Markov Chains (Part 4)

Size: px
Start display at page:

Download "Markov Chains (Part 4)"

Transcription

1 Markov Chains (Part 4) Steady State Probabilities and First Passage Times Markov Chains - 1

2 Steady-State Probabilities Remember, for the inventory example we had (8) P &.286 = %.286 For an irreducible ergodic Markov chain, lim p = n#" ( n) ij where π j = steady state probability of being in state j j.166# " Markov Chains - 2

3 Some Observations About the Limit The behavior of this important limit depends on properties of states i and j and the Markov chain as a whole. If i and j are recurrent and belong to different classes, then p (n) ij =0 for all n. (n If j is transient, then lim p ) ij = 0 n "# for all i. Intuitively, the probability that the Markov chain is in a transient state after a large number of transitions tends to zero. In some cases, the limit does not exist Consider the following Markov chain: if the chain starts out in state 0, it will be back in 0 at times 2,4,6, and in state 1 at times 1,3,5,. Thus p (n) 00 =1 if n is even and p (n) (n ) 00 =0 if n is odd. Hence the limit lim p does 00 n "# not exist. Markov Chains - 3

4 Steady-State Probabilities How can we find these probabilities without calculating P (n) for very large n? The following are the steady-state equations: M # =1 j= 0 " j M " j = #" i p ij for all j = 0,...,M i= 0 " j 0 for all j = 0,...,M In matrix notation we have π T P = π T Solve a system of linear equations. Note: there are M+2 equations and only M+1 variables (π 0, π 1,, π M ), so one of the equations is redundant and can be M dropped - just don t drop the equation = 1 " j j= 0 Markov Chains - 4

5 Solving for the Steady-State Probabilities M T P = T and i =1 " # i=0 0 1 M " ' ' %' ' ' # p 00 p p 0M p 10 p p 1M p (M&1)M p M 0 p M1... p MM ( ( ( = " # 0 1 M ( ( % % 0 p p M p M 0 = 0 0 p p M p M1 = 1 = 0 p 0M + 1 p 1M ++ M p MM = M M = 1 Idea is to go from steady state to steady state: X t M j " M " j i 0 " i " 0 Markov Chains - 5 t

6 Steady-State Probabilities Examples Find the steady-state probabilities for P = & 0.3 % # 0.4" P = & % # " Inventory example P = & % # " Markov Chains - 6

7 Other Applications of Steady-State Probabilities Expected recurrence time: we are often interested in the expected number of steps between consecutive visits to a particular (recurrent) state. What is the expected number of sunny days between rainy days? What is the expected number of weeks between ordering cameras? Long-run expected average cost per unit time: in many applications, we incur a cost or gain a reward every time a Markov chain visits a specific state. If we incur costs for carrying inventory, and costs for not meeting demand, what is the long-run expected average cost per unit time? Markov Chains - 7

8 Expected Recurrence Times The expected recurrence time, denoted µ jj, is the expected number of transition between two consecutive visits to state j. The steady state probabilities, π j, are related to the expected recurrence times, µ jj, as 1 µ jj = for all j = 0,1,..., M j Markov Chains - 8

9 Weather Example What is the expected number of sunny days in between 0 1 rainy days? First, calculate π j = 0 0 =1 1 Sun 0 Rain 1 # " & % = = 1 ( 1 1 ) = = =1/ 4 and 0 = 3 / 4 Now, µ 11 = 1/π j = 4 For this example, we expect 4 sunny days between rainy days. Markov Chains - 9

10 Inventory Example What is the expected number of weeks in between orders? First, the steady state probabilities are: 0 = 0.286, 1 = 0.285, 2 = 0.263, 3 = Now, µ 00 = 1/π 0 = 3.5 For this example, on the average, we order cameras every three and a half weeks. Markov Chains - 10

11 P = Expected Recurrence Times " % ' # & Examples ( 0 = 6 13 ( 1 = 7 13 µ 00 = 13 6 = µ 11 = 13 7 = P = 0.6 " % ' ' ' # 4 4 & ( 0 = 3 15 ( 1 = 4 15 ( 2 = 8 15 µ 00 = 15 3 = 5 µ 11 = 15 4 = 3.75 µ 22 = 15 8 = /3 1/2 1/ /4 Markov Chains /2 1/4

12 Steady-State Cost Analysis Once we know the steady-state probabilities, we can do some long-run analyses Assume we have a finite-state, irreducible Markov chain Let C(X t ) be a cost at time t, that is, C(j) = expected cost of being in state j, for j=0,1,,m The expected average cost over the first n time steps is # E % 1 % n n " C X t t =1 ( ) The long-run expected average cost per unit time is a function of steady state probabilities % lim E ' 1 n " # &' n n C X t t =1 ( ) & ( '( ( M * )* = + jc j j =0 ( ) Markov Chains - 12

13 Steady-State Cost Analysis Inventory Example Suppose there is a storage cost for having cameras on hand: C( i) = " 0 if i = 0 2 if i =1 # 8 if i = 2 % 18 if i = 3 The long-run expected average cost per unit time is " 0 C 0 ( ) + " 1 C( 1) + " 2 C( 2) + " 3 C( 3) ( ) ( 2) ( 8) ( 18) = = Markov Chains - 13

14 First Passage Times - Motivation In many applications, we are interested in the time at which the Markov chain visits a particular state for the first time. If I start out with a dollar, what is the probability that I will go broke (for the first time) after n gambles? If I start out with three cameras in my inventory, what is the expected number of days after which I will have none for the first time? The answers to these questions are related to an important concept called first passage times Markov Chains - 14

15 First Passage Times The first passage time from state i to state j is the number of transitions made by the process in going from state i to state j for the first time When i = j, this first passage time is called the recurrence time for state i Let f ij (n) = probability that the first passage time from state i to state j is equal to n What is the difference between f ij (n) and p ij (n)? X t j i 0 t t+n p ij (n) includes paths that visit j f ij (n) does not include paths that visit j Markov Chains - 15

16 Some Observations about First Passage Times First passage times are random variables and have probability distributions associated with them f ij (n) = probability that the first passage time from state i to state j is equal to n These probability distributions can be computed using a simple idea: condition on where the Markov chain goes after the first transition For the first passage time from i to j to be n>1, the Markov chain has to transition from i to k (different from j) in one step, and then the first passage time from k to j must be n-1. This concept can be used to derive recursive equations for f (n) ij Markov Chains - 16

17 First Passage Times The first passage time probabilities satisfy a recursive relationship f (1) ij = p (1) ij = p ij f ij (2) = f ij (n) = " (1) p ik f kj k j " (n#1) p ik f kj k j X t M j i p im p ij p i0 p ii f ij (n "1) f (n "1) Mj (n "1) f 0 j 0 t t+1 t+n Markov Chains - 17

18 First Passage Times Inventory Example Suppose we were interested in the number of weeks until the first order (start in State 3, X 0 =3) Then we would need to know what is the probability that the first order is submitted in Week 1? ( 1 f 30 = p 30 = Week 2? f (2) ( 1) 30 = " p 3k f k 0 = p 31 f (1) 10 + p 32 f (1) 20 + p 33 f 30 Week 3? ( ) = # ( 2) ( 2 p 3k f k0 = p 31 f ) ( p 32 f ) p 33 f 30 f 30 3 k "0 k0 = p 31 p 10 + p 32 p 20 + p 33 p 30 = 0.184(0.632) (0.264) (0.080) = ( ) Markov Chains - 18

19 Probability of Ever Reaching j from i If the chain starts out in state i, what is the probability that it visits state j at some future time? This probability is denoted f ij and f ij = " n=1 f ij (n) If f ij =1, then the chain starting at i definitely reaches j at some future time, in which case f (n) ij is a genuine probability distribution for the first passage time. On the other hand, if f ij <1, the chain starting at i may never reach j. In fact, the probability that this happens is 1-f ij Markov Chains - 19

20 Expected First Passage Times The expected first passage time from state i to state j is µ ij = if f ij <1 µ ij = E" (n) # f ij & n=1 % = nf ij If f ij =1, we can also calculate µ ij using the idea to condition on where the chain goes after one transition (n) if f ij =1 µ ij =1p ij + " p ik (1+ µ kj ) = " p ik + " p ik µ kj =1+ " p ik µ kj k j k k j k j µ = 1+ M ij p ik k = 0 k " j µ kj Markov Chains - 20

21 Expected First Passage Times Inventory Example Find the expected time until the first order is submitted µ =1+ p µ + p µ + p µ " µ =1+ p µ + p µ + p µ # µ =1+ p µ + p µ + p µ % Solve simultaneously, µ 10 =1.58 weeks µ 20 = 2.51 weeks µ 30 = 3.50 weeks Find the expected time between orders µ 00 = 1 " 0 = 3.50 weeks Markov Chains - 21

Markov Chains (Part 3)

Markov Chains (Part 3) Markov Chains (Part 3) State Classification Markov Chains - State Classification Accessibility State j is accessible from state i if p ij (n) > for some n>=, meaning that starting at state i, there is

More information

ISM206 Lecture, May 12, 2005 Markov Chain

ISM206 Lecture, May 12, 2005 Markov Chain ISM206 Lecture, May 12, 2005 Markov Chain Instructor: Kevin Ross Scribe: Pritam Roy May 26, 2005 1 Outline of topics for the 10 AM lecture The topics are: Discrete Time Markov Chain Examples Chapman-Kolmogorov

More information

Chapter 16 focused on decision making in the face of uncertainty about one future

Chapter 16 focused on decision making in the face of uncertainty about one future 9 C H A P T E R Markov Chains Chapter 6 focused on decision making in the face of uncertainty about one future event (learning the true state of nature). However, some decisions need to take into account

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains AM : Introduction to Optimization Models and Methods Lecture 7: Markov Chains Yiling Chen SEAS Lesson Plan Stochastic process Markov Chains n-step probabilities Communicating states, irreducibility Recurrent

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

18.440: Lecture 33 Markov Chains

18.440: Lecture 33 Markov Chains 18.440: Lecture 33 Markov Chains Scott Sheffield MIT 1 Outline Markov chains Examples Ergodicity and stationarity 2 Outline Markov chains Examples Ergodicity and stationarity 3 Markov chains Consider a

More information

18.600: Lecture 32 Markov Chains

18.600: Lecture 32 Markov Chains 18.600: Lecture 32 Markov Chains Scott Sheffield MIT Outline Markov chains Examples Ergodicity and stationarity Outline Markov chains Examples Ergodicity and stationarity Markov chains Consider a sequence

More information

ISE/OR 760 Applied Stochastic Modeling

ISE/OR 760 Applied Stochastic Modeling ISE/OR 760 Applied Stochastic Modeling Topic 2: Discrete Time Markov Chain Yunan Liu Department of Industrial and Systems Engineering NC State University Yunan Liu (NC State University) ISE/OR 760 1 /

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

MARKOV MODEL WITH COSTS In Markov models we are often interested in cost calculations.

MARKOV MODEL WITH COSTS In Markov models we are often interested in cost calculations. MARKOV MODEL WITH COSTS In Markov models we are often interested in cost calculations. inventory model: storage costs manpower planning model: salary costs machine reliability model: repair costs We will

More information

The Markov Decision Process (MDP) model

The Markov Decision Process (MDP) model Decision Making in Robots and Autonomous Agents The Markov Decision Process (MDP) model Subramanian Ramamoorthy School of Informatics 25 January, 2013 In the MAB Model We were in a single casino and the

More information

The cost/reward formula has two specific widely used applications:

The cost/reward formula has two specific widely used applications: Applications of Absorption Probability and Accumulated Cost/Reward Formulas for FDMC Friday, October 21, 2011 2:28 PM No class next week. No office hours either. Next class will be 11/01. The cost/reward

More information

Markov Chains. Chapter 16. Markov Chains - 1

Markov Chains. Chapter 16. Markov Chains - 1 Markov Chains Chapter 16 Markov Chains - 1 Why Study Markov Chains? Decision Analysis focuses on decision making in the face of uncertainty about one future event. However, many decisions need to consider

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

4.7.1 Computing a stationary distribution

4.7.1 Computing a stationary distribution At a high-level our interest in the rest of this section will be to understand the limiting distribution, when it exists and how to compute it To compute it, we will try to reason about when the limiting

More information

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices Discrete time Markov chains Discrete Time Markov Chains, Limiting Distribution and Classification DTU Informatics 02407 Stochastic Processes 3, September 9 207 Today: Discrete time Markov chains - invariant

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

Markov Chains Absorption (cont d) Hamid R. Rabiee

Markov Chains Absorption (cont d) Hamid R. Rabiee Markov Chains Absorption (cont d) Hamid R. Rabiee 1 Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is 1 (i.e.,

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

Discrete Markov Chain. Theory and use

Discrete Markov Chain. Theory and use Discrete Markov Chain. Theory and use Andres Vallone PhD Student andres.vallone@predoc.uam.es 2016 Contents 1 Introduction 2 Concept and definition Examples Transitions Matrix Chains Classification 3 Empirical

More information

Markov Chains Absorption Hamid R. Rabiee

Markov Chains Absorption Hamid R. Rabiee Markov Chains Absorption Hamid R. Rabiee Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is (i.e., p ii = ). A

More information

Uncertainty Runs Rampant in the Universe C. Ebeling circa Markov Chains. A Stochastic Process. Into each life a little uncertainty must fall.

Uncertainty Runs Rampant in the Universe C. Ebeling circa Markov Chains. A Stochastic Process. Into each life a little uncertainty must fall. Uncertainty Runs Rampant in the Universe C. Ebeling circa 2000 Markov Chains A Stochastic Process Into each life a little uncertainty must fall. Our Hero - Andrei Andreyevich Markov Born: 14 June 1856

More information

Stochastic Problems. 1 Examples. 1.1 Neoclassical Growth Model with Stochastic Technology. 1.2 A Model of Job Search

Stochastic Problems. 1 Examples. 1.1 Neoclassical Growth Model with Stochastic Technology. 1.2 A Model of Job Search Stochastic Problems References: SLP chapters 9, 10, 11; L&S chapters 2 and 6 1 Examples 1.1 Neoclassical Growth Model with Stochastic Technology Production function y = Af k where A is random Let A s t

More information

Lecture 9 Classification of States

Lecture 9 Classification of States Lecture 9: Classification of States of 27 Course: M32K Intro to Stochastic Processes Term: Fall 204 Instructor: Gordan Zitkovic Lecture 9 Classification of States There will be a lot of definitions and

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

MATH HOMEWORK PROBLEMS D. MCCLENDON

MATH HOMEWORK PROBLEMS D. MCCLENDON MATH 46- HOMEWORK PROBLEMS D. MCCLENDON. Consider a Markov chain with state space S = {0, }, where p = P (0, ) and q = P (, 0); compute the following in terms of p and q: (a) P (X 2 = 0 X = ) (b) P (X

More information

Markov Chains Introduction

Markov Chains Introduction Markov Chains 4 4.1. Introduction In this chapter, we consider a stochastic process {X n,n= 0, 1, 2,...} that takes on a finite or countable number of possible values. Unless otherwise mentioned, this

More information

Markov chains (week 6) Solutions

Markov chains (week 6) Solutions Markov chains (week 6) Solutions 1 Ranking of nodes in graphs. A Markov chain model. The stochastic process of agent visits A N is a Markov chain (MC). Explain. The stochastic process of agent visits A

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 9: Markov Chain Monte Carlo 9.1 Markov Chain A Markov Chain Monte

More information

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models Today (Ch 14) Markov chains and hidden Markov models Graphical representation Transition probability matrix Propagating state distributions The stationary distribution Next lecture (Ch 14) Markov chains

More information

ISyE 6650 Probabilistic Models Fall 2007

ISyE 6650 Probabilistic Models Fall 2007 ISyE 6650 Probabilistic Models Fall 2007 Homework 4 Solution 1. (Ross 4.3) In this case, the state of the system is determined by the weather conditions in the last three days. Letting D indicate a dry

More information

Lecture 7: Stochastic Dynamic Programing and Markov Processes

Lecture 7: Stochastic Dynamic Programing and Markov Processes Lecture 7: Stochastic Dynamic Programing and Markov Processes Florian Scheuer References: SLP chapters 9, 10, 11; LS chapters 2 and 6 1 Examples 1.1 Neoclassical Growth Model with Stochastic Technology

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES

MATH 56A SPRING 2008 STOCHASTIC PROCESSES MATH 56A SPRING 008 STOCHASTIC PROCESSES KIYOSHI IGUSA Contents 4. Optimal Stopping Time 95 4.1. Definitions 95 4.. The basic problem 95 4.3. Solutions to basic problem 97 4.4. Cost functions 101 4.5.

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem 1 Gambler s Ruin Problem Consider a gambler who starts with an initial fortune of $1 and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic process X = {X(t), t2 T} is a collection of random variables (rvs); one rv

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9 IEOR 67: Stochastic Models I Solutions to Homework Assignment 9 Problem 4. Let D n be the random demand of time period n. Clearly D n is i.i.d. and independent of all X k for k < n. Then we can represent

More information

LTCC. Exercises. (1) Two possible weather conditions on any day: {rainy, sunny} (2) Tomorrow s weather depends only on today s weather

LTCC. Exercises. (1) Two possible weather conditions on any day: {rainy, sunny} (2) Tomorrow s weather depends only on today s weather 1. Markov chain LTCC. Exercises Let X 0, X 1, X 2,... be a Markov chain with state space {1, 2, 3, 4} and transition matrix 1/2 1/2 0 0 P = 0 1/2 1/3 1/6. 0 0 0 1 (a) What happens if the chain starts in

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS

Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS Autor: Anna Areny Satorra Director: Dr. David Márquez Carreras Realitzat a: Departament de probabilitat,

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

ON A CONJECTURE OF WILLIAM HERSCHEL

ON A CONJECTURE OF WILLIAM HERSCHEL ON A CONJECTURE OF WILLIAM HERSCHEL By CHRISTOPHER C. KRUT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Lecture 5: Introduction to Markov Chains

Lecture 5: Introduction to Markov Chains Lecture 5: Introduction to Markov Chains Winfried Just Department of Mathematics, Ohio University January 24 26, 2018 weather.com light The weather is a stochastic process. For now we can assume that this

More information

Interlude: Practice Final

Interlude: Practice Final 8 POISSON PROCESS 08 Interlude: Practice Final This practice exam covers the material from the chapters 9 through 8. Give yourself 0 minutes to solve the six problems, which you may assume have equal point

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2017 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

Markov Chains. Sarah Filippi Department of Statistics TA: Luke Kelly

Markov Chains. Sarah Filippi Department of Statistics  TA: Luke Kelly Markov Chains Sarah Filippi Department of Statistics http://www.stats.ox.ac.uk/~filippi TA: Luke Kelly With grateful acknowledgements to Prof. Yee Whye Teh's slides from 2013 14. Schedule 09:30-10:30 Lecture:

More information

Markov chains. Randomness and Computation. Markov chains. Markov processes

Markov chains. Randomness and Computation. Markov chains. Markov processes Markov chains Randomness and Computation or, Randomized Algorithms Mary Cryan School of Informatics University of Edinburgh Definition (Definition 7) A discrete-time stochastic process on the state space

More information

APPM 4/5560 Markov Processes Fall 2019, Some Review Problems for Exam One

APPM 4/5560 Markov Processes Fall 2019, Some Review Problems for Exam One APPM /556 Markov Processes Fall 9, Some Review Problems for Exam One (Note: You will not have to invert any matrices on the exam and you will not be expected to solve systems of or more unknowns. There

More information

Quantitative Model Checking (QMC) - SS12

Quantitative Model Checking (QMC) - SS12 Quantitative Model Checking (QMC) - SS12 Lecture 06 David Spieler Saarland University, Germany June 4, 2012 1 / 34 Deciding Bisimulations 2 / 34 Partition Refinement Algorithm Notation: A partition P over

More information

Math Camp Notes: Linear Algebra II

Math Camp Notes: Linear Algebra II Math Camp Notes: Linear Algebra II Eigenvalues Let A be a square matrix. An eigenvalue is a number λ which when subtracted from the diagonal elements of the matrix A creates a singular matrix. In other

More information

MAA704, Perron-Frobenius theory and Markov chains.

MAA704, Perron-Frobenius theory and Markov chains. November 19, 2013 Lecture overview Today we will look at: Permutation and graphs. Perron frobenius for non-negative. Stochastic, and their relation to theory. Hitting and hitting probabilities of chain.

More information

2 DISCRETE-TIME MARKOV CHAINS

2 DISCRETE-TIME MARKOV CHAINS 1 2 DISCRETE-TIME MARKOV CHAINS 21 FUNDAMENTAL DEFINITIONS AND PROPERTIES From now on we will consider processes with a countable or finite state space S {0, 1, 2, } Definition 1 A discrete-time discrete-state

More information

2 Discrete-Time Markov Chains

2 Discrete-Time Markov Chains 2 Discrete-Time Markov Chains Angela Peace Biomathematics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < +

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < + Random Walks: WEEK 2 Recurrence and transience Consider the event {X n = i for some n > 0} by which we mean {X = i}or{x 2 = i,x i}or{x 3 = i,x 2 i,x i},. Definition.. A state i S is recurrent if P(X n

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

MATH3200, Lecture 31: Applications of Eigenvectors. Markov Chains and Chemical Reaction Systems

MATH3200, Lecture 31: Applications of Eigenvectors. Markov Chains and Chemical Reaction Systems Lecture 31: Some Applications of Eigenvectors: Markov Chains and Chemical Reaction Systems Winfried Just Department of Mathematics, Ohio University April 9 11, 2018 Review: Eigenvectors and left eigenvectors

More information

Stochastic Models: Markov Chains and their Generalizations

Stochastic Models: Markov Chains and their Generalizations Scuola di Dottorato in Scienza ed Alta Tecnologia Dottorato in Informatica Universita di Torino Stochastic Models: Markov Chains and their Generalizations Gianfranco Balbo e Andras Horvath Outline Introduction

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical CDA5530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic ti process X = {X(t), t T} is a collection of random variables (rvs); one

More information

P(X 0 = j 0,... X nk = j k )

P(X 0 = j 0,... X nk = j k ) Introduction to Probability Example Sheet 3 - Michaelmas 2006 Michael Tehranchi Problem. Let (X n ) n 0 be a homogeneous Markov chain on S with transition matrix P. Given a k N, let Z n = X kn. Prove that

More information

Lecture 2 : CS6205 Advanced Modeling and Simulation

Lecture 2 : CS6205 Advanced Modeling and Simulation Lecture 2 : CS6205 Advanced Modeling and Simulation Lee Hwee Kuan 21 Aug. 2013 For the purpose of learning stochastic simulations for the first time. We shall only consider probabilities on finite discrete

More information

Practice problems. Practice problems. Example. Grocery store example 2 dairies. Creamwood Cheesedale. Next week This week Creamwood 1 Cheesedale 2

Practice problems. Practice problems. Example. Grocery store example 2 dairies. Creamwood Cheesedale. Next week This week Creamwood 1 Cheesedale 2 Practice problems Grocery store example dairies Next week This week Creamwood Cheesedale Creamwood Cheesedale.7.4.6 Example.7.7.4.7.4.6.7.6.4.6 Practice problems Probability of purchasing Cheesedale in

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Monday, Feb 10, 2014 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

Markov Processes Cont d. Kolmogorov Differential Equations

Markov Processes Cont d. Kolmogorov Differential Equations Markov Processes Cont d Kolmogorov Differential Equations The Kolmogorov Differential Equations characterize the transition functions {P ij (t)} of a Markov process. The time-dependent behavior of the

More information

UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON

UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) MAY JUNE 23 This paper is also taken for the relevant examination for the Associateship. M3S4/M4S4 (SOLUTIONS) APPLIED

More information

Eleventh Problem Assignment

Eleventh Problem Assignment EECS April, 27 PROBLEM (2 points) The outcomes of successive flips of a particular coin are dependent and are found to be described fully by the conditional probabilities P(H n+ H n ) = P(T n+ T n ) =

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

On random walks. i=1 U i, where x Z is the starting point of

On random walks. i=1 U i, where x Z is the starting point of On random walks Random walk in dimension. Let S n = x+ n i= U i, where x Z is the starting point of the random walk, and the U i s are IID with P(U i = +) = P(U n = ) = /2.. Let N be fixed (goal you want

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008

STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008 Name STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008 There are five questions on this test. DO use calculators if you need them. And then a miracle occurs is not a valid answer. There

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

88 CONTINUOUS MARKOV CHAINS

88 CONTINUOUS MARKOV CHAINS 88 CONTINUOUS MARKOV CHAINS 3.4. birth-death. Continuous birth-death Markov chains are very similar to countable Markov chains. One new concept is explosion which means that an infinite number of state

More information

On asymptotic behavior of a finite Markov chain

On asymptotic behavior of a finite Markov chain 1 On asymptotic behavior of a finite Markov chain Alina Nicolae Department of Mathematical Analysis Probability. University Transilvania of Braşov. Romania. Keywords: convergence, weak ergodicity, strong

More information

Markov Processes and Queues

Markov Processes and Queues MIT 2.853/2.854 Introduction to Manufacturing Systems Markov Processes and Queues Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Markov Processes

More information

1 Random Walks and Electrical Networks

1 Random Walks and Electrical Networks CME 305: Discrete Mathematics and Algorithms Random Walks and Electrical Networks Random walks are widely used tools in algorithm design and probabilistic analysis and they have numerous applications.

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

IE 336 Seat # Name. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Cover page and five pages of exam. Four questions. To receive full credit, show enough work to indicate your logic.

More information

Markov Chains. Contents

Markov Chains. Contents 6 Markov Chains Contents 6.1. Discrete-Time Markov Chains............... p. 2 6.2. Classification of States................... p. 9 6.3. Steady-State Behavior.................. p. 13 6.4. Absorption Probabilities

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MH4702/MAS446/MTH437 Probabilistic Methods in OR

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MH4702/MAS446/MTH437 Probabilistic Methods in OR NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION 2013-201 MH702/MAS6/MTH37 Probabilistic Methods in OR December 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains

More information

Discrete Time Markov Chain (DTMC)

Discrete Time Markov Chain (DTMC) Discrete Time Markov Chain (DTMC) John Boccio February 3, 204 Sources Taylor & Karlin, An Introduction to Stochastic Modeling, 3rd edition. Chapters 3-4. Ross, Introduction to Probability Models, 8th edition,

More information

LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE

LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE International Journal of Applied Mathematics Volume 31 No. 18, 41-49 ISSN: 1311-178 (printed version); ISSN: 1314-86 (on-line version) doi: http://dx.doi.org/1.173/ijam.v31i.6 LIMITING PROBABILITY TRANSITION

More information