Outline for today. Markov chain Monte Carlo. Example: spatial statistics (Christensen and Waagepetersen 2001)

Size: px
Start display at page:

Download "Outline for today. Markov chain Monte Carlo. Example: spatial statistics (Christensen and Waagepetersen 2001)"

Transcription

1 Markov chan Monte Carlo Rasmus Waagepetersen Department of Mathematcs Aalborg Unversty Denmark November, / Outlne for today MCMC / Condtonal smulaton for hgh-dmensonal U: Markov chan Monte Carlo Consder U = (U,...,U n ) N n (,Σ) wth Cov(U,U j ) = Σ j for all,j Then n-dmensonal condtonal densty for U Y = y: f (u,...,u n y) [ f (y u,...,u n )]f (u,...,u n ) Can not be factorzed nto lower dmensonal denstes. / Example: spatal statstcs (Chrstensen and Waagepetersen ) Observatons Y are weed counts at spatal locatons (x,y ) =,..., Coordnate Y (m) Coordnate X (m) Y U s Posson where U random effect assocated wth (x,y ) (sol propertes). Cov(U,U j ) = τ exp( d j /α) where d j s dstance between (x,y ) and (x j,y j ) /

2 x x Example: quanttatve genetcs (Sorensen and Waagepetersen ) U, Ũ random genetc effects nfluencng sze and varablty of Y j : Y j sze of jth ltter of th pg. Y j U = u,ũ = ũ N (µ + u,exp( µ + ũ )) Hstogram x Pedgree z (U,...,U n,ũ,...,ũn) N(,G A) ltter sze w v w Etc. pg wthout observaton. pg wth observaton. A: addtve genetc relatonshp matrx (dependng on pedgree). [ σa G = ] ρσ a σã ρσ a σã ρ: coeffcent of genetc correlaton between U and Ũ. NB: hgh dmenson n >. σ ã 5/ / MCMC Suppose U = (U,...,U n ) π( ) where π( ) s a complcated probablty dstrbuton. Markov chan Monte Carlo: Generate ergodc Markov chan so that U,U,U,... (U m = (U m,...,um n )) I.e. for large m, U m π( ) and dstrbuton of U m π( ) E π k(u) M k(u m ) m= Example: ergodc and non ergodc auto-regressve chans X = βx + ǫ ǫ N(,σ ) X = 5, σ =.5 and β ether. or.5: t 8 NB: when β < we have convergence to statonary dstrbuton N(,σ /( β ). t / 8/

3 Jont updatng Metropols-Hastngs algorthm: Basc ngredent: proposal densty Some features of Metropols-Hastngs q(v u),v R n defned for all u R p and easy to sample. Gven ntal state U generate U,U,... as follows:. Condtonal on U m = u m generate proposal V m+ q( u m ).. Wth probablty mn{, π(v m+ )q(u V m+ ) π(u m )q(v m+ u m ) } accept U m+ = V m+ ; otherwse U m+ = u m. Even f π s very complcated probablty densty we may choose a smple proposal densty q (e.g. normal dstrbuton). Need only know π upto constant of proportonalty. If e.g. π(u) = f (u y) = f (y u)f (u) f (y) then we do not need to know margnal densty f (y) whch can often be hard to compute. Under mld condtons of rreducblty and aperodcty ths produces an ergodc Markov chan wth statonary dstrbuton gven by π( ). 9/ / Irreducblty and aperodcty Ex: random walk Metropols V m+ N(u m,σ prop) Irreducblty: chan can get from any part of the state space to any other apart of the state space (of postve π-probablty) Aperodc: chan not perodc. where σprop s the proposal varance. Then q(v u) = q(u v) so Metropols-Hastngs rato reduces to Metropols rato: mn{, π(v m+ )q(u V m+ ) π(u m )q(v m+ u m ) } = mn{, π(v m+ ) π(u m ) } / /

4 x Metropolzed AR() chan Comparson wth rejecton samplng β =.5 and σ =.5 but now ntroduce Metropols accept/reject n order to sample N(,.5/(. ). 5 Proposal for new state pertubaton of prevous state so easer to get accept. We reject some proposals to mantan statonary dstrbuton but do not throw away rejected states. Ths s at the expense that sample not uncorrelated. 8 t / / Smple example (Exercse ) π(u y) = = f (y exp(u + β))f (u;τ )/L(θ) where f (y λ) densty for Posson dstrbuton of ntensty λ. Convergence of Markov chans for smple example Plots of U,U,U,...: σ prop =. (accept rate %) σ prop = (accept rate %) Random walk Metropols rato (normalsng constant L(θ) = f (y;θ) cancels out): = f (y exp(v m+ + β))f (V m+ ;τ )/L(θ) = f (y = exp(u m + β)f (u m ;τ )/L(θ) = f (y exp(v m+ + β))f (V m+ ;τ ) = f (y exp(u m + β)f (u m ;τ ) sample Index sample Index NB: need only know π up to constant of proportonalty. 5/ /

5 Autocorrelaton/mxng Plot of autocorrelaton ρ(k) = Corr(U m,u m+k ): Sngle-ste Metropols-Hastngs Update one component n each teraton. σ prop =. (quck mxng) σ prop = (slow mxng) Update of th component:. Condtonal on U m = u m generate V m+ q ( u m ) and let Note: ACF Lag Var M m= ACF U m = VarU M so small autocorrelaton advantageous Lag m= n= ρ( m n ). Wth probablty V m+ = (u m,...,um,vm+,u m +,...,um n ) mn{, π(v m+ )q (u m V m+ ) π(u m )q (V m+ u m ) } accept U m+ = V m+ ; otherwse U m+ = u m. Repeat for =,...,n / 8/ Examples MCMC ssues Random walk Metropols: V m+ N(u m,σ prop ) and mn{, π(v m+ )q (u m V m+ ) π(u m )q (V m+ u m ) } = mn{, π(v m+ ) π(u m ) } Gbbs sampler: V m+ U U j = u m j, j. Then q(v m+ u m ) = π (V m+ u m ) and π(v m+ )q (u m V m+ ) π(u m )q (V m+ u m ) so all proposals are accepted. = π (V m+ u m )π(um )π (u m u m ) π (u m u m )π(um )π (V m+ u m ) = when has chan reached equlbrum/statonary dstrbuton (burn-n) how long chans do we need (precson of Monte Carlo estmates)? These questons may be addressed by vsual nspecton of tmeseres and estmaton of Monte Carlo error. Ptfalls: hgh correlaton between components to be updated multmodalty No need to choose a proposal varance. 9/ /

6 Implementaton of MCMC usng BUGS (Bayesan analyss usng Gbbs samplng) Model specfcaton n BUGS: herarchcal/drected acyclc graph (DAG). Example: τ = σ =.5 U τ,σ N(,τ ) Y,Y U = u,τ,σ N(u,σ ) (Y,Y condtonally ndependent) model = { taunv <- sgmanv <- /.5 u ~ dnorm(.,taunv) y ~ dnorm(u,sgmanv) y ~ dnorm(u,sgmanv) } Exercses See exercses sheet on webpage. We can now sample (Y,Y,U), U Y,Y, Y,U Y etc. dependng on the data we specfy (whch varables to fx/condton on). / /

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Target tracking example Filtering: Xt. (main interest) Smoothing: X1: t. (also given with SIS)

Target tracking example Filtering: Xt. (main interest) Smoothing: X1: t. (also given with SIS) Target trackng example Flterng: Xt Y1: t (man nterest) Smoothng: X1: t Y1: t (also gven wth SIS) However as we have seen, the estmate of ths dstrbuton breaks down when t gets large due to the weghts becomng

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

CS 3750 Machine Learning Lecture 6. Monte Carlo methods. CS 3750 Advanced Machine Learning. Markov chain Monte Carlo

CS 3750 Machine Learning Lecture 6. Monte Carlo methods. CS 3750 Advanced Machine Learning. Markov chain Monte Carlo CS 3750 Machne Learnng Lectre 6 Monte Carlo methods Mlos Haskrecht mlos@cs.ptt.ed 5329 Sennott Sqare Markov chan Monte Carlo Importance samplng: samples are generated accordng to Q and every sample from

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Scence robablstc Graphcal Models Appromate Inference: Markov Chan Monte Carlo 05 07 Erc Xng Lecture 7 March 9 04 X X 075 05 05 03 X 3 Erc Xng @ CMU 005-04 Recap of Monte Carlo Monte

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

( ) ( ) ( ) ( ) STOCHASTIC SIMULATION FOR BLOCKED DATA. Monte Carlo simulation Rejection sampling Importance sampling Markov chain Monte Carlo

( ) ( ) ( ) ( ) STOCHASTIC SIMULATION FOR BLOCKED DATA. Monte Carlo simulation Rejection sampling Importance sampling Markov chain Monte Carlo SOCHASIC SIMULAIO FOR BLOCKED DAA Stochastc System Analyss and Bayesan Model Updatng Monte Carlo smulaton Rejecton samplng Importance samplng Markov chan Monte Carlo Monte Carlo smulaton Introducton: If

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

Information Geometry of Gibbs Sampler

Information Geometry of Gibbs Sampler Informaton Geometry of Gbbs Sampler Kazuya Takabatake Neuroscence Research Insttute AIST Central 2, Umezono 1-1-1, Tsukuba JAPAN 305-8568 k.takabatake@ast.go.jp Abstract: - Ths paper shows some nformaton

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artfcal Intellgence Bayesan Networks Adapted from sldes by Tm Fnn and Mare desjardns. Some materal borrowed from Lse Getoor. 1 Outlne Bayesan networks Network structure Condtonal probablty tables Condtonal

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Testing for seasonal unit roots in heterogeneous panels

Testing for seasonal unit roots in heterogeneous panels Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Spatial Statistics and Analysis Methods (for GEOG 104 class).

Spatial Statistics and Analysis Methods (for GEOG 104 class). Spatal Statstcs and Analyss Methods (for GEOG 104 class). Provded by Dr. An L, San Dego State Unversty. 1 Ponts Types of spatal data Pont pattern analyss (PPA; such as nearest neghbor dstance, quadrat

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Hierarchical Bayes. Peter Lenk. Stephen M Ross School of Business at the University of Michigan September 2004

Hierarchical Bayes. Peter Lenk. Stephen M Ross School of Business at the University of Michigan September 2004 Herarchcal Bayes Peter Lenk Stephen M Ross School of Busness at the Unversty of Mchgan September 2004 Outlne Bayesan Decson Theory Smple Bayes and Shrnkage Estmates Herarchcal Bayes Numercal Methods Battng

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong Moton Percepton Under Uncertanty Hongjng Lu Department of Psychology Unversty of Hong Kong Outlne Uncertanty n moton stmulus Correspondence problem Qualtatve fttng usng deal observer models Based on sgnal

More information

Biostatistics 360 F&t Tests and Intervals in Regression 1

Biostatistics 360 F&t Tests and Intervals in Regression 1 Bostatstcs 360 F&t Tests and Intervals n Regresson ORIGIN Model: Y = X + Corrected Sums of Squares: X X bar where: s the y ntercept of the regresson lne (translaton) s the slope of the regresson lne (scalng

More information

6 Supplementary Materials

6 Supplementary Materials 6 Supplementar Materals 61 Proof of Theorem 31 Proof Let m Xt z 1:T : l m Xt X,z 1:t Wethenhave mxt z1:t ˆm HX Xt z 1:T mxt z1:t m HX Xt z 1:T + mxt z 1:T HX We consder each of the two terms n equaton

More information

Topic- 11 The Analysis of Variance

Topic- 11 The Analysis of Variance Topc- 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

Stat 543 Exam 2 Spring 2016

Stat 543 Exam 2 Spring 2016 Stat 543 Exam 2 Sprng 2016 I have nether gven nor receved unauthorzed assstance on ths exam. Name Sgned Date Name Prnted Ths Exam conssts of 11 questons. Do at least 10 of the 11 parts of the man exam.

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

The Impact of Category Prices on Store Price Image Formation: An Empirical Analysis

The Impact of Category Prices on Store Price Image Formation: An Empirical Analysis 1 The Impact of Category Prces on Store Prce Image Formaton: An Emprcal Analyss CARLOS J.S. LOURENÇO, ELS GIJSBRECHTS, and RICHARD PAAP WEB-APPENDIX WEB-APPENDIX A: MODEL ESTIMATION Instead of usng a two-step

More information

Stat 543 Exam 2 Spring 2016

Stat 543 Exam 2 Spring 2016 Stat 543 Exam 2 Sprng 206 I have nether gven nor receved unauthorzed assstance on ths exam. Name Sgned Date Name Prnted Ths Exam conssts of questons. Do at least 0 of the parts of the man exam. I wll score

More information

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3.

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3. Outlne 3. Multple Regresson Analyss: Estmaton I. Motvaton II. Mechancs and Interpretaton of OLS Read Wooldrdge (013), Chapter 3. III. Expected Values of the OLS IV. Varances of the OLS V. The Gauss Markov

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting Onlne Appendx to: Axomatzaton and measurement of Quas-hyperbolc Dscountng José Lus Montel Olea Tomasz Strzaleck 1 Sample Selecton As dscussed before our ntal sample conssts of two groups of subjects. Group

More information

Population Design in Nonlinear Mixed Effects Multiple Response Models: extension of PFIM and evaluation by simulation with NONMEM and MONOLIX

Population Design in Nonlinear Mixed Effects Multiple Response Models: extension of PFIM and evaluation by simulation with NONMEM and MONOLIX Populaton Desgn n Nonlnear Mxed Effects Multple Response Models: extenson of PFIM and evaluaton by smulaton wth NONMEM and MONOLIX May 4th 007 Carolne Bazzol, Sylve Retout, France Mentré Inserm U738 Unversty

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

4.1 basic idea of interval mapping

4.1 basic idea of interval mapping 4 Interval Mappng for a Sngle TL basc dea of nterval mappng nterval mappng by maxmum lkelhood maxmum lkelhood usng EM MCMC Bayesan nterval mappng "natural" Bayesan prors multple mputaton MCMC bootstrapped

More information

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A non-parametrc alternatve: Kruskal-Walls ANOVA Power

More information

A Bayesian methodology for systemic risk assessment in financial networks

A Bayesian methodology for systemic risk assessment in financial networks A Bayesan methodology for systemc rsk assessment n fnancal networks Lutgard A. M. Veraart London School of Economcs and Poltcal Scence September 2015 Jont work wth Axel Gandy (Imperal College London) 7th

More information

Fabio Rapallo. p x = P[x] = ϕ(t (x)) x X, (1)

Fabio Rapallo. p x = P[x] = ϕ(t (x)) x X, (1) Frst Internatonal School on Algebrac Statstcs STID Menton (France) February, 17-18, 2003 Torc Statstcal Models. The Dacons Sturmfels algorthm for log-lnear models. Tutoral Fabo Rapallo 1 Theoretcal recalls

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering Statstcs and Probablty Theory n Cvl, Surveyng and Envronmental Engneerng Pro. Dr. Mchael Havbro Faber ETH Zurch, Swtzerland Contents o Todays Lecture Overvew o Uncertanty Modelng Random Varables - propertes

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Gschlößl, Czado: Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?

Gschlößl, Czado: Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler? Gschlößl, Czado: Does a Gbbs sampler approach to spatal Posson regresson models outperform a sngle ste MH sampler? Sonderforschungsberech 386, Paper 46 (25) Onlne unter: http://epub.ub.un-muenchen.de/

More information

Simulation and Random Number Generation

Simulation and Random Number Generation Smulaton and Random Number Generaton Summary Dscrete Tme vs Dscrete Event Smulaton Random number generaton Generatng a random sequence Generatng random varates from a Unform dstrbuton Testng the qualty

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA Polymer Chans Ju L GEM4 Summer School 006 Cell and Molecular Mechancs n BoMedcne August 7 18, 006, MIT, Cambrdge, MA, USA Outlne Freely Jonted Chan Worm-Lke Chan Persstence Length Freely Jonted Chan (FJC)

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

I529: Machine Learning in Bioinformatics (Spring 2017) Markov Models

I529: Machine Learning in Bioinformatics (Spring 2017) Markov Models I529: Machne Learnng n Bonformatcs (Sprng 217) Markov Models Yuzhen Ye School of Informatcs and Computng Indana Unversty, Bloomngton Sprng 217 Outlne Smple model (frequency & profle) revew Markov chan

More information

Exam. Econometrics - Exam 1

Exam. Econometrics - Exam 1 Econometrcs - Exam 1 Exam Problem 1: (15 ponts) Suppose that the classcal regresson model apples but that the true value of the constant s zero. In order to answer the followng questons assume just one

More information

ISSN X Robust bayesian inference of generalized Pareto distribution

ISSN X Robust bayesian inference of generalized Pareto distribution Afrka Statstka Vol. 112), 2016, pages 1061 1074. DOI: http://dx.do.org/10.16929/as/2016.1061.92 Afrka Statstka ISSN 2316-090X Robust bayesan nference of generalzed Pareto dstrbuton Fatha Mokran 1, Hocne

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline Outlne Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Huzhen Yu janey.yu@cs.helsnk.f Dept. Computer Scence, Unv. of Helsnk Probablstc Models, Sprng, 200 Notces: I corrected a number

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Web Appendix B Estimation. We base our sampling procedure on the method of data augmentation (e.g., Tanner and Wong,

Web Appendix B Estimation. We base our sampling procedure on the method of data augmentation (e.g., Tanner and Wong, Web Appendx B Estmaton Lkelhood and Data Augmentaton We base our samplng procedure on the method of data augmentaton (eg anner and Wong 987) here e treat the unobserved ndvdual choces as parameters Specfcally

More information

ANOVA. The Observations y ij

ANOVA. The Observations y ij ANOVA Stands for ANalyss Of VArance But t s a test of dfferences n means The dea: The Observatons y j Treatment group = 1 = 2 = k y 11 y 21 y k,1 y 12 y 22 y k,2 y 1, n1 y 2, n2 y k, nk means: m 1 m 2

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Some basic statistics and curve fitting techniques

Some basic statistics and curve fitting techniques Some basc statstcs and curve fttng technques Statstcs s the dscplne concerned wth the study of varablty, wth the study of uncertanty, and wth the study of decsonmakng n the face of uncertanty (Lndsay et

More information

Journal of Multivariate Analysis

Journal of Multivariate Analysis Journal of Multvarate Analyss () 8 6 Contents lsts avalable at ScVerse ScenceDrect Journal of Multvarate Analyss journal homepage: www.elsever.com/locate/jmva Geometrc ergodcty of the Gbbs sampler for

More information

An R implementation of bootstrap procedures for mixed models

An R implementation of bootstrap procedures for mixed models The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France An R mplementaton of bootstrap procedures for mxed models José A. Sánchez-Espgares Unverstat Poltècnca de Catalunya Jord Ocaña Unverstat

More information

Detection of additive outliers in Poisson INAR(1) time series

Detection of additive outliers in Poisson INAR(1) time series Detecton of addtve outlers n Posson INAR(1) tme seres Mara Eduarda Slva and Isabel Perera Abstract Outlyng observatons are commonly encountered n the analyss of tme seres. In ths paper a Bayesan approach

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Model Updating Using Bayesian Estimation

Model Updating Using Bayesian Estimation Model Updatng Usng Bayesan Estmaton C. Mares, B. Dratz 1, J.E. Mottershead, M. I. Frswell 3 Brunel Unversty, School of Engneerng and Desgn, Uxbrdge, Mddlesex, UB8 3PH, UK 1 Ecole Centrale de Llle, Mechancal

More information

ST2352. Working backwards with conditional probability. ST2352 Week 8 1

ST2352. Working backwards with conditional probability. ST2352 Week 8 1 ST35 Workng backwards wth condtonal probablty ST35 Week 8 Roll two reg dce. One s 6; Pr(other s 6)? AR smulaton gves Y t = 3. Dst of Y t-? Y t = = Y t- + t ; t ~ N(0,) =? =0.5 ST35 Week 8 Sally Clarke

More information

multiple QTL likelihood

multiple QTL likelihood Bayesan Interval Mappng multple TL lkelhood compare CIM MIM mputaton BIM Drosophla shape example Bayesan dea Who was Bayes? What s Bayes theorem? Bayesan Bayes factors and margnal posterors Markov chan

More information