NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MH4702/MAS446/MTH437 Probabilistic Methods in OR

Size: px
Start display at page:

Download "NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MH4702/MAS446/MTH437 Probabilistic Methods in OR"

Transcription

1 NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MH702/MAS6/MTH37 Probabilistic Methods in OR December 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR () questions comprises FIVE (5) printed pages. 2. Answer all questions. The marks for each question are indicated at the beginning of each question. 3. Answer each question beginning on a FRESH page of the answer book.. This IS NOT an OPEN BOOK exam. 5. Cidates may use calculators. However, they should write down systematically the steps in the workings.

2 MH702/MAS6/MTH37 Question 1. A casino offers a gambling game with the following rules. (20 marks) 1. Each play of the game involves repeatedly flipping an unbiased coin until the difference between the number of heads tossed the number of tails is If you decide to play the game, you are required to pay $1 for each flip of the coin. You are not allowed to quit during a play of the game. 3. You receive $8 at the end of each play of the game. Thus, you win money if the number of flips required for one play of this game is fewer than 8, but lose money if more than 8 flips are required. You now wish to find out the expected amount of money to win or lose for each play of the game. (i) Formulate the above gaming process as a Markov chain. Construct the (onestep) transition matrix for this Markov chain. (ii) Determine the amount of money one expects to win or lose for each play of the game. (i) Solution: We formulate the problem as a Markov chain of four states. State 0 difference is 0 State 1 difference is 1 State 2 difference is 2 State 3 difference is 3 The one-step transition matrix hence is (ii) We are going to find the expected first passage time from state 0 to state 3, which is denoted by µ 03. It s done by solving the following linear equations, which come from µ ij = 1 + k j p ikµ kj. µ 03 = 1 + µ 13 2

3 MH702/MAS6/MTH37 µ 13 = µ µ 23, µ 23 = µ 13 Therefore, µ 03 = 9. It says that one expects to lose one dollar for each play of the game. Question 2. (25 marks) An automatic car wash facility operates with only one bay. Cars arrive according to a Poisson distribution with a mean of cars per hour may wait in the facility s parking lot if the bay is busy. Cars are first-come-first-served. (i) Assume that the service time is constant equal to 10 minutes. Find the average time of a car waiting in the parking lot. (ii) Assume instead that there are three types of service configurations available: fast, normal slow, taking, 8 15 minutes, respectively. Each car will choose one type of service configuration (fast, normal or slow) with probabilities 0.2, , respectively. Find the average time of a car waiting in the parking lot. Solution: (i) We apply the M/G/1 queueing model, where λ =, µ = 6, ρ = 2, σ = 0. 3 Hence, L q = λ2 σ 2 + ρ 2 2(1 ρ) = (2/3)2 2(1 2/3) = 2 3 W q = L q λ = 2/3 = 1 6, which means that the average time of a car waiting in the parking lot is 10 minutes. 60 (ii) We apply the M/G/1 queueing model, where λ =, µ = = = , ρ = = , σ2 = 0.2 ( ) ( ) ( )2 = Hence, L q = λ2 σ 2 + ρ 2 2(1 ρ) = ( ) = W q = L q λ = = , which means that the average time of a car waiting in the parking lot is = minutes. 3

4 MH702/MAS6/MTH37 Question 3. (25 marks) Consider the following blood inventory problem facing a hospital. There is need for a rare blood type, namely, type AB, Rh negative blood. The dem D (in pints) over any 3-day period is given by P {D = 0} = 0., P {D = 1} = 0.3, P {D = 2} = 0.2, P {D = 3} = 0.1. At the beginning of each 3-day period, a decision must be made about how many pints of blood to order for a regular delivery. A regular delivery takes 3 days (i.e., the blood ordered at the beginning of this 3-day period will arrive only at the beginning of the next 3-day period). If more blood is demed than is on h at any time, an expensive emergency delivery is made, in which case the ordered blood will arrive immediately. As a special equipment is required to hold the blood, the hospital has only a maximum capacity of holding 3 pints of blood so that excessive blood will be discarded immediately. The cost of regular delivery is $50 per pint, while the cost of an emergency delivery is $100 per pint. Denote the state of the system as the number of pints on h at the beginning of each 3-day period. The hospital wishes to determine how many pints of blood to order for a regular delivery in order to minimize the (long-run) expected average delivery cost (from both regular emergency deliveries) per 3-day period. (i) Formulate this problem as a Markov decision process by identifying the states decisions then finding the value for each p ij (k) C ik. (ii) Formulate a linear programming model for finding an optimal ordering policy (Don t need to solve this model for solution). Solution: Here we choose to formulate a Markov decision process of four states four decisions. State 0 State 1 State 2 State 3 Decision 1 Decision 2 Decision 3 Decision 0 pint on h 1 pint on h 2 pints on h 3 pints on h Order 0 pint Order 1 pint Order 2 pints Order 3 pints Let y ik be the probability that the system is in state i decision k is made. We present in the following table all the values of p ij (k) C ik.

5 MH702/MAS6/MTH37 p ij (k) State Decision C ik ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = 150 Question. (30 marks) The local one-person barber shop can accommodate a maximum of 5 people at a time ( waiting 1 getting hair-cut). Customers arrive according to a Poisson distribution with a mean rate of 5 per hour. However, customers will leave without entering the barber shop if they find upon arrival that the barber shop is already full. The time spent by the barber to cut hair for each customer has an exponential distribution with a mean of 15 minutes. (i) What is the probability that a customer can get directly a hair cut upon arrival? (ii) What is the expected number of customers waiting for a hair cut? (iii) How much time can a customer expect to spend in the barber shop? (iv) What fraction of potential customers are turned away? Hint: For the M/M/1/K queueing model we have the following results when ρ 1: P 0 = L = 1 ρ 1 ρ, P K+1 n = 1 ρ 1 ρ K+1 ρn, 0 n K ρ (K + 1)ρK+1, L 1 ρ 1 ρ K+1 q = L (1 P 0 ) 5

6 MH702/MAS6/MTH37 Solution: We apply the M/M/1/K queueing model, where λ = 5, µ =, ρ = 5, K = 5. Hence, P 0 = 1 ρ 1 5/ = 1 ρk+1 1 (5/) = L = P 1 = P 0 ρ = = ( ) 2 5 P 2 = P 0 ρ = = ( ) 3 5 P 3 = P 0 ρ = = ( ) 5 P = P 0 ρ = = ( ) 5 5 P 5 = P 0 ρ = = ρ (K + 1)ρK+1 = ρ 1 ρ K = L q = L (1 P 0 ) = ( ) = λ = λ(1 P K ) = 5 ( ) = 3.65 W = L λ = = W q = L q λ = = Therefore, the solutions are (i) (=P 0 ), (ii) (=L q ), (iii) = minutes (=W ), (iv) (=P 5 ). END OF PAPER 6

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet

Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet YOUR NAME INSTRUCTIONS: No notes, no calculators, and no communications devices are permitted. Please keep all materials away from your

More information

Answers to selected exercises

Answers to selected exercises Answers to selected exercises A First Course in Stochastic Models, Henk C. Tijms 1.1 ( ) 1.2 (a) Let waiting time if passengers already arrived,. Then,, (b) { (c) Long-run fraction for is (d) Let waiting

More information

Engineering Mathematics : Probability & Queueing Theory SUBJECT CODE : MA 2262 X find the minimum value of c.

Engineering Mathematics : Probability & Queueing Theory SUBJECT CODE : MA 2262 X find the minimum value of c. SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 2262 MATERIAL NAME : University Questions MATERIAL CODE : SKMA104 UPDATED ON : May June 2013 Name of the Student: Branch: Unit I (Random Variables)

More information

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system.

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system. 8. Preliminaries L, L Q, W, W Q L = average number of customers in the system. L Q = average number of customers waiting in queue. W = average number of time a customer spends in the system. W Q = average

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

Queuing Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Queuing Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Queuing Analysis Chapter 13 13-1 Chapter Topics Elements of Waiting Line Analysis The Single-Server Waiting Line System Undefined and Constant Service Times Finite Queue Length Finite Calling Problem The

More information

Discrete Event Systems Exam

Discrete Event Systems Exam Computer Engineering and Networks Laboratory TEC, NSG, DISCO HS 2016 Prof. L. Thiele, Prof. L. Vanbever, Prof. R. Wattenhofer Discrete Event Systems Exam Friday, 3 rd February 2017, 14:00 16:00. Do not

More information

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID:

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID: Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam 1 2 3 4 5 6 7 8 9 10 7 questions. 1. [5+5] Let X and Y be independent exponential random variables where X has

More information

ISyE 2030 Practice Test 2

ISyE 2030 Practice Test 2 1 NAME ISyE 2030 Practice Test 2 Summer 2005 This test is open notes, open books. You have exactly 75 minutes. 1. Short-Answer Questions (a) TRUE or FALSE? If arrivals occur according to a Poisson process

More information

Review of Queuing Models

Review of Queuing Models Review of Queuing Models Recitation, Apr. 1st Guillaume Roels 15.763J Manufacturing System and Supply Chain Design http://michael.toren.net/slides/ipqueue/slide001.html 2005 Guillaume Roels Outline Overview,

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Queu(e)ing theory Queu(e)ing theory is the branch of mathematics devoted to how objects (packets in a network, people in a bank, processes in a CPU etc etc) join and leave

More information

ISM206 Lecture, May 12, 2005 Markov Chain

ISM206 Lecture, May 12, 2005 Markov Chain ISM206 Lecture, May 12, 2005 Markov Chain Instructor: Kevin Ross Scribe: Pritam Roy May 26, 2005 1 Outline of topics for the 10 AM lecture The topics are: Discrete Time Markov Chain Examples Chapman-Kolmogorov

More information

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, 1.2.11, 1.2.12, 1.2.16 (extra credit) A fashionable country club has 100 members, 30 of whom are lawyers. Rumor has it that 25 of the club members are liars

More information

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Queuing Theory Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Queuing Theory STAT 870 Summer 2011 1 / 15 Purposes of Today s Lecture Describe general

More information

CS 798: Homework Assignment 3 (Queueing Theory)

CS 798: Homework Assignment 3 (Queueing Theory) 1.0 Little s law Assigned: October 6, 009 Patients arriving to the emergency room at the Grand River Hospital have a mean waiting time of three hours. It has been found that, averaged over the period of

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

Probability and Statistics Concepts

Probability and Statistics Concepts University of Central Florida Computer Science Division COT 5611 - Operating Systems. Spring 014 - dcm Probability and Statistics Concepts Random Variable: a rule that assigns a numerical value to each

More information

IE 5112 Final Exam 2010

IE 5112 Final Exam 2010 IE 5112 Final Exam 2010 1. There are six cities in Kilroy County. The county must decide where to build fire stations. The county wants to build as few fire stations as possible while ensuring that there

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Examination paper for TMA4265 Stochastic Processes

Examination paper for TMA4265 Stochastic Processes Department of Mathematical Sciences Examination paper for TMA4265 Stochastic Processes Academic contact during examination: Andrea Riebler Phone: 456 89 592 Examination date: December 14th, 2015 Examination

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

Classification of Queuing Models

Classification of Queuing Models Classification of Queuing Models Generally Queuing models may be completely specified in the following symbol form:(a/b/c):(d/e)where a = Probability law for the arrival(or inter arrival)time, b = Probability

More information

MAT SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions.

MAT SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions. MAT 4371 - SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions. Question 1: Consider the following generator for a continuous time Markov chain. 4 1 3 Q = 2 5 3 5 2 7 (a) Give

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Friday, Feb 8, 2013 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

56:171 Operations Research Final Exam December 12, 1994

56:171 Operations Research Final Exam December 12, 1994 56:171 Operations Research Final Exam December 12, 1994 Write your name on the first page, and initial the other pages. The response "NOTA " = "None of the above" Answer both parts A & B, and five sections

More information

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if 1 Queuing Theory 3. Birth-Death Process Law of Motion Flow balance equations Steady-state probabilities: c j = λ 0λ 1...λ j 1 µ 1 µ 2...µ j π 0 = 1 1+ j=1 c j, if j=1 c j is finite. π j = c j π 0 Example

More information

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved.

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved. The objective of queuing analysis is to offer a reasonably satisfactory service to waiting customers. Unlike the other tools of OR, queuing theory is not an optimization technique. Rather, it determines

More information

Queuing Theory. Using the Math. Management Science

Queuing Theory. Using the Math. Management Science Queuing Theory Using the Math 1 Markov Processes (Chains) A process consisting of a countable sequence of stages, that can be judged at each stage to fall into future states independent of how the process

More information

Basic Queueing Theory

Basic Queueing Theory After The Race The Boston Marathon is a local institution with over a century of history and tradition. The race is run on Patriot s Day, starting on the Hopkinton green and ending at the Prudential Center

More information

Math 493 Final Exam December 01

Math 493 Final Exam December 01 Math 493 Final Exam December 01 NAME: ID NUMBER: Return your blue book to my office or the Math Department office by Noon on Tuesday 11 th. On all parts after the first show enough work in your exam booklet

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

Markov Chains. Chapter 16. Markov Chains - 1

Markov Chains. Chapter 16. Markov Chains - 1 Markov Chains Chapter 16 Markov Chains - 1 Why Study Markov Chains? Decision Analysis focuses on decision making in the face of uncertainty about one future event. However, many decisions need to consider

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

1.225J J (ESD 205) Transportation Flow Systems

1.225J J (ESD 205) Transportation Flow Systems 1.225J J (ESD 25) Transportation Flow Systems Lecture 9 Simulation Models Prof. Ismail Chabini and Prof. Amedeo R. Odoni Lecture 9 Outline About this lecture: It is based on R16. Only material covered

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Additional Problems MATERIAL CODE : JM08AM1004 REGULATION : R2013 UPDATED ON : March 2015 (Scan the above Q.R code for

More information

Queueing Theory. VK Room: M Last updated: October 17, 2013.

Queueing Theory. VK Room: M Last updated: October 17, 2013. Queueing Theory VK Room: M1.30 knightva@cf.ac.uk www.vincent-knight.com Last updated: October 17, 2013. 1 / 63 Overview Description of Queueing Processes The Single Server Markovian Queue Multi Server

More information

Simultaneous Equations Solve for x and y (What are the values of x and y): Summation What is the value of the following given x = j + 1. x i.

Simultaneous Equations Solve for x and y (What are the values of x and y): Summation What is the value of the following given x = j + 1. x i. 1 Algebra Simultaneous Equations Solve for x and y (What are the values of x and y): x + 2y = 6 x - y = 3 Summation What is the value of the following given x = j + 1. Summation Calculate the following:

More information

YORK UNIVERSITY FACULTY OF ARTS DEPARTMENT OF MATHEMATICS AND STATISTICS MATH , YEAR APPLIED OPTIMIZATION (TEST #4 ) (SOLUTIONS)

YORK UNIVERSITY FACULTY OF ARTS DEPARTMENT OF MATHEMATICS AND STATISTICS MATH , YEAR APPLIED OPTIMIZATION (TEST #4 ) (SOLUTIONS) YORK UNIVERSITY FACULTY OF ARTS DEPARTMENT OF MATHEMATICS AND STATISTICS Instructor : Dr. Igor Poliakov MATH 4570 6.0, YEAR 2006-07 APPLIED OPTIMIZATION (TEST #4 ) (SOLUTIONS) March 29, 2007 Name (print)

More information

Massachusetts Institute of Technology Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis

Massachusetts Institute of Technology Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis 6.04/6.43: Probabilistic Systems Analysis Question : Multiple choice questions. CLEARLY circle the best answer for each question below. Each question is worth 4 points each, with no partial credit given.

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models.

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models. Queuing Theory Introduction Waiting lines are the most frequently encountered problems in everyday life. For example, queue at a cafeteria, library, bank, etc. Common to all of these cases are the arrivals

More information

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999.

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999. Math 447. 1st Homework. First part of Chapter 2. Due Friday, September 17, 1999. 1. How many different seven place license plates are possible if the first 3 places are to be occupied by letters and the

More information

MSA 640 Homework #2 Due September 17, points total / 20 points per question Show all work leading to your answers

MSA 640 Homework #2 Due September 17, points total / 20 points per question Show all work leading to your answers Name MSA 640 Homework #2 Due September 17, 2010 100 points total / 20 points per question Show all work leading to your answers 1. The annual demand for a particular type of valve is 3,500 units. The cost

More information

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172.

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. 1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW! 2. This is a closed book exam.

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Slides 9: Queuing Models

Slides 9: Queuing Models Slides 9: Queuing Models Purpose Simulation is often used in the analysis of queuing models. A simple but typical queuing model is: Queuing models provide the analyst with a powerful tool for designing

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) =

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) = CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14 1 Probability First, recall a couple useful facts from last time about probability: Linearity of expectation: E(aX + by ) = ae(x)

More information

PRACTICE PROBLEMS FOR EXAM 2

PRACTICE PROBLEMS FOR EXAM 2 PRACTICE PROBLEMS FOR EXAM 2 Math 3160Q Fall 2015 Professor Hohn Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it?

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it? Here are a whole lot of problems! I will keep browsing good sources of problems and posting them here until the last day of class. As always, Grinstead and Snell, Ross and problems from previous courses

More information

Probability and Stochastic Processes Homework Chapter 12 Solutions

Probability and Stochastic Processes Homework Chapter 12 Solutions Probability and Stochastic Processes Homework Chapter 1 Solutions Problem Solutions : Yates and Goodman, 1.1.1 1.1.4 1.3. 1.4.3 1.5.3 1.5.6 1.6.1 1.9.1 1.9.4 1.10.1 1.10.6 1.11.1 1.11.3 1.11.5 and 1.11.9

More information

JRF (Quality, Reliability and Operations Research): 2013 INDIAN STATISTICAL INSTITUTE INSTRUCTIONS

JRF (Quality, Reliability and Operations Research): 2013 INDIAN STATISTICAL INSTITUTE INSTRUCTIONS JRF (Quality, Reliability and Operations Research): 2013 INDIAN STATISTICAL INSTITUTE INSTRUCTIONS The test is divided into two sessions (i) Forenoon session and (ii) Afternoon session. Each session is

More information

Single-part-type, multiple stage systems

Single-part-type, multiple stage systems MIT 2.853/2.854 Introduction to Manufacturing Systems Single-part-type, multiple stage systems Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Single-stage,

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : University Questions REGULATION : R013 UPDATED ON : December 018 (Upto N/D 018 Q.P) TEXTBOOK FOR REFERENCE : Sri Hariganesh

More information

Solutions to COMP9334 Week 8 Sample Problems

Solutions to COMP9334 Week 8 Sample Problems Solutions to COMP9334 Week 8 Sample Problems Problem 1: Customers arrive at a grocery store s checkout counter according to a Poisson process with rate 1 per minute. Each customer carries a number of items

More information

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) =

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) = 1. If X has density f(x) = { cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. 2. Let X have density f(x) = { xe x, 0 < x < 0, otherwise. (a) Find P (X > 2). (b) Find

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2018 Introduction to Artificial Intelligence Practice Final You have approximately 2 hours 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib

More information

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 6 Queueing Models Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Simulation is often used in the analysis of queueing models. A simple but typical queueing model: Queueing

More information

AP Statistics Semester I Examination Section I Questions 1-30 Spend approximately 60 minutes on this part of the exam.

AP Statistics Semester I Examination Section I Questions 1-30 Spend approximately 60 minutes on this part of the exam. AP Statistics Semester I Examination Section I Questions 1-30 Spend approximately 60 minutes on this part of the exam. Name: Directions: The questions or incomplete statements below are each followed by

More information

CPSC 531 Systems Modeling and Simulation FINAL EXAM

CPSC 531 Systems Modeling and Simulation FINAL EXAM CPSC 531 Systems Modeling and Simulation FINAL EXAM Department of Computer Science University of Calgary Professor: Carey Williamson December 21, 2017 This is a CLOSED BOOK exam. Textbooks, notes, laptops,

More information

MAS275 Probability Modelling Exercises

MAS275 Probability Modelling Exercises MAS75 Probability Modelling Exercises Note: these questions are intended to be of variable difficulty. In particular: Questions or part questions labelled (*) are intended to be a bit more challenging.

More information

Exam 1 Solutions. Problem Points Score Total 145

Exam 1 Solutions. Problem Points Score Total 145 Exam Solutions Read each question carefully and answer all to the best of your ability. Show work to receive as much credit as possible. At the end of the exam, please sign the box below. Problem Points

More information

56:171 Operations Research Final Examination December 15, 1998

56:171 Operations Research Final Examination December 15, 1998 56:171 Operations Research Final Examination December 15, 1998 Write your name on the first page, and initial the other pages. Answer both Parts A and B, and 4 (out of 5) problems from Part C. Possible

More information

L = λ W time average number in Line or system arrival rate W average Waiting time per customer

L = λ W time average number in Line or system arrival rate W average Waiting time per customer IEOR 4615, Lecture 3, January 27, 2015 L λ Little s Law* L = λ W time average number in Line or system arrival rate W average Waiting time per customer *J. D. C. Little, A proof of the queueing formula:

More information

PBW 654 Applied Statistics - I Urban Operations Research

PBW 654 Applied Statistics - I Urban Operations Research PBW 654 Applied Statistics - I Urban Operations Research Lecture 2.I Queuing Systems An Introduction Operations Research Models Deterministic Models Linear Programming Integer Programming Network Optimization

More information

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability and Statistics FS 2017 Session Exam 22.08.2017 Time Limit: 180 Minutes Name: Student ID: This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2017 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Session-Based Queueing Systems

Session-Based Queueing Systems Session-Based Queueing Systems Modelling, Simulation, and Approximation Jeroen Horters Supervisor VU: Sandjai Bhulai Executive Summary Companies often offer services that require multiple steps on the

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

Problem Points S C O R E Total: 120

Problem Points S C O R E Total: 120 PSTAT 160 A Final Exam December 10, 2015 Name Student ID # Problem Points S C O R E 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 Total: 120 1. (10 points) Take a Markov chain with the

More information

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements Queueing Systems: Lecture 3 Amedeo R. Odoni October 18, 006 Announcements PS #3 due tomorrow by 3 PM Office hours Odoni: Wed, 10/18, :30-4:30; next week: Tue, 10/4 Quiz #1: October 5, open book, in class;

More information

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam.

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam. Final Examination Closed book. 120 minutes. Cover page plus five pages of exam. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit

More information

The effect of probabilities of departure with time in a bank

The effect of probabilities of departure with time in a bank International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 The effect of probabilities of departure with time in a bank Kasturi Nirmala, Shahnaz Bathul Abstract This paper

More information

Math , Fall 2012: HW 5 Solutions

Math , Fall 2012: HW 5 Solutions Math 230.0, Fall 202: HW 5 Solutions Due Thursday, October 4th, 202. Problem (p.58 #2). Let X and Y be the numbers obtained in two draws at random from a box containing four tickets labeled, 2, 3, 4. Display

More information

Weather Overnight. Income (I) Running total

Weather Overnight. Income (I) Running total GAME TABLE :Team Day Inshore Offshore Overnight Income (I) Costs (C) Profit (I-C) Running total 2 6 7 8 9 0 GAME TABLE :Team 2 Day Inshore Offshore Overnight Income (I) Costs (C) Profit (I-C) Running total

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Chapter 16 focused on decision making in the face of uncertainty about one future

Chapter 16 focused on decision making in the face of uncertainty about one future 9 C H A P T E R Markov Chains Chapter 6 focused on decision making in the face of uncertainty about one future event (learning the true state of nature). However, some decisions need to take into account

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

Systems Simulation Chapter 6: Queuing Models

Systems Simulation Chapter 6: Queuing Models Systems Simulation Chapter 6: Queuing Models Fatih Cavdur fatihcavdur@uludag.edu.tr April 2, 2014 Introduction Introduction Simulation is often used in the analysis of queuing models. A simple but typical

More information

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3 Introduction to Probability Due:August 8th, 211 Solutions of Final Exam Solve all the problems 1. (15 points) You have three coins, showing Head with probabilities p 1, p 2 and p 3. You perform two different

More information

S.R.S Varadhan by Professor Tom Louis Lindstrøm

S.R.S Varadhan by Professor Tom Louis Lindstrøm S.R.S Varadhan by Professor Tom Louis Lindstrøm Srinivasa S. R. Varadhan was born in Madras (Chennai), India in 1940. He got his B. Sc. from Presidency College in 1959 and his Ph.D. from the Indian Statistical

More information

Quiz Queue II. III. ( ) ( ) =1.3333

Quiz Queue II. III. ( ) ( ) =1.3333 Quiz Queue UMJ, a mail-order company, receives calls to place orders at an average of 7.5 minutes intervals. UMJ hires one operator and can handle each call in about every 5 minutes on average. The inter-arrival

More information

CSE 312 Foundations, II Final Exam

CSE 312 Foundations, II Final Exam CSE 312 Foundations, II Final Exam 1 Anna Karlin June 11, 2014 DIRECTIONS: Closed book, closed notes except for one 8.5 11 sheet. Time limit 110 minutes. Calculators allowed. Grading will emphasize problem

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

Sandwich shop : a queuing net work with finite disposable resources queue and infinite resources queue

Sandwich shop : a queuing net work with finite disposable resources queue and infinite resources queue Sandwich shop : a queuing net work with finite disposable resources queue and infinite resources queue Final project for ISYE 680: Queuing systems and Applications Hongtan Sun May 5, 05 Introduction As

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Waiting Line Models: Queuing Theory Basics. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1

Waiting Line Models: Queuing Theory Basics. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1 Waiting Line Models: Queuing Theory Basics Cuantitativos M. En C. Eduardo Bustos Farias 1 Agenda Queuing system structure Performance measures Components of queuing systems Arrival process Service process

More information

Introduction to Queuing Networks Solutions to Problem Sheet 3

Introduction to Queuing Networks Solutions to Problem Sheet 3 Introduction to Queuing Networks Solutions to Problem Sheet 3 1. (a) The state space is the whole numbers {, 1, 2,...}. The transition rates are q i,i+1 λ for all i and q i, for all i 1 since, when a bus

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Page 1 of 7 English Contact: Håkon Tjelmeland 48 22 18 96 EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013

More information