Sloppy derivations of Ito s formula and the Fokker-Planck equations

Size: px
Start display at page:

Download "Sloppy derivations of Ito s formula and the Fokker-Planck equations"

Transcription

1 Sloppy derivations of Ito s formula and the Fokker-Planck equations P. G. Harrison Department of Computing, Imperial College London South Kensington Campus, London SW7 AZ, UK pgh@doc.ic.ac.uk April 005 Abstract These steps get you Ito s formula and the Fokker-Planck forward and backward partial differential equations from the stochastic differential equation dx t µx t,tdt + σx t,tdw t, where W t is a Wiener process, using simple, intuitive steps. The derivations are not to be considered as rigorous but hopefully they give the gist. 1 Ito s chain rule When considering the stochastic differential equation sde dx t µx t,tdt + σx t,tdw t where W t is a Wiener process, i.e. has independent Normal increments W t W s with zero mean and variance t s, the magnitude of dw t is considered to be dt. This arises from consideration of the corresponding integral equation Wt X t X 0 + µx u,u + σx u,udw u 0 W 0 where the integrals are Lebesgue. 1 1 It can be shown that, over an interval [a, b], W t has infinite total variation, Wt has finite total variation W t has finite quadratic variation and that W p t has zero total variation for p>. The total variation of W t over [a, b], TVW t is the cumulative sum of its changes in value the number of feet of ascent plus the number of feet of descent on a mountain hike. TVW t lim sup n a t 1... t n b i1 n 1 W ti+1 W ti where t 1,...,t n is a partition of [a, b],t 1 a, t n b of size n 1. In fact this is one of the crucial properties that W t has to make the theory work. It can be generalised to continuous semi-martingales in M. In particular TVWt b a, which suggests that dw t has expectation dt. Moreover, the total quadratic variation of Wt is zero, which implies that dw t is dt w.p. one. 1

2 Now consider the function fx t,t. Expanding hopefully with no justification at all since we don t know properties about the infinitesimal random terms dx t nor about differentiation wrt a random variable, using Taylor s series, up to terms linear in dt gives df fx t+dt,t+dt fx t,t f f dt + dx t + 1 f t X t Xt dx t f t + µx t,t f + σx t,t f dt + σx t,t f dw t X t X t X t This is Ito s formula in differential form. Maybe it s most commonly known in this form because of the simple, if sloppy, derivation. A proper derivation obtains the integral form using precise definitions of Lebesgue integrals and probability measure. A good background reference on measure and probability is Kingman and Taylor s book CUP. The Fokker-Planck equation for the probability density The probability density function for the random variable X t can be obtained under appropriate conditions not investigated here by deriving a partial differential equation pde from the given sde. The time-dependent pdf, when it exists, is the function p defined by IPa<X t b X x b a px, t; x, dx for t, given that the state X x at time. Equivalently, px, t; x, dx IPx<X t x +dx X x We also define the random variable px, t X, which takes the value px, t; x, when X x. Similarly, looking backwards in time, we define the random variable px t x,, which also takes the value px, t; x, when X t x..1 The forward equation In integral form, Ito s equation is f fx t,t fx, + + µx u,u f + σx u,u f X u + σx u,u f dw u X u X u Let fx, u δx x for some given x, so that E[fX u,u X ] pz,u X δz xdz px, u X

3 Taking the expectation of Ito s integral equation, conditional on X,we now obtain px, t X px, X dz pz,u X δz x µz,u + σz,u z δz x z since f 0 and every increment dw u in any limiting approximation to the integral has zero expectation and is independent of X. Changing the order of integration, integrating by parts three times and abbreviating pz,u X by p, µz,u byµ and σz,u byσ, we obtain: giving px, t X px, X px, t X px, X [ ] pµδz x dz δz x µp z ] 1 + [p σ δz x z [ t 1 σ p ] δz x z + dz δz x 1 σ p z + t t µx, upx, u X σx, u px, u X 1 where differentiation with respect to x, a fixed value, is interpreted as differentiation w.r.t. z, evaluated at the point z x. Considering,x,x as fixed, px, t X px, px, u X t X and so px, t X t or px, t; x, t + µx, upx, u X + µx, upx, u; x, This is the Fokker-Planck forward equation. 1 σx, u px, u X 0 1 σx, u px, u; x, 0 3

4 . The backward equation The Fokker-Planck backward equation is obtained by taking fx u,u px, t X u for given x, t. Multiplying Ito s differential equation at time ubyδx u x and taking expectations gives: rx,udfx,u fx rx,u,u + µx,u fx,u + σx,u fx,u where the differentiation with respect to x is interpreted as differentiation of fz,u w.r.t. z, evaluated at the point z x similarly to the case with x above. Thus, since fx,u 0: dfx,u Integrating, we find µx,u fx,u + σx,u px, t; x,t px, t; x, px, t; x,u µx,u px, t; x,u + σx,u and so px, t; x, + µx, px, t; x, + σx, This is the Fokker-Planck backward equation..3 A direct derivation fx,u px, t; x,u px, t; x, 0 As an alternative approach, consider px, t + τ; x, dx px, t; x, + p t τ dx for small τ in the standard cf. CTMCs Chapman-Kolmogorov equation: px, t + τ; x, dx dx The expresion in square brackets is py, t; x, px, t + τ; y, tdy px,t; x, [ px, t + τ; x,tdx ] d IPx<X t+τ x +dx X t x IPx<X t +dx t x +dx X t x IP0 < +µx,tτ + σx,tdw t dx X t x µx,tτ µx,tτ dx IP < dw t + σx,t σx,t σx,t dx µx,tτ σx,t w σx,t 4

5 where w is the pdf of the given random variable dw t, which has mean 0 and variance τ. Omitting the arguments of µ and σ, let so that Then we get: z g µτ σ g 1 z µτ + σz px, t + τ; x, dx dx px g 1 z,t; x, σg g 1 wzdz z Now we expand the functions in the integrand in Taylor series up to order τ. Note that the integrals zwzdz 0 z wzdz τ these being the mean and variance of dw t for time increment dt τ. Thus we need not consider powers of z higher than z. Recalling that the functions µ and σ are abbreviations for µx,t and σx,t respectively, where g 1 z, we obtain: σg 1+τµ + µτσ /σ 1+τµ + σ z For brevity, we omit the last three arguments of p, these always being t; x,. We find, to first order in τ where the subscripts x denote partial differentiation w.r.t. x at argument x, t, e.g. µ x µx,t : px g 1 z p p x g 1 z+p xx g 1 z / p p x µτ +σ σ x z+p xx σ z / and since Hence, σg 1 1 σ x z µ x τ +σσ xx + σ xz σg 1 + σ x z + µ x τ σ xx z px g 1 z σg p p x µτ + σz σσ x z +p xx σ z / 1 σ x z µ x τ +σ xx z / p p x σ + pσ x z p x µ + pµ x τ +4p x σσ x + p xx σ + pσ xx z / to first order in τ p σp x z µp x τ +σ p xx z / 5

6 Performing the integral then yields: px, t + τ; x, dx dx p + p t τ dx p µp x τ +σ p xx τ/ which gives the forward equation. To obtain the backward equation, we use and px, t; x, τdx px, t; x, τdx The expresion in square brackets is px, t; x, p τ dx [ px +, ; x, τdx ] px, t; x +, d IPx + <X x + +dx X τ x IPx + <X τ+τ x + +dx X τ x IP <µx, ττ + σx, τdw τ +dx µτ µτ IP < dw t σ τ + dx σ σ dx µτ σ w σ where µ and σ are evaluated at µx, τ and σx, τ respectively crucially, not functions of, which greatly simplifies things. Now let z µτ/σ so that dz d /σ. The integral then becomes, to first order in τ, px, t; x + µτ + σz, wzdz px, t; x, + p µτ + σz+1 p σ z wzdz px, t; x, + p µτ + 1 p σ τ and so the px, t; x, cancels and, comparing coefficients of τ, we are left with p p µ + 1 p σ which is the Fokker-Planck backwards equation. 3 Conclusion These notes are intended to take the mystery out of stochastic calculus by showing, by simple methods, how some of the main starting points can be reached. As a result, there is no rigour in the derivations, for example limiting operations are interchanged freely and the singularities of the Dirac 6

7 delta-function and its derivatives are ignored obliviously. Rigorous analyses tend to be elegant and apply very generally we only used the fact that the increments dw t are independent, have zero mean and variance equal to the time-increment, unbounded linear variation, finite quadratic variation and zero higher-order variation not that they are also Normally distributed. However, they are hard to grasp by the non-specialist. At the other extreme, practical applications tend to be presented with little or no justification and leave the reader in the dark. These notes are an attempt to bridge the gap. Comments will be very welcome. 7

Kolmogorov Equations and Markov Processes

Kolmogorov Equations and Markov Processes Kolmogorov Equations and Markov Processes May 3, 013 1 Transition measures and functions Consider a stochastic process {X(t)} t 0 whose state space is a product of intervals contained in R n. We define

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Jingyi Zhu Department of Mathematics University of Utah zhu@math.utah.edu Collaborator: Marco Avellaneda (Courant

More information

Week 9 Generators, duality, change of measure

Week 9 Generators, duality, change of measure Week 9 Generators, duality, change of measure Jonathan Goodman November 18, 013 1 Generators This section describes a common abstract way to describe many of the differential equations related to Markov

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 197 MATH 56A SPRING 8 STOCHASTIC PROCESSES 197 9.3. Itô s formula. First I stated the theorem. Then I did a simple example to make sure we understand what it says. Then I proved it. The key point is Lévy s

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

On continuous time contract theory

On continuous time contract theory Ecole Polytechnique, France Journée de rentrée du CMAP, 3 octobre, 218 Outline 1 2 Semimartingale measures on the canonical space Random horizon 2nd order backward SDEs (Static) Principal-Agent Problem

More information

TMS165/MSA350 Stochastic Calculus, Lecture on Applications

TMS165/MSA350 Stochastic Calculus, Lecture on Applications TMS165/MSA35 Stochastic Calculus, Lecture on Applications In this lecture we demonstrate how statistical methods such as the maximum likelihood method likelihood ratio estimation can be applied to the

More information

M4A42 APPLIED STOCHASTIC PROCESSES

M4A42 APPLIED STOCHASTIC PROCESSES M4A42 APPLIED STOCHASTIC PROCESSES G.A. Pavliotis Department of Mathematics Imperial College London, UK LECTURE 1 12/10/2009 Lectures: Mondays 09:00-11:00, Huxley 139, Tuesdays 09:00-10:00, Huxley 144.

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula Group 4: Bertan Yilmaz, Richard Oti-Aboagye and Di Liu May, 15 Chapter 1 Proving Dynkin s formula

More information

How to Use Calculus Like a Physicist

How to Use Calculus Like a Physicist How to Use Calculus Like a Physicist Physics A300 Fall 2004 The purpose of these notes is to make contact between the abstract descriptions you may have seen in your calculus classes and the applications

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Geometric projection of stochastic differential equations

Geometric projection of stochastic differential equations Geometric projection of stochastic differential equations John Armstrong (King s College London) Damiano Brigo (Imperial) August 9, 2018 Idea: Projection Idea: Projection Projection gives a method of systematically

More information

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1].

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1]. 1 Introduction The content of these notes is also covered by chapter 3 section B of [1]. Diffusion equation and central limit theorem Consider a sequence {ξ i } i=1 i.i.d. ξ i = d ξ with ξ : Ω { Dx, 0,

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Lecture 12: Diffusion Processes and Stochastic Differential Equations

Lecture 12: Diffusion Processes and Stochastic Differential Equations Lecture 12: Diffusion Processes and Stochastic Differential Equations 1. Diffusion Processes 1.1 Definition of a diffusion process 1.2 Examples 2. Stochastic Differential Equations SDE) 2.1 Stochastic

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2)

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Statistical analysis is based on probability theory. The fundamental object in probability theory is a probability space,

More information

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion Brownian Motion An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Background We have already seen that the limiting behavior of a discrete random walk yields a derivation of

More information

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2 B8.3 Mathematical Models for Financial Derivatives Hilary Term 18 Solution Sheet In the following W t ) t denotes a standard Brownian motion and t > denotes time. A partition π of the interval, t is a

More information

Research Article A Necessary Characteristic Equation of Diffusion Processes Having Gaussian Marginals

Research Article A Necessary Characteristic Equation of Diffusion Processes Having Gaussian Marginals Abstract and Applied Analysis Volume 01, Article ID 598590, 9 pages doi:10.1155/01/598590 Research Article A Necessary Characteristic Equation of Diffusion Processes Having Gaussian Marginals Syeda Rabab

More information

The Pedestrian s Guide to Local Time

The Pedestrian s Guide to Local Time The Pedestrian s Guide to Local Time Tomas Björk, Department of Finance, Stockholm School of Economics, Box 651, SE-113 83 Stockholm, SWEDEN tomas.bjork@hhs.se November 19, 213 Preliminary version Comments

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA AND ALEKSANDAR MIJATOVIĆ Abstract. We develop a general approach to the Policy Improvement Algorithm (PIA) for stochastic control problems

More information

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle?

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? Scott Hottovy shottovy@math.arizona.edu University of Arizona Applied Mathematics October 7, 2011 Brown observes a particle

More information

Introduction to Random Diffusions

Introduction to Random Diffusions Introduction to Random Diffusions The main reason to study random diffusions is that this class of processes combines two key features of modern probability theory. On the one hand they are semi-martingales

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Transition Density Function and Partial Di erential Equations

Transition Density Function and Partial Di erential Equations Transition Density Function and Partial Di erential Equations In this lecture Generalised Functions - Dirac delta and heaviside Transition Density Function - Forward and Backward Kolmogorov Equation Similarity

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Stochastic Calculus. Kevin Sinclair. August 2, 2016 Stochastic Calculus Kevin Sinclair August, 16 1 Background Suppose we have a Brownian motion W. This is a process, and the value of W at a particular time T (which we write W T ) is a normally distributed

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Inverse Langevin approach to time-series data analysis

Inverse Langevin approach to time-series data analysis Inverse Langevin approach to time-series data analysis Fábio Macêdo Mendes Anníbal Dias Figueiredo Neto Universidade de Brasília Saratoga Springs, MaxEnt 2007 Outline 1 Motivation 2 Outline 1 Motivation

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

Terminology and notation

Terminology and notation Roberto s Notes on Integral Calculus Chapter 1: Indefinite integrals Section Terminology and notation For indefinite integrals What you need to know already: What indefinite integrals are. Indefinite integrals

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

(B(t i+1 ) B(t i )) 2

(B(t i+1 ) B(t i )) 2 ltcc5.tex Week 5 29 October 213 Ch. V. ITÔ (STOCHASTIC) CALCULUS. WEAK CONVERGENCE. 1. Quadratic Variation. A partition π n of [, t] is a finite set of points t ni such that = t n < t n1

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES Contents 1. Continuous random variables 2. Examples 3. Expected values 4. Joint distributions

More information

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ)

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ) Chapter 4 Stochastic Processes 4. Definition In the previous chapter we studied random variables as functions on a sample space X(ω), ω Ω, without regard to how these might depend on parameters. We now

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

1 Introduction. 2 Measure theoretic definitions

1 Introduction. 2 Measure theoretic definitions 1 Introduction These notes aim to recall some basic definitions needed for dealing with random variables. Sections to 5 follow mostly the presentation given in chapter two of [1]. Measure theoretic definitions

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Itô s formula Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Itô s formula Probability Theory

More information

Math Refresher Course

Math Refresher Course Math Refresher Course Columbia University Department of Political Science Fall 2007 Day 2 Prepared by Jessamyn Blau 6 Calculus CONT D 6.9 Antiderivatives and Integration Integration is the reverse of differentiation.

More information

1.1 Definition of BM and its finite-dimensional distributions

1.1 Definition of BM and its finite-dimensional distributions 1 Brownian motion Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as he observed a chaotic motion of particles suspended in water. The rigorous mathematical model of BM

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

Lecture 21: Physical Brownian Motion II

Lecture 21: Physical Brownian Motion II Lecture 21: Physical Brownian Motion II Scribe: Ken Kamrin Department of Mathematics, MIT May 3, 25 Resources An instructie applet illustrating physical Brownian motion can be found at: http://www.phy.ntnu.edu.tw/jaa/gas2d/gas2d.html

More information

Rough paths methods 4: Application to fbm

Rough paths methods 4: Application to fbm Rough paths methods 4: Application to fbm Samy Tindel Purdue University University of Aarhus 2016 Samy T. (Purdue) Rough Paths 4 Aarhus 2016 1 / 67 Outline 1 Main result 2 Construction of the Levy area:

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information

Stochastic Calculus Made Easy

Stochastic Calculus Made Easy Stochastic Calculus Made Easy Most of us know how standard Calculus works. We know how to differentiate, how to integrate etc. But stochastic calculus is a totally different beast to tackle; we are trying

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

Generalized Gaussian Bridges of Prediction-Invertible Processes

Generalized Gaussian Bridges of Prediction-Invertible Processes Generalized Gaussian Bridges of Prediction-Invertible Processes Tommi Sottinen 1 and Adil Yazigi University of Vaasa, Finland Modern Stochastics: Theory and Applications III September 1, 212, Kyiv, Ukraine

More information

Cores for generators of some Markov semigroups

Cores for generators of some Markov semigroups Cores for generators of some Markov semigroups Giuseppe Da Prato, Scuola Normale Superiore di Pisa, Italy and Michael Röckner Faculty of Mathematics, University of Bielefeld, Germany and Department of

More information

Lecture on Parameter Estimation for Stochastic Differential Equations. Erik Lindström

Lecture on Parameter Estimation for Stochastic Differential Equations. Erik Lindström Lecture on Parameter Estimation for Stochastic Differential Equations Erik Lindström Recap We are interested in the parameters θ in the Stochastic Integral Equations X(t) = X(0) + t 0 µ θ (s, X(s))ds +

More information

Simulation methods for stochastic models in chemistry

Simulation methods for stochastic models in chemistry Simulation methods for stochastic models in chemistry David F. Anderson anderson@math.wisc.edu Department of Mathematics University of Wisconsin - Madison SIAM: Barcelona June 4th, 21 Overview 1. Notation

More information

Chapter 2. Brownian dynamics. 2.1 Introduction

Chapter 2. Brownian dynamics. 2.1 Introduction Chapter 2 Brownian dynamics 2.1 Introduction The equations of physics are deterministic rather than stochastic in nature. Stochastic differential equations are used to approximate reality. They are introduced

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES STEFAN TAPPE Abstract. In a work of van Gaans (25a) stochastic integrals are regarded as L 2 -curves. In Filipović and Tappe (28) we have shown the connection

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Stochastic Integration.

Stochastic Integration. Chapter Stochastic Integration..1 Brownian Motion as a Martingale P is the Wiener measure on (Ω, B) where Ω = C, T B is the Borel σ-field on Ω. In addition we denote by B t the σ-field generated by x(s)

More information

Stochastic Modelling in Climate Science

Stochastic Modelling in Climate Science Stochastic Modelling in Climate Science David Kelly Mathematics Department UNC Chapel Hill dtbkelly@gmail.com November 16, 2013 David Kelly (UNC) Stochastic Climate November 16, 2013 1 / 36 Why use stochastic

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

Continuous Time Finance

Continuous Time Finance Continuous Time Finance Lisbon 2013 Tomas Björk Stockholm School of Economics Tomas Björk, 2013 Contents Stochastic Calculus (Ch 4-5). Black-Scholes (Ch 6-7. Completeness and hedging (Ch 8-9. The martingale

More information

lim n C1/n n := ρ. [f(y) f(x)], y x =1 [f(x) f(y)] [g(x) g(y)]. (x,y) E A E(f, f),

lim n C1/n n := ρ. [f(y) f(x)], y x =1 [f(x) f(y)] [g(x) g(y)]. (x,y) E A E(f, f), 1 Part I Exercise 1.1. Let C n denote the number of self-avoiding random walks starting at the origin in Z of length n. 1. Show that (Hint: Use C n+m C n C m.) lim n C1/n n = inf n C1/n n := ρ.. Show that

More information

Parameter estimation Conditional risk

Parameter estimation Conditional risk Parameter estimation Conditional risk Formalizing the problem Specify random variables we care about e.g., Commute Time e.g., Heights of buildings in a city We might then pick a particular distribution

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Homogenization with stochastic differential equations

Homogenization with stochastic differential equations Homogenization with stochastic differential equations Scott Hottovy shottovy@math.arizona.edu University of Arizona Program in Applied Mathematics October 12, 2011 Modeling with SDE Use SDE to model system

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Topic 5.1: Line Element and Scalar Line Integrals

Topic 5.1: Line Element and Scalar Line Integrals Math 275 Notes Topic 5.1: Line Element and Scalar Line Integrals Textbook Section: 16.2 More Details on Line Elements (vector dr, and scalar ds): http://www.math.oregonstate.edu/bridgebook/book/math/drvec

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Ehsan Azmoodeh University of Vaasa Finland 7th General AMaMeF and Swissquote Conference September 7 1, 215 Outline

More information

Stochastic Processes and Advanced Mathematical Finance

Stochastic Processes and Advanced Mathematical Finance Steven R. Dunbar Department of Mathematics 23 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-13 http://www.math.unl.edu Voice: 42-472-3731 Fax: 42-472-8466 Stochastic Processes and Advanced

More information

Chapter 4. Continuous Random Variables 4.1 PDF

Chapter 4. Continuous Random Variables 4.1 PDF Chapter 4 Continuous Random Variables In this chapter we study continuous random variables. The linkage between continuous and discrete random variables is the cumulative distribution (CDF) which we will

More information

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER GERARDO HERNANDEZ-DEL-VALLE arxiv:1209.2411v1 [math.pr] 10 Sep 2012 Abstract. This work deals with first hitting time densities of Ito processes whose

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information