IE 336 Seat # Name. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes.

Size: px
Start display at page:

Download "IE 336 Seat # Name. Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes."

Transcription

1 Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Cover page and five pages of exam. Four questions. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. Unless stated otherwise, you will receive full credit if someone with no understanding of probability could simplify your answer to obtain the correct numerical solution. This exam covers through (most of) Chapter 4 of Solberg (August 2005). Definition: NEITK: "not enough information to know" Recall: The Poisson pmf with meanµis f (x )=e µ µ x / x! for x = 0, 1, 2,... Recall: The geometric pmf with probability of success p, and mean 1 / p, is f (x )=p (1 p) x 1 for x = 1, 2, 3,... Score Exam #2, Fall 2007 Schmeiser

2 Closed book. One page of hand-written notes, front and back. No calculator. 1. (Based on Solberg, Problem 7, Chapter 3) A paint manufacturer mixes colors in a large vat. There are only three colors: red, white, and blue. The color order, which is determined by external factors, can be modeled by a Markov chain with one-step transition matrix red white blue Changing colors is trivially easy when a dark color follows a dark color; that is, essentially no cleaning is needed when red follows blue or when blue follows red. Also, no cleaning is needed when red or blue follows white. Substantial cleaning is needed when white follows red or when white follows blue. (So far, this is just Solberg s problem statement.) (a) (3 points) Which states are transient? (b) (3 points) Which states are recurrent? (c) (3 points) Which states are absorbing? (d) (7 points) Determine the long-term fraction of white-paint vats. (e) (7 points) Assume that the Markov chain is in steady state. Determine the probability that the previous vat was white if the current batch is red. Exam #2, Fall 2007 Page 1 of 5 Schmeiser

3 (f) (7 points) If the vat now has white paint, determine the expected number of nonwhite vats until the vat is again filled with white paint. (g) (7 points) If the vat is now filled with white paint, what is the probability of exactly four more white vats before another color is mixed? (h) (7 points) Determine the long-term fraction of the vats that mix a dark color. Exam #2, Fall 2007 Page 2 of 5 Schmeiser

4 2. Consider again the red/white/blue paint model. Now, however, let "white" be an absorbing state, that is, the one-step probability matrix is P = red white blue Assume that the initial state distribution is red with probability, white with probability 0.6, and blue otherwise. Let e ij denote the (i,j )th element of E = (I Q ) 1, where Q is the matrix of transientto-transient one-step probabilities. Assume that these values have been computed. transient Q R (a) (7 points) Write the one-step transition matrix in the form P = recurrent 0 I. (b) (7 points) Explain, in the context of this problem, the meaning of e red,blue + e red,red. (c) (4 points) Determine the probability of eventual absorption into "white". (d) (7 points) Determine the expected number of vats before a white vat. (Include the current vat in the count.) Exam #2, Fall 2007 Page 3 of 5 Schmeiser

5 3. (Based on Solberg, Problem 6, Chapter 3) Consider the four-state Markov chain that models sequential car purchases for a particular buyer. The states are S = {GM, Ford, Chrysler,Foreign} with one-step transition matrix P = GM Ford Chrysler Foreign (a) (3 points) Is this Markov chain stationary? YES NO NEITK (b) (7 points) Explain, in the context of this problem, the meaning of the Markov Assumption. (c) (7 points) Consider the next three cars. If current car is foreign, determine the expected number of Ford cars. Exam #2, Fall 2007 Page 4 of 5 Schmeiser

6 4. (Based on Solberg, Chapter 3, Problem 13) A solar-heating device can recharge (store heat) in a single sunny day enough to provide for the next two days. In other words, the only times that the solar heat must be augmented by some other heat source is when there are three or more consecutive cloudy days. During the heating season, a period of 120 days, the weather patterns are described by the following Markov chain. sunny 1/2 1/2 P = cloudy 1/3 2/3. Let time be measured by days. Let the states be the number of days since a sunny day, with a maximum of three; that is, S = {0, 1, 2, 3}. (For example, X n = 2 means that today is cloudy, yesterday was cloudy, and the day before yesterday was sunny.) (a) (7 points) Write the one-step probability transition matrix. (b) (7 points) Sketch the corresponding one-step digraph. Exam #2, Fall 2007 Page 5 of 5 Schmeiser

IE 336 Seat # Name (clearly) Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name (clearly) Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Closed book. One page of hand-written notes, front and back. No calculator. 6 minutes. Cover page and four pages of exam. Fifteen questions. Each question is worth seven points. To receive full credit,

More information

IE 336 Seat # Name (one point) < KEY > Closed book. Two pages of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name (one point) < KEY > Closed book. Two pages of hand-written notes, front and back. No calculator. 60 minutes. Closed book. Two pages of hand-written notes, front and back. No calculator. 6 minutes. Cover page and four pages of exam. Four questions. To receive full credit, show enough work to indicate your logic.

More information

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam.

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam. Final Examination Closed book. 120 minutes. Cover page plus five pages of exam. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit

More information

IE 336 Seat # Name (clearly) < KEY > Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam.

IE 336 Seat # Name (clearly) < KEY > Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam. Open book and notes. No calculators. 60 minutes. Cover page and five pages of exam. This test covers through Chapter 2 of Solberg (August 2005). All problems are worth five points. To receive full credit,

More information

APPM 4/5560 Markov Processes Fall 2019, Some Review Problems for Exam One

APPM 4/5560 Markov Processes Fall 2019, Some Review Problems for Exam One APPM /556 Markov Processes Fall 9, Some Review Problems for Exam One (Note: You will not have to invert any matrices on the exam and you will not be expected to solve systems of or more unknowns. There

More information

Markov Chains. Chapter 16. Markov Chains - 1

Markov Chains. Chapter 16. Markov Chains - 1 Markov Chains Chapter 16 Markov Chains - 1 Why Study Markov Chains? Decision Analysis focuses on decision making in the face of uncertainty about one future event. However, many decisions need to consider

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

Chapter 16 focused on decision making in the face of uncertainty about one future

Chapter 16 focused on decision making in the face of uncertainty about one future 9 C H A P T E R Markov Chains Chapter 6 focused on decision making in the face of uncertainty about one future event (learning the true state of nature). However, some decisions need to take into account

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

At the boundary states, we take the same rules except we forbid leaving the state space, so,.

At the boundary states, we take the same rules except we forbid leaving the state space, so,. Birth-death chains Monday, October 19, 2015 2:22 PM Example: Birth-Death Chain State space From any state we allow the following transitions: with probability (birth) with probability (death) with probability

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University November 26, 2017 Xin Ma (TAMU) Math 166 November 26, 2017 1 / 10 Announcements 1. Homework 27 (M.1) due on this Wednesday and

More information

Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet

Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet YOUR NAME INSTRUCTIONS: No notes, no calculators, and no communications devices are permitted. Please keep all materials away from your

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

IE 581 Introduction to Stochastic Simulation. Three pages of hand-written notes, front and back. Closed book. 120 minutes.

IE 581 Introduction to Stochastic Simulation. Three pages of hand-written notes, front and back. Closed book. 120 minutes. Three pages of hand-written notes, front and back. Closed book. 120 minutes. 1. SIMLIB. True or false. (2 points each. If you wish, write an explanation of your thinking.) (a) T F The time of the next

More information

Markov Chains (Part 3)

Markov Chains (Part 3) Markov Chains (Part 3) State Classification Markov Chains - State Classification Accessibility State j is accessible from state i if p ij (n) > for some n>=, meaning that starting at state i, there is

More information

each nonabsorbing state to each absorbing state.

each nonabsorbing state to each absorbing state. Chapter 8 Markov Processes Absorbing States Markov Processes Markov process models are useful in studying the evolution of systems over repeated trials or sequential time periods or stages. They have been

More information

6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon.

6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon. 6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon. DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO Name: Recitation Instructor: TA: Question Score Out of 1.1 4 1.2 4 1.3

More information

Markov Chains (Part 4)

Markov Chains (Part 4) Markov Chains (Part 4) Steady State Probabilities and First Passage Times Markov Chains - 1 Steady-State Probabilities Remember, for the inventory example we had (8) P &.286 =.286.286 %.286 For an irreducible

More information

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC)

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) Markov Chains (2) Outlines Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) 2 pj ( n) denotes the pmf of the random variable p ( n) P( X j) j We will only be concerned with homogenous

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014 Midterm Exam 2 Last name First name SID Rules. DO NOT open the exam until instructed

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

IE 230 Seat # (1 point) Name (clearly) < KEY > Closed book and notes. No calculators. Designed for 60 minutes, but time is essentially unlimited.

IE 230 Seat # (1 point) Name (clearly) < KEY > Closed book and notes. No calculators. Designed for 60 minutes, but time is essentially unlimited. Closed book and notes. No calculators. Designed for 60 minutes, but time is essentially unlimited. Cover page, four pages of exam. This test covers through Section 2.7 of Montgomery and Runger, fourth

More information

Eleventh Problem Assignment

Eleventh Problem Assignment EECS April, 27 PROBLEM (2 points) The outcomes of successive flips of a particular coin are dependent and are found to be described fully by the conditional probabilities P(H n+ H n ) = P(T n+ T n ) =

More information

18.600: Lecture 32 Markov Chains

18.600: Lecture 32 Markov Chains 18.600: Lecture 32 Markov Chains Scott Sheffield MIT Outline Markov chains Examples Ergodicity and stationarity Outline Markov chains Examples Ergodicity and stationarity Markov chains Consider a sequence

More information

STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008

STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008 Name STA 624 Practice Exam 2 Applied Stochastic Processes Spring, 2008 There are five questions on this test. DO use calculators if you need them. And then a miracle occurs is not a valid answer. There

More information

No books, notes, any calculator, or electronic devices are allowed on this exam. Show all of your steps in each answer to receive a full credit.

No books, notes, any calculator, or electronic devices are allowed on this exam. Show all of your steps in each answer to receive a full credit. MTH 309-001 Fall 2016 Exam 1 10/05/16 Name (Print): PID: READ CAREFULLY THE FOLLOWING INSTRUCTION Do not open your exam until told to do so. This exam contains 7 pages (including this cover page) and 7

More information

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013 University of New Mexico Department of Computer Science Final Examination CS 561 Data Structures and Algorithms Fall, 2013 Name: Email: This exam lasts 2 hours. It is closed book and closed notes wing

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Friday, Feb 8, 2013 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition).

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition). IE 330 Seat # Open book and notes 10 minutes Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition) Cover page and eight pages of exam No calculator ( points) I have, or will, complete

More information

Interlude: Practice Final

Interlude: Practice Final 8 POISSON PROCESS 08 Interlude: Practice Final This practice exam covers the material from the chapters 9 through 8. Give yourself 0 minutes to solve the six problems, which you may assume have equal point

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

NAME : Math 20. Final Exam August 27, Prof. Pantone

NAME : Math 20. Final Exam August 27, Prof. Pantone NAME : Math 0 Final Exam August 7, 07 Prof. Pantone Instructions: This is a closed book exam and no notes are allowed. You are not to provide or receive help from any outside source during the exam except

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

18.440: Lecture 33 Markov Chains

18.440: Lecture 33 Markov Chains 18.440: Lecture 33 Markov Chains Scott Sheffield MIT 1 Outline Markov chains Examples Ergodicity and stationarity 2 Outline Markov chains Examples Ergodicity and stationarity 3 Markov chains Consider a

More information

IE 5112 Final Exam 2010

IE 5112 Final Exam 2010 IE 5112 Final Exam 2010 1. There are six cities in Kilroy County. The county must decide where to build fire stations. The county wants to build as few fire stations as possible while ensuring that there

More information

MATH 446/546 Test 2 Fall 2014

MATH 446/546 Test 2 Fall 2014 MATH 446/546 Test 2 Fall 204 Note the problems are separated into two sections a set for all students and an additional set for those taking the course at the 546 level. Please read and follow all of these

More information

Special Mathematics. Tutorial 13. Markov chains

Special Mathematics. Tutorial 13. Markov chains Tutorial 13 Markov chains "The future starts today, not tomorrow." Pope John Paul II A sequence of trials of an experiment is a nite Markov chain if: the outcome of each experiment is one of a nite set

More information

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains AM : Introduction to Optimization Models and Methods Lecture 7: Markov Chains Yiling Chen SEAS Lesson Plan Stochastic process Markov Chains n-step probabilities Communicating states, irreducibility Recurrent

More information

Practice problems. Practice problems. Example. Grocery store example 2 dairies. Creamwood Cheesedale. Next week This week Creamwood 1 Cheesedale 2

Practice problems. Practice problems. Example. Grocery store example 2 dairies. Creamwood Cheesedale. Next week This week Creamwood 1 Cheesedale 2 Practice problems Grocery store example dairies Next week This week Creamwood Cheesedale Creamwood Cheesedale.7.4.6 Example.7.7.4.7.4.6.7.6.4.6 Practice problems Probability of purchasing Cheesedale in

More information

0.1 Naive formulation of PageRank

0.1 Naive formulation of PageRank PageRank is a ranking system designed to find the best pages on the web. A webpage is considered good if it is endorsed (i.e. linked to) by other good webpages. The more webpages link to it, and the more

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

Monopoly An Analysis using Markov Chains. Benjamin Bernard

Monopoly An Analysis using Markov Chains. Benjamin Bernard Monopoly An Analysis using Markov Chains Benjamin Bernard Columbia University, New York PRIME event at Pace University, New York April 19, 2017 Introduction Applications of Markov chains Applications of

More information

Markov Chains Absorption Hamid R. Rabiee

Markov Chains Absorption Hamid R. Rabiee Markov Chains Absorption Hamid R. Rabiee Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is (i.e., p ii = ). A

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 26 Spring 2006 Final Exam Wednesday, May 7, 8am am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 80 minutes to complete the final. The final consists of five

More information

Markov Chains. As part of Interdisciplinary Mathematical Modeling, By Warren Weckesser Copyright c 2006.

Markov Chains. As part of Interdisciplinary Mathematical Modeling, By Warren Weckesser Copyright c 2006. Markov Chains As part of Interdisciplinary Mathematical Modeling, By Warren Weckesser Copyright c 2006 1 Introduction A (finite) Markov chain is a process with a finite number of states (or outcomes, or

More information

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3

n(1 p i ) n 1 p i = 1 3 i=1 E(X i p = p i )P(p = p i ) = 1 3 p i = n 3 (p 1 + p 2 + p 3 ). p i i=1 P(X i = 1 p = p i )P(p = p i ) = p1+p2+p3 Introduction to Probability Due:August 8th, 211 Solutions of Final Exam Solve all the problems 1. (15 points) You have three coins, showing Head with probabilities p 1, p 2 and p 3. You perform two different

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

Markov Chains Absorption (cont d) Hamid R. Rabiee

Markov Chains Absorption (cont d) Hamid R. Rabiee Markov Chains Absorption (cont d) Hamid R. Rabiee 1 Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is 1 (i.e.,

More information

Math Homework 5 Solutions

Math Homework 5 Solutions Math 45 - Homework 5 Solutions. Exercise.3., textbook. The stochastic matrix for the gambler problem has the following form, where the states are ordered as (,, 4, 6, 8, ): P = The corresponding diagram

More information

Discrete Event Systems Solution to Exercise Sheet 6

Discrete Event Systems Solution to Exercise Sheet 6 Distributed Computing HS 2013 Prof. R. Wattenhofer / K.-T. Foerster, T. Langner, J. Seidel Discrete Event Systems Solution to Exercise Sheet 6 1 Soccer Betting a) The following Markov chain models the

More information

Math 381 Midterm Practice Problem Solutions

Math 381 Midterm Practice Problem Solutions Math 381 Midterm Practice Problem Solutions Notes: -Many of the exercises below are adapted from Operations Research: Applications and Algorithms by Winston. -I have included a list of topics covered on

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Monday, Feb 10, 2014 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

Question Points Score Total: 70

Question Points Score Total: 70 The University of British Columbia Final Examination - April 204 Mathematics 303 Dr. D. Brydges Time: 2.5 hours Last Name First Signature Student Number Special Instructions: Closed book exam, no calculators.

More information

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators.

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. IE 230 Seat # Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators. Score Final Exam, Spring 2005 (May 2) Schmeiser Closed book and notes. 120 minutes. Consider an experiment

More information

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes Math 309 Autumn 2015 Practice Final December 2015 Time Limit: 1 hour, 50 minutes Name (Print): ID Number: This exam contains 9 pages (including this cover page) and 8 problems. Check to see if any pages

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Page: Total Points: Score:

Page: Total Points: Score: Math 1130 Spring 2019 Sample Final B 4/29/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 14 pages (including this cover page) and 12 problems. Check to see if any

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

Math 416 Lecture 11. Math 416 Lecture 16 Exam 2 next time

Math 416 Lecture 11. Math 416 Lecture 16 Exam 2 next time Math 416 Lecture 11 Math 416 Lecture 16 Exam 2 next time Birth and death processes, queueing theory In arrival processes, the state only jumps up. In a birth-death process, it can either jump up or down

More information

56:171 Operations Research Final Exam December 12, 1994

56:171 Operations Research Final Exam December 12, 1994 56:171 Operations Research Final Exam December 12, 1994 Write your name on the first page, and initial the other pages. The response "NOTA " = "None of the above" Answer both parts A & B, and five sections

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

ISM206 Lecture, May 12, 2005 Markov Chain

ISM206 Lecture, May 12, 2005 Markov Chain ISM206 Lecture, May 12, 2005 Markov Chain Instructor: Kevin Ross Scribe: Pritam Roy May 26, 2005 1 Outline of topics for the 10 AM lecture The topics are: Discrete Time Markov Chain Examples Chapman-Kolmogorov

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 536 December, 00 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. You will have access to a copy

More information

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a WHEN IS A MAP POISSON N.G.Bean, D.A.Green and P.G.Taylor Department of Applied Mathematics University of Adelaide Adelaide 55 Abstract In a recent paper, Olivier and Walrand (994) claimed that the departure

More information

EE3901 A2001. Semiconductor Devices. Exam 1

EE3901 A2001. Semiconductor Devices. Exam 1 Name ECE Box # Problem Score Points 1 10 2 30 3 35 4 25 EE3901 A2001 Semiconductor Devices Exam 1 This is a closed book test! You are allowed one sheet (both sides) of notes. Note: Potentially useful reference

More information

Stochastic Modelling Unit 1: Markov chain models

Stochastic Modelling Unit 1: Markov chain models Stochastic Modelling Unit 1: Markov chain models Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 1 1 Stochastic Processes 2 Markov Chains 3 Poisson

More information

University of Illinois ECE 313: Final Exam Fall 2014

University of Illinois ECE 313: Final Exam Fall 2014 University of Illinois ECE 313: Final Exam Fall 2014 Monday, December 15, 2014, 7:00 p.m. 10:00 p.m. Sect. B, names A-O, 1013 ECE, names P-Z, 1015 ECE; Section C, names A-L, 1015 ECE; all others 112 Gregory

More information

Probabilistic Robotics, Sebastian Thrun, 2005 Page 36, 37. <1 x = nf ) =1/ 3 <1 x = f ) =1 p(x = f ) = 0.01 p(x = nf ) = 0.

Probabilistic Robotics, Sebastian Thrun, 2005 Page 36, 37. <1 x = nf ) =1/ 3 <1 x = f ) =1 p(x = f ) = 0.01 p(x = nf ) = 0. Probabilistic Robotics, Sebastian Thrun, 005 Page 36, 37 Method : Denote: z n : the sensor measurement in each time x: the state of the sensor f: the state of the sensor is faulty nf: the state of the

More information

MATH6 - Introduction to Finite Mathematics

MATH6 - Introduction to Finite Mathematics MATH6 - Introduction to Finite Mathematics Final Exam ANSWES June, 007. (6 points) Find the solution set for the following system: 3x y 8z+ 7t = x+ y z t = 3 x y 3z+ 3t =. 3 8 7 3 3 3 3 3 8 7 3 3 3 0 5

More information

Solutions to Practice Final Exam Math 203 December 2010

Solutions to Practice Final Exam Math 203 December 2010 Solutions to Practice Final Exam Math 203 December 2010 Throughout this exam, show all your work. Answers without justification will receive no credit. You may use a calculator; if you use a calculator

More information

Answers to selected exercises

Answers to selected exercises Answers to selected exercises A First Course in Stochastic Models, Henk C. Tijms 1.1 ( ) 1.2 (a) Let waiting time if passengers already arrived,. Then,, (b) { (c) Long-run fraction for is (d) Let waiting

More information

Exam 3 April 16, 2014

Exam 3 April 16, 2014 Exam 3 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Core Mathematics C12 SWANASH A Practice Paper Time: 2 hours 30 minutes Paper - E Year: 2017-2018 The formulae that you may need to answer some questions are found

More information

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague Sequential decision making under uncertainty Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 1 Version 1 February 21, 2006 60 points possible 1. (a) (3pts) Define what it means for a linear system to be inconsistent. Solution: A linear system is inconsistent

More information

CPSC 531 Systems Modeling and Simulation FINAL EXAM

CPSC 531 Systems Modeling and Simulation FINAL EXAM CPSC 531 Systems Modeling and Simulation FINAL EXAM Department of Computer Science University of Calgary Professor: Carey Williamson December 21, 2017 This is a CLOSED BOOK exam. Textbooks, notes, laptops,

More information

San Jose State University Department of Electrical Engineering. Exam 2 Solution. EE 098-MIT 6.002x Fall 2012

San Jose State University Department of Electrical Engineering. Exam 2 Solution. EE 098-MIT 6.002x Fall 2012 San Jose State University Department of Electrical Engineering Exam Solution EE 98-MIT 6.x Fall 1 losed Book, losed Notes, and no electronic devices. Instructions: There are six problems. Interpretation

More information

Without fully opening the exam, check that you have pages 1 through 10.

Without fully opening the exam, check that you have pages 1 through 10. MTH 234 Solutions to Exam 2 April 11th 216 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through

More information

Linear Algebra Solutions 1

Linear Algebra Solutions 1 Math Camp 1 Do the following: Linear Algebra Solutions 1 1. Let A = and B = 3 8 5 A B = 3 5 9 A + B = 9 11 14 4 AB = 69 3 16 BA = 1 4 ( 1 3. Let v = and u = 5 uv = 13 u v = 13 v u = 13 Math Camp 1 ( 7

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

ISyE 6650 Probabilistic Models Fall 2007

ISyE 6650 Probabilistic Models Fall 2007 ISyE 6650 Probabilistic Models Fall 2007 Homework 4 Solution 1. (Ross 4.3) In this case, the state of the system is determined by the weather conditions in the last three days. Letting D indicate a dry

More information

Chapter 5: Normal Probability Distributions

Chapter 5: Normal Probability Distributions Probability and Statistics Mrs. Leahy Chapter 5: Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution What is a Normal Distribution and a Normal

More information

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11.

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

57:022 Principles of Design II Midterm Exam #2 Solutions

57:022 Principles of Design II Midterm Exam #2 Solutions 57:022 Principles of Design II Midterm Exam #2 Solutions Part: I II III IV V Total Possible Pts: 20 15 12 16 12 75 PART ONE Indicate "+" if True and "O" if False: _+_a. If a component's lifetime has exponential

More information

MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 1 Tuesday, 7 February Multiple Choice Answers EXAMPLE A B C D E.

MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 1 Tuesday, 7 February Multiple Choice Answers EXAMPLE A B C D E. MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 1 Tuesday, 7 February 2017 Multiple Choice Answers EXAMPLE A B C D E Question Name: Section: Last 4 digits of student ID #: This exam has ten

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

Problem Points Problem Points Problem Points

Problem Points Problem Points Problem Points Name Signature Student ID# ------------------------------------------------------------------ Left Neighbor Right Neighbor 1) Please do not turn this page until instructed to do so. 2) Your name and signature

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

MTH 310, Section 001 Abstract Algebra I and Number Theory. Sample Midterm 1

MTH 310, Section 001 Abstract Algebra I and Number Theory. Sample Midterm 1 MTH 310, Section 001 Abstract Algebra I and Number Theory Sample Midterm 1 Instructions: You have 50 minutes to complete the exam. There are five problems, worth a total of fifty points. You may not use

More information

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID:

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID: Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam 1 2 3 4 5 6 7 8 9 10 7 questions. 1. [5+5] Let X and Y be independent exponential random variables where X has

More information

Multiple Choice Answers. MA 110 Precalculus Spring 2016 Exam 1 9 February Question

Multiple Choice Answers. MA 110 Precalculus Spring 2016 Exam 1 9 February Question MA 110 Precalculus Spring 2016 Exam 1 9 February 2016 Name: Section: Last 4 digits of student ID #: This exam has eleven multiple choice questions (five points each) and five free response questions (nine

More information