses in Multivariate Regression Chii-Dean Joey Lin, SDSU, San Diego, CA Data Analyses in Multivariate Regression Chii-Dean Joey Lin, SDSU, San Diego, CA ABSTRACT Regression analysis is one of the most used statistical methodologies. It can be used to describe or predict causal

More information

Hotelling s One- Sample T2

Hotelling s One- Sample T2 Chapter 405 Hotelling s One- Sample T2 Introduction The one-sample Hotelling s T2 is the multivariate extension of the common one-sample or paired Student s t-test. In a one-sample t-test, the mean response

More information

Visualizing Tests for Equality of Covariance Matrices Supplemental Appendix

Visualizing Tests for Equality of Covariance Matrices Supplemental Appendix Visualizing Tests for Equality of Covariance Matrices Supplemental Appendix Michael Friendly and Matthew Sigal September 18, 2017 Contents Introduction 1 1 Visualizing mean differences: The HE plot framework

More information

Chapter 10. Design of Experiments and Analysis of Variance

Chapter 10. Design of Experiments and Analysis of Variance Chapter 10 Design of Experiments and Analysis of Variance Elements of a Designed Experiment Response variable Also called the dependent variable Factors (quantitative and qualitative) Also called the independent

More information

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Notes for Wee 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Exam 3 is on Friday May 1. A part of one of the exam problems is on Predictiontervals : When randomly sampling from a normal population

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

Applied Multivariate Analysis

Applied Multivariate Analysis Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2017 Discriminant Analysis Background 1 Discriminant analysis Background General Setup for the Discriminant Analysis Descriptive

More information

UV Absorbance by Fish Slime

UV Absorbance by Fish Slime Data Set 1: UV Absorbance by Fish Slime Statistical Setting This handout describes a repeated-measures ANOVA, with two crossed amongsubjects factors and repeated-measures on a third (within-subjects) factor.

More information

SOME ASPECTS OF MULTIVARIATE BEHRENS-FISHER PROBLEM

SOME ASPECTS OF MULTIVARIATE BEHRENS-FISHER PROBLEM SOME ASPECTS OF MULTIVARIATE BEHRENS-FISHER PROBLEM Junyong Park Bimal Sinha Department of Mathematics/Statistics University of Maryland, Baltimore Abstract In this paper we discuss the well known multivariate

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

Inferences about a Mean Vector

Inferences about a Mean Vector Inferences about a Mean Vector Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University

More information

One-way ANOVA. Experimental Design. One-way ANOVA

One-way ANOVA. Experimental Design. One-way ANOVA Method to compare more than two samples simultaneously without inflating Type I Error rate (α) Simplicity Few assumptions Adequate for highly complex hypothesis testing 09/30/12 1 Outline of this class

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

Principal component analysis

Principal component analysis Principal component analysis Motivation i for PCA came from major-axis regression. Strong assumption: single homogeneous sample. Free of assumptions when used for exploration. Classical tests of significance

More information

MULTIVARIATE ANALYSIS OF VARIANCE UNDER MULTIPLICITY José A. Díaz-García. Comunicación Técnica No I-07-13/ (PE/CIMAT)

MULTIVARIATE ANALYSIS OF VARIANCE UNDER MULTIPLICITY José A. Díaz-García. Comunicación Técnica No I-07-13/ (PE/CIMAT) MULTIVARIATE ANALYSIS OF VARIANCE UNDER MULTIPLICITY José A. Díaz-García Comunicación Técnica No I-07-13/11-09-2007 (PE/CIMAT) Multivariate analysis of variance under multiplicity José A. Díaz-García Universidad

More information

T. Mark Beasley One-Way Repeated Measures ANOVA handout

T. Mark Beasley One-Way Repeated Measures ANOVA handout T. Mark Beasley One-Way Repeated Measures ANOVA handout Profile Analysis Example In the One-Way Repeated Measures ANOVA, two factors represent separate sources of variance. Their interaction presents an

More information

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance Chapter 9 Multivariate and Within-cases Analysis 9.1 Multivariate Analysis of Variance Multivariate means more than one response variable at once. Why do it? Primarily because if you do parallel analyses

More information

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each participant, with the repeated measures entered as separate

More information

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication CHAPTER 4 Analysis of Variance One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication 1 Introduction In this chapter, expand the idea of hypothesis tests. We

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

PSYC 331 STATISTICS FOR PSYCHOLOGISTS

PSYC 331 STATISTICS FOR PSYCHOLOGISTS PSYC 331 STATISTICS FOR PSYCHOLOGISTS Session 4 A PARAMETRIC STATISTICAL TEST FOR MORE THAN TWO POPULATIONS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College

More information

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS Ravinder Malhotra and Vipul Sharma National Dairy Research Institute, Karnal-132001 The most common use of statistics in dairy science is testing

More information

Confidence Intervals for One-Way Repeated Measures Contrasts

Confidence Intervals for One-Way Repeated Measures Contrasts Chapter 44 Confidence Intervals for One-Way Repeated easures Contrasts Introduction This module calculates the expected width of a confidence interval for a contrast (linear combination) of the means in

More information

Y it = µ + τ i + ε it ; ε it ~ N(0, σ 2 ) (1)

Y it = µ + τ i + ε it ; ε it ~ N(0, σ 2 ) (1) DOE (Linear Model) Strategy for checking experimental model assumptions Part 1 When we discuss experiments whose data are described or analyzed by the one-way analysis of variance ANOVA model, we note

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

More information

Repeated Measures Part 2: Cartoon data

Repeated Measures Part 2: Cartoon data Repeated Measures Part 2: Cartoon data /*********************** cartoonglm.sas ******************/ options linesize=79 noovp formdlim='_'; title 'Cartoon Data: STA442/1008 F 2005'; proc format; /* value

More information

Chapter 10: Analysis of variance (ANOVA)

Chapter 10: Analysis of variance (ANOVA) Chapter 10: Analysis of variance (ANOVA) ANOVA (Analysis of variance) is a collection of techniques for dealing with more general experiments than the previous one-sample or two-sample tests. We first

More information

Multivariate Tests. Mauchly's Test of Sphericity

Multivariate Tests. Mauchly's Test of Sphericity General Model Within-Sujects Factors Dependent Variale IDLS IDLF IDHS IDHF IDHCLS IDHCLF Descriptive Statistics IDLS IDLF IDHS IDHF IDHCLS IDHCLF Mean Std. Deviation N.0.70.0.0..8..88.8...97 Multivariate

More information

Application of Ghosh, Grizzle and Sen s Nonparametric Methods in. Longitudinal Studies Using SAS PROC GLM

Application of Ghosh, Grizzle and Sen s Nonparametric Methods in. Longitudinal Studies Using SAS PROC GLM Application of Ghosh, Grizzle and Sen s Nonparametric Methods in Longitudinal Studies Using SAS PROC GLM Chan Zeng and Gary O. Zerbe Department of Preventive Medicine and Biometrics University of Colorado

More information

http://www.statsoft.it/out.php?loc=http://www.statsoft.com/textbook/ Group comparison test for independent samples The purpose of the Analysis of Variance (ANOVA) is to test for significant differences

More information

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03 STA60/03//07 Tutorial letter 03//07 Applied Statistics II STA60 Semester Department of Statistics Solutions to Assignment 03 Define tomorrow. university of south africa QUESTION (a) (i) The normal quantile

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

GLM Repeated Measures

GLM Repeated Measures GLM Repeated Measures Notation The GLM (general linear model) procedure provides analysis of variance when the same measurement or measurements are made several times on each subject or case (repeated

More information

Tentative solutions TMA4255 Applied Statistics 16 May, 2015

Tentative solutions TMA4255 Applied Statistics 16 May, 2015 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Tentative solutions TMA455 Applied Statistics 6 May, 05 Problem Manufacturer of fertilizers a) Are these independent

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

PLSC PRACTICE TEST ONE

PLSC PRACTICE TEST ONE PLSC 724 - PRACTICE TEST ONE 1. Discuss briefly the relationship between the shape of the normal curve and the variance. 2. What is the relationship between a statistic and a parameter? 3. How is the α

More information

Randomized Complete Block Designs

Randomized Complete Block Designs Randomized Complete Block Designs David Allen University of Kentucky February 23, 2016 1 Randomized Complete Block Design There are many situations where it is impossible to use a completely randomized

More information

General Linear Model. Notes Output Created Comments Input. 19-Dec :09:44

General Linear Model. Notes Output Created Comments Input. 19-Dec :09:44 GET ILE='G:\lare\Data\Accuracy_Mixed.sav'. DATASET NAME DataSet WINDOW=RONT. GLM Jigsaw Decision BY CMCTools /WSACTOR= Polynomial /METHOD=SSTYPE(3) /PLOT=PROILE(CMCTools*) /EMMEANS=TABLES(CMCTools) COMPARE

More information

BIOL 458 BIOMETRY Lab 8 - Nested and Repeated Measures ANOVA

BIOL 458 BIOMETRY Lab 8 - Nested and Repeated Measures ANOVA BIOL 458 BIOMETRY Lab 8 - Nested and Repeated Measures ANOVA PART 1: NESTED ANOVA Nested designs are used when levels of one factor are not represented within all levels of another factor. Often this is

More information