Symbolic Computation of Lax Pairs of Integrable Nonlinear Partial Difference Equations on Quad-Graphs

Size: px
Start display at page:

Download "Symbolic Computation of Lax Pairs of Integrable Nonlinear Partial Difference Equations on Quad-Graphs"

Transcription

1 Symbolic Computation of Lax Pairs of Integrable Nonlinear Partial Difference Equations on Quad-Graphs Willy Hereman & Terry Bridgman Department of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado, U.S.A. home/whereman/ Symbolic FoCM 11 Budapest, Hungary Wednesday, July 13, 2011, 17:50

2 Collaborators Prof. Reinout Quispel Dr. Peter H. van der Kamp La Trobe University, Melbourne, Australia Ph.D. student at CSM: Terry Bridgman Research supported in part by NSF under Grant CCF This presentation is made in TeXpower

3 Outline What are Lax pairs of nonlinear PDEs and DDEs What are nonlinear P Es? Classification of integrable nonlinear P Es in 2D Lax pair of nonlinear P Es Examples of Lax pair of nonlinear P Es (including systems) Algorithm (Nijhoff 2001, Bobenko & Suris 2001) Software demonstration Additional examples Conclusions and future work

4 What are Lax Pair for Nonlinear PDEs? Historical example: Korteweg-de Vries equation u t + αuu x + u xxx = 0 Key idea: Replace the nonlinear PDE with a compatible linear system: ( ) ψ xx αu λ ψ = 0 ψ t = 4ψ xxx αuψ x 1 2 αu xψ + a(t)ψ ψ is eigenfunction; λ is constant eigenvalue (λ x = λ t = 0).

5 Lax Operators Replace a completely integrable nonlinear PDE by Lψ = λψ ψ t = Mψ Require compatibility of both equations L t ψ + Lψ t = λψ t L t ψ + LMψ = λmψ = Mλψ = MLψ Hence, L t ψ + (LM ML)ψ = O

6 Lax Equation: L t + [L, M] = 0 with commutator [L, M] = LM ML, and where = means evaluated on the PDE. Example: Lax operators for the KdV equation L = 2 x 2 + α 6 ui M = 4 3 x 3 α 2 ( u x + ) x u + a(t)i Note: L t ψ + [L, M]ψ = α 6 (u t + αuu x + u xxx ) ψ

7 Lax Pair for PDEs Matrices (AKNS) Express compatibility of Ψ x = X Ψ where Ψ = ψ 1 ψ 2. ψ N Ψ t = T Ψ, X and T are N N matrices. Lax equation (zero-curvature equation): X t T x + [X, T] = 0 with commutator [X, T] = XT TX

8 Example: Lax matrices for KdV equation 0 1 X = λ 1 6 αu 0 T = a(t) αu x 4λ 1 3 αu 4λ αλu α2 u αu 2x a(t) 1 6 αu x Lax pairs are not unique. A second Lax pair: X = ik 1 6 αu 1 ik T= 4ik iαku 1 6 αu x 4k αu ) 1 (2k 3 α 2 u 1 6 αu2 +iku x 1 2 u xx 4ik3 1 3 iαku+ 1 6 αu x

9 Equivalence under Gauge Transformations Lax pairs are equivalent under a gauge transformation: If (X, T) is a Lax pair then so is ( X, T) with X = GXG 1 + G x G 1 T = GTG 1 + G t G 1 G is arbitrary invertible matrix and Ψ = GΨ. Thus, X t T x + [ X, T] = 0

10 Example: For the KdV equation 0 1 X = λ 1 6 αu 0 and X = ik 1 6 αu 1 ik Here, X = GXG 1 and T = GTG 1 with where λ = k 2. G = i k 1 1 0

11 Peter D. Lax (1926-)

12 Reasons to compute a Lax pair Compatible linear system is the starting point for application of the IST. Describe the time evolution of the scattering data Indicator for complete integrability of the PDE. Zero-curvature representation of the PDE. Some Lax pairs lead to conservation laws. Discover families of completely integrable PDEs. Question: How to find a Lax pair of a completely integrable PDE? Answer: There is no completely systematic method.

13 Lax Pair of Nonlinear DDEs Operators Example: Kac-van Moerbeke (Volterra) lattice u n = u n (u n 1 u n+1 ) Key idea: Replace the nonlinear DDE with a compatible linear system: Formulation 1: L n ψ n = λψ n ψ n = M n ψ n Lax equation: L n + [L n, M n ] = 0 with commutator [L n, M n ] = L n M n M n L n

14 Example: Lax operator for KvM equation L n = 2 u n S + u n 1 S 1 and M n = u n+1 un S 2 1 un 1 un 2 S 2 4 S is the forward shift operator Sf n = f n+1 S k f n = f n+k S 1 f n = f n 1 S 1 is the backward shift operator

15 Formulation 2: L n ψ n = ψ n+1 ψ n = M n ψ n Lax equation: L n + L n Mn M n+1 Ln = 0 Conversion: Ln = 1 λ SL n and M n = M n original equation L n + [L n, M n ] = 0 target equation L n +S L n S 1 Mn M n Ln =0 L n +S L n S 1 Mn M n Ln =0 L n + [L n, M n ] = 0

16 Lax Pair of Nonlinear DDEs Matrices Formulation 1: X n ψ n = λψ n T n ψ n = ψ n Lax equation (zero-curvature equation): Ẋ n ψ n + [X n, T n ] = 0 Formulation 2: X n ψ n = ψ n+1 T n ψ n = ψ n Lax equation (zero-curvature equation): X n + X n Tn T n+1 Xn = 0

17 Example: Lax matrices for KvM equation X n = 1 u n T n = λ 2 u n 1 λ 0 λu n 1 λ 2 u n 1 Lax pairs are not unique. A second Lax pair: X n = λ u n 1 0 T n = λ2 + u n λ λu n u n 1

18 Part I Scalar Nonlinear Lattices

19 What are nonlinear P Es? Nonlinear maps with two (or more) lattice points! Some origins: full discretizations of PDEs discrete dynamical systems in 2 dimensions superposition principle (Bianchi permutability) for Bäcklund transformations between 3 solutions (2 parameters) of a completely integrable PDE Example: discrete potential Korteweg-de Vries (pkdv) equation (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0

20 Notation: u is dependent variable or field (scalar case) n and m are lattice points p and q are parameters For brevity, (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (x, x 1, x 2, x 12 ) Alternate notations (in the literature): (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u, ũ, û, ˆũ) (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u 00, u 10, u 01, u 11 ) discrete pkdv equation: (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0

21 (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 x 2 = u n,m+1 p x 12 = u n+1,m+1 q q x = u n,m p x 1 = u n+1,m

22 Concept of Consistency Around the Cube Superposition of Bäcklund transformations between 4 solutions x, x 1, x 2, x 3 (3 parameters: p, q, k)

23 x 23 x 123 x 2 q k x 3 x 12 x 13 x p x 1

24 Introduce a third lattice variable l View u as dependent on three lattice points: n, m, l. So, x = u n,m is replaced by x = u n,m,l Moves in three directions: n n + 1 over distance p m m + 1 over distance q l l + 1 over distance k (spectral parameter) Require that the same lattice holds on front, bottom, and left face of the cube Require consistency for the computation of x 123 = u n+1,m+1,l+1

25 x 23 x 123 x 2 q k x 3 x 12 x 13 x p x 1

26 Verification of Consistency Around the Cube Example: discrete pkdv equation Equation on front face of cube: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 Solve for x 12 = x p2 q 2 x 1 x 2 Compute x 123 : x 12 x 123 = x 3 p2 q 2 x 13 x 23 Equation on floor of cube: (x x 13 )(x 1 x 3 ) p 2 + k 2 = 0 Solve for x 13 = x p2 k 2 x 1 x 3 Compute x 123 : x 13 x 123 = x 2 p2 k 2 x 12 x 23

27 Equation on left face of cube: (x x 23 )(x 3 x 2 ) k 2 + q 2 = 0 Solve for x 23 = x q2 k 2 x 2 x 3 Compute x 123 : x 23 x 123 = x 1 q2 k 2 x 12 x 13 Verify that all three coincide: x 123 =x 1 q2 k 2 x 12 x 13 =x 2 p2 k 2 x 12 x 23 =x 3 p2 q 2 Upon substitution of x 12, x 13, and x 23 : x 13 x 23 x 123 = p2 x 1 (x 2 x 3 ) + q 2 x 2 (x 3 x 1 ) + k 2 x 3 (x 1 x 2 ) p 2 (x 2 x 3 ) + q 2 (x 3 x 1 ) + k 2 (x 1 x 2 ) Consistency around the cube is satisfied!

28 Tetrahedron property x 123 = p2 x 1 (x 2 x 3 ) + q 2 x 2 (x 3 x 1 ) + k 2 x 3 (x 1 x 2 ) p 2 (x 2 x 3 ) + q 2 (x 3 x 1 ) + k 2 (x 1 x 2 ) is independent of x. Connects x 123 to x 1, x 2 and x 3. x 23 x 123 x 2 x 3 x 12 q k x 13 x p x 1

29 Classification of 2D scalar nonlinear P Es Adler, Bobenko, Suris (ABS) 2003, 2007 Consider a family P Es: Q(x, x 1, x 2, x 12 ; p, q) = 0 Assumptions (ABS 2003): 1. Affine linear Q(x, x 1, x 2, x 12 ; p, q) = a 1 xx 1 x 2 x 12 + a 2 xx 1 x a 14 x 2 + a 15 x 12 + a Invariant under D 4 (symmetries of square) Q(x, x 1, x 2, x 12 ; p, q) = ɛq(x, x 2, x 1, x 12 ; q, p) ɛ, σ = ±1 3. Consistency around the cube = σq(x 1, x, x 12, x 2 ; p, q)

30 Result of the ABS Classification List H H1 (x x 12 )(x 1 x 2 ) + q p = 0 H2 (x x 12 )(x 1 x 2 )+(q p)(x+x 1 +x 2 +x 12 )+q 2 p 2 =0 H3 p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) + δ(p 2 q 2 ) = 0

31 List A A1 p(x+x 2 )(x 1 +x 12 ) q(x+x 1 )(x 2 +x 12 ) δ 2 pq(p q) = 0 A2 (q 2 p 2 )(xx 1 x 2 x ) + q(p 2 1)(xx 2 + x 1 x 12 ) p(q 2 1)(xx 1 + x 2 x 12 ) = 0

32 List Q Q1 p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+δ 2 pq(p q) = 0 Q2 p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+pq(p q) (x+x 1 +x 2 +x 12 ) pq(p q)(p 2 pq+q 2 )=0 Q3 (q 2 p 2 )(xx 12 +x 1 x 2 )+q(p 2 1)(xx 1 +x 2 x 12 ) p(q 2 1)(xx 2 +x 1 x 12 ) δ2 4pq (p2 q 2 )(p 2 1)(q 2 1)=0

33 Q4 (mother) Hietarinta s Parametrization sn(α + β; k) (x 1 x 2 + xx 12 ) sn(α; k) (xx 1 + x 2 x 12 ) sn(β; k) (xx 2 + x 1 x 12 ) + sn(α; k) sn(β; k) sn(α + β; k)(1 + k 2 xx 1 x 2 x 12 )=0 where sn(α; k) is the Jacobi elliptic sine function with modulus k. Other parametrizations (Adler, Nijhoff, Viallet) are given in the literature.

34 Lax Pair of Scalar Nonlinear P Es Replace the nonlinear P E by ψ 1 = Lψ (recall ψ 1 = ψ n+1,m ) ψ 2 = Mψ (recall ψ 2 = ψ n,m+1 ) For scalar P Es, L, M are 2 2 matrices; ψ = f Express compatibility: g ψ 12 = L 2 ψ 2 = L 2 Mψ ψ 12 = M 1 ψ 1 = M 1 Lψ Lax equation: L 2 M M 1 L = 0

35 Equivalence under Gauge Transformations Lax pairs are equivalent under a gauge transformation If (L, M) is a Lax pair then so is (L, M) with L = G 1 LG 1 M = G 2 MG 1 where G is non-singular matrix and φ = Gψ Proof: Trivial verification that (L 2 M M 1 L) φ = 0 (L 2 M M 1 L) ψ = 0

36 Example 1: Discrete pkdv Equation (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 H1 after p 2 p, q 2 q Lax operators: L = tl c = t M = sm c = s with t = s = 1 or t = 1 and s = 1 DetMc = x p2 k 2 xx 1 1 x 1 x q2 k 2 xx 2 1 x 2 DetLc = 1 k 2 p 2 1. Here, t 2 k 2 q 2 t s s 1 = 1.

37 Note: L 2 M M 1 L = ( (x x 12 )(x 1 x 2 ) p 2 + q 2 ) N with L = M = x p2 k 2 xx 1 1 x 1 N = x q2 k 2 xx 2 1 x 2 1 x 1 + x 2 0 1

38 Example 2: Discrete modified KdV Equation p(xx 2 x 1 x 12 ) q(xx 1 x 2 x 12 ) = 0 H3 for δ = 0 and x x or x 12 x 12 Lax operators: with t = 1 x 1 t= 1 DetLc = L = t M = s px kxx 1 k px 1 qx kxx 2 k qx 2 and s = 1 x 2, or t = s = 1 x, or 1 and s= 1 (p 2 k 2 )xx 1 DetMc = 1 (q 2 k 2 )xx 2 Note: t 2 t s s 1 = x x 1 x x 2 = x 1 x 2.

39 Lax Pair Algorithm for Scalar P Es (Nijhoff 2001, Bobenko and Suris 2001) Applies to equations that are consistent on cube Example: Discrete pkdv Equation Step 1: Verify the consistency around the cube Use the equation on floor (x x 13 )(x 1 x 3 ) p 2 + k 2 = 0 to compute x 13 = x p2 k 2 x 1 x 3 = x 3x xx 1 +p 2 k 2 x 3 x 1 Use equation on left face (x x 23 )(x 3 x 2 ) k 2 + q 2 = 0 to compute x 23 = x q2 k 2 x 2 x 3 = x 3x xx 2 +q 2 k 2 x 3 x 2

40 x 23 x 123 x 2 x 12 q x 3 x 13 k x p x 1

41 Step 2: Homogenization Numerator and denominator of x 13 = x 3x xx 1 +p 2 k 2 x 3 x 1 and x 23 = x 3x xx 2 +q 2 k 2 x 3 x 2 are linear in x 3. Substitute x 3 = f g x 13 = xf+(p2 k 2 xx 1 )g f x 1 g into x 13 to get On the other hand, x 3 = f g x 13 = f 1 g 1. Thus, x 13 = f 1 g 1 = xf+(p2 k 2 xx 1 )g f x 1 g. Hence, f 1 = t ( xf + (p 2 k 2 xx 1 )g ) and g 1 = t (f x 1 g)

42 In matrix form f 1 = t g 1 x p2 k 2 xx 1 1 x 1 Matches ψ 1 = Lψ with ψ = f g f g Similarly, from x 23 = f 2 ψ 2 = f 2 = s g 2 g 2 = xf+(q2 k 2 xx 2 )g f x 2 g x q2 k 2 xx 2 1 x 2 f = Mψ. g

43 Therefore, L = t L c = t x p2 k 2 xx 1 1 x 1 M = s M c = s x q2 k 2 xx 2 1 x 2

44 Step 3: Determine t and s Substitute L = tl c, M = sm c into L 2 M M 1 L = 0 t 2 s(l c ) 2 M c s 1 t(m c ) 1 L c = 0 Solve the equation from the (2-1)-element for t 2t s s 1 = f(x, x 1, x 2, p, q,... ) If f factors as then try t= s= f = F(x, x 1, p, q,...)g(x, x 1, p, q,...) F(x, x 2, q, p,...)g(x, x 2, q, p,...) 1 F(x,x 1,...) or 1 G(x,x 1,...) and 1 F(x,x 2,...) or 1 G(x,x 2,...) No square roots needed!

45 Works for the following lattices: mkdv, H3 with δ = 0, Q1, Q3 with δ = 0, (α, β)-equation. Does not work for A1 and A2 equations! Needs further investigation! If f does not factor, apply determinant to get t 2 s det L c det (M c ) = 1 t s 1 det (L c ) 2 det M c A solution: t = 1 det Lc, s = 1 det Mc Always works but introduces square roots!

46 How to avoid square roots? Remedy: Apply a change of variables x = F (X) t 2 t s s 1 = f(f (X), F (X 1 ), F (X 2 ), p, q,... ) = F(X, X 1, p, q,...)g(x, X 1, p, q,...) F(X, X 2, q, p,...)g(x, X 2, q, p,...) Example 1: Q2 lattice t 2 s = q ( (x x1 ) 2 2p 2 (x + x 1 ) + p 4) t s 1 p ( (x x 2 ) 2 2q 2 (x + x 2 ) + q 4) = q ( (X + X 1 ) 2 p 2) ( (X X 1 ) 2 p 2) p ( (X + X 2 ) 2 q 2) ( (X X 2 ) 2 q 2) setting x = F (X) = X 2. Hence, x 1 = X 1 2, x 2 = X 2 2.

47 Example 2: Q3 lattice ( t 2 s = q(q2 1) 4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2) t s 1 p(p 2 1) ( 4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2) Set x = F (X) = δ cosh(x) then 4p 2 (x 2 +x 2 1) 4p(1+p 2 )xx 1 +δ 2 (1 p 2 ) 2 =δ 2 (p e X+X 1 )(p e (X+X1) )(p e X X 1 )(p e (X X1) ) = δ 2 (p cosh(x + X 1 )+sinh(x + X 1 )) (p cosh(x + X 1 ) sinh(x + X 1 )) (p cosh(x X 1 )+sinh(x X 1 )) (p cosh(x X 1 ) sinh(x X 1 ))

48 Part II Systems of Nonlinear Lattices

49 Lax Pair Algorithm Systems of P Es (Nijhoff 2001, Bobenko and Suris 2001) Applies to systems of equations that are consistent on cube! Example: Schwarzian-Boussinesq system z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Note: System has two single-edge equations and one full-face equation.

50 Edge equations require augmentation of system with additional shifted, edge equations. z 12 y 2 x 12 + x 2 = 0 z 12 y 1 x 12 + x 1 = 0 Edge equations will also provide additional constraints during homogenization (Step 2).

51 Step 1: Verify the consistency around the cube System of equations on front face: z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z 12 y 2 x 12 + x 2 = 0 z 12 y 1 x 12 + x 1 = 0 zy 12 (y 1 y 2 ) y(py 2 z 1 qy 1 z 2 ) = 0

52 Solve for x 12, y 12, and z 12 : x 12 = x 2y 1 x 1 y 2 y 1 y 2 y 12 = (x 2 x 1 )(qy 1 z 2 py 2 z 1 ) z(y 1 y 2 )(z 1 z 2 ) z 12 = x 2 x 1 y 1 y 2 Compute x 123, y 123, and z 123 : x 123 = x 23y 13 x 13 y 23 y 13 y 23 y 123 = py 23y 3 z 13 qy 13 y 3 z 23 z 3 (y 13 y 23 ) z 123 = x 23 x 13 y 13 y 23

53 System of equations on bottom face: z 1 y x 1 + x = 0 z 3 y x 3 + x = 0 zy 13 (y 1 y 3 ) y(py 3 z 1 ky 1 z 3 ) = 0 Solve for x 13, y 13, and z 13 : x 13 = x 3y 1 x 1 y 3 y 1 y 3 z 13 y 3 x 13 + x 3 = 0 z 13 y 1 x 13 + x 1 = 0 y 13 = (x 2 x 1 )(ky 1 z 3 py 3 z 1 ) z(y 1 y 3 )(z 1 z 2 ) z 13 = x 3 x 1 y 1 y 3

54 Compute x 123, y 123, and z 123 : x 123 = x 23y 12 x 12 y 23 y 12 y 23 y 123 = py 2y 23 z 12 ky 12 y 2 z 23 z 2 (y 12 y 23 ) z 123 = x 23 x 12 y 12 y 23

55 System of equations on left face: z 3 y x 3 + x = 0 z 2 y x 2 + x = 0 z 23 y 2 x 23 + x 2 = 0 z 23 y 3 x 23 + x 3 = 0 zy 23 (y 3 y 2 ) y(py 2 z 3 qy 3 z 2 ) = 0 Solve for x 23, y 23, and z 23 : x 23 = x 3y 2 x 2 y 3 y 2 y 3 y 23 = (x 2 x 1 )(ky 2 z 3 qy 3 z 2 ) z(y 2 y 3 )(z 1 z 2 ) z 23 = x 3 x 2 y 2 y 3

56 Compute x 123, y 123, and z 123 : x 123 = x 13y 12 x 12 y 13 y 12 y 13 y 123 = qy 1y 13 z 12 ky 1 y 12 z 13 z 1 (y 12 y 13 ) z 123 = x 13 x 12 y 12 y 13 Substitute x 12, y 12, y 12, x 13, y 13, z 13, x 23, y 23, z 23 into the above to get

57 x 123 = (pz 1(x 3 y 2 x 2 y 3 )+ qz 2 (x 1 y 3 x 3 y 1 )+ kz 3 (x 2 y 1 x 1 y 2 ) (pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 ) y 123 = pqy 3z 1 (x 2 x 1 )+kpy 2 z 1 (x 1 x 3 )+kqy 1 (x 3 z 2 x 1 z 2 +x 1 z 3 x 2 z 3 ) z 1 (pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 )) z 123 = z(z 1 z 2 )(x 3 (y 1 y 2 ) + x 1 (y 2 y 3 )+ x 2 (y 3 y 1 )) (x 1 x 2 )(pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 )) Answer is unique and independent of x and y. Tetrahedron property w.r.t. x, y only; not for z. Consistency around the cube is satisfied!

58 Step 2: Homogenization Observed that x 3, y 3 and z 3 appear linearly in numerators and denominators of x 13 = y 1(x + yz 3 ) y 3 (x + yz 1 ) y 1 y 3 y 13 = pyy 3z 1 kyy 1 z 3 z(y 1 y 3 ) z 13 = y(z 3 z 1 ) y 1 y 3 x 23 = y 2(x + yz 3 ) y 3 (x + yz 2 ) y 2 y 3 y 23 = qyy 3z 2 kyy 2 z 3 z(y 2 y 3 ) z 23 = y(z 3 z 2 ) y 2 y 3

59 Substitute x 3 = h H, y 3 = g G, and z 3 = f F. Use constraints (from left face edges) z 1 y x 1 + x = 0, z 2 y x 2 + x = 0 z 3 y x 3 + x = 0 Solve for x 3 = z 3 y + x (since x 3 appears linearly). Thus, x 3 = fy+f x F, y 3 = g G, and z 3 = f F.

60 Substitute x 3, y 3, z 3 into x 13, y 13, z 13 : x 13 = F gx F Gxy 1 fgyy 1 + F gyz 1 F (g Gy 1 ) y 13 = y(fgky 1 F gpz 1 ) F (g Gy 1 )z z 13 = Gy(F z 1 f) F (g Gy 1 ) Require that numerators and denominators are linear in f, F, g, and G. That forces G = F. Hence, x 3 = fy+f x F, y 3 = g F, and z 3 = f F.

61 Compute Hence, x 3 = fy + F x F y 3 = g F y 13 = g 1 F 1 z 3 = f F z 13 = f 1 F 1 x 13 = f 1y 1 + F 1 x 1 F 1 x 13 = fyy 1 + g(x + yz 1 ) F xy 1 g F y 1 = f 1y 1 + F 1 x 1 F 1 y 13 = y(fky 1 gpz 1 ) (g F y 1 )z = g 1 F 1 z 13 = y( f + F z 1) g F y 1 = f 1 F 1

62 Note that x 13 = fyy 1 + g(x + yz 1 ) F xy 1 g F y 1 = f 1y 1 + F 1 x 1 F 1 is automatically satisfied as a result of the relation x 3 = z 3 y + x. Write in matrix form: f 1 y 0 yz 1 ψ 1 = g 1 = t kyy 1 pyz 1 0 z z F y 1 f g F = Lψ Repeat the same steps for x 23, y 23, z 23 to obtain

63 ψ 2 = f 2 g 2 F 2 = t y 0 yz 2 kyy 2 qyz 2 0 z z 0 1 y 2 f g F = Mψ Therefore, y 0 yz 1 L = tl c = t kyy 1 pyz 1 0 z z 0 1 y 1 y 0 yz 2 M = sm c = s kyy 2 qyz 2 0 z z 0 1 y 2

64 Step 3: Determine t and s Substitute L = tl c, M = sm c into L 2 M M 1 L = 0 t 2 s(l c ) 2 M c s 1 t(m c ) 1 L c = 0 Solve the equation from the (2-1)-element: t 2t s s 1 = y 1 y 2. Thus, t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = z 3 y 2 y 1 z 1 and s = z 3 y 2 y 2 z 2.

65 Example 1: Discrete Boussinesq System (Tongas and Nijhoff 2005) z 1 xx 1 + y = 0 z 2 xx 2 + y = 0 (x 2 x 1 )(z xx 12 + y 12 ) p + q = 0 Lax operators: L = t x y p k xy 1 + x 1 z z x

66 x M = s y q k xy 2 + x 2 z z x with t = s = 1, or t = 1 3 p k and s = 1 Note: x 3 = f F, y 3 = g F, and ψ = 3 q k. f F, and t 2 t g s s 1 = 1.

67 Example 2: System of pkdv Lattices (Xenitidis and Mikhailov 2009) (x x 12 )(y 1 y 2 ) p 2 + q 2 = 0 (y y 12 )(x 1 x 2 ) p 2 + q 2 = 0 Lax operators: 0 0 tx t(p 2 k 2 xy 1 ) 0 0 t ty L = 1 T y T (p 2 k 2 x 1 y) 0 0 T T x 1 0 0

68 M = 0 0 sx s(q 2 k 2 xy 2 ) 0 0 s sy 2 Sy S(q 2 k 2 x 2 y) 0 0 S Sx with t = s = T = S = 1, or t T = 1 DetLc = 1 p k and s S = 1 DetMc = 1 q k. Note: t 2 T or T 2 T S s 1 = 1 and T 2 t s S 1 = 1, S S 1 = 1, with T = t T, S = s S. Here, x 3 = f F, y 3 = g G, and ψ = [f F g G]T.

69 Example 3: Discrete NLS System (Xenitidis and Mikhailov 2009) y 1 y 2 y ( (x 1 x 2 )y + p q ) = 0 ( x 1 x 2 + x 12 (x1 x 2 )y + p q ) = 0 Lax operators: L = t 1 x 1 y k p yx 1 M = s 1 x 2 y k q yx 2

70 with t = s = 1, or t= 1 DetLc = 1 α k and s= 1 β k. Note: x 3 = f F, ψ = f F, and t 2 t s s 1 = 1.

71 Example 4: Schwarzian Boussinesq Lattice (Nijhoff 1999) z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Lax operators: L = t y 0 yz 1 pyz 1 0 z z 0 1 y 1 kyy 1

72 M = s y 0 yz 2 pyz 2 0 z z 0 1 y 2 kyy 2 with t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = z 3 y 2 y 1 z 1 and s = z 3 y 2 y 2 z 2. Note: x 3 = fy+f x F, y 3 = g F, z 3 = f F, ψ = f g F, and t 2 t s s 1 = y 1 y 2.

73 Example 5: Toda modified Boussinesq System (Nijhoff 1992) y 12 (p q + x 2 x 1 ) (p 1)y 2 + (q 1)y 1 = 0 y 1 y 2 (p q z 2 + z 1 ) (p 1)yy 2 + (q 1)yy 1 = 0 y(p + q z x 12 )(p q + x 2 x 1 ) (p 2 + p + 1)y 1 + (q 2 + q + 1)y 2 = 0 Lax operators: 1+k+k k + p z 2 y L=t 0 p 1 (1 k)y p k x 1 k 2 y y 1 p 2 (y 1 y) ky(x 1 z)+yzx 1 y p(y 1+yx 1 +yz) y

74 1+k+k k + q z 2 y M =s 0 q 1 (1 k)y q k x 2 k 2 y y 2 q 2 (y 2 y) ky(x 2 z)+yzx 2 y q(y 2+yx 2 +yz) y with t = s = 1, or t = 3 y1 y and s = 3 y2 f Note: x 3 = f F, y 3 = g F, ψ = g, and t 2 t F y. s s 1 = 1.

75 Software Demonstration

76 Additional Examples Example 3: H1 equation (ABS classification) (x x 12 )(x 1 x 2 ) + q p = 0 Lax operators: L = t x p k xx 1 1 x 1 M = s x q k xx 2 1 x 2 with t = s = 1 or t = 1 k p and s = 1 k q Note: t 2 s t s 1 = 1.

77 Example 4: H2 equation (ABS 2003) (x x 12 )(x 1 x 2 )+(q p)(x+x 1 +x 2 +x 12 )+q 2 p 2 =0 Lax operators: L = t p k + x p2 k 2 + (p k)(x + x 1 ) xx 1 1 (p k + x 1 ) M = s with t = Note: t 2 t q k + x q2 k 2 + (q k)(x + x 2 ) xx 2 1 (q k + x 2 ) 1 and s = 1 2(k p)(p+x+x1 ) 2(k q)(q+x+x2 ) s s 1 = p+x+x 1 q+x+x 2.

78 Example 5: H3 equation (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) + δ(p 2 q 2 ) = 0 Lax operators: L = t kx ( δ(p 2 k 2 ) ) + pxx 1 p kx 1 M = s kx ( δ(q 2 k 2 ) ) + qxx 2 q kx 2 with t = Note: t 2 t 1 and s = 1 (p 2 k 2 )(δp+xx 1 ) (q 2 k 2 )(δq+xx 2 ) s s 1 = δp+xx 1 δq+xx 2.

79 Example 6: H3 equation (δ = 0) (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) = 0 Lax operators: L = t kx pxx 1 p kx 1 M = s kx qxx 2 q kx 2 with t = s = 1 x or t = 1 x 1 and s = 1 x 2 Note: t 2 s t s 1 = x x 1 x x 2 = x 1 x 2.

80 Example 7: Q1 equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+δ 2 pq(p q) = 0 Lax operators: L = t (p k)x 1 + kx p ( δ 2 ) k(p k) + xx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx q ( δ 2 ) k(q k) + xx 2 q ( ) (q k)x + kx 2 1 with t = δp±(x x 1 ) and s = 1 δq±(x x 2 ), 1 or t = k(p k)((δp+x x 1 )(δp x+x 1 )) and s = 1 k(q k)((δq+x x 2 )(δq x+x 2 )) Note: t 2 t s s 1 = q (δp+(x x 1 ))(δp (x x 1 )) p(δq+(x x 2 ))(δq (x x 2 )).

81 Example 8: Q1 equation (δ = 0) (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 ) = 0 which is the cross-ratio equation (x x 1 )(x 12 x 2 ) (x 1 x 12 )(x 2 x) = p q Lax operators: L = t (p k)x 1 + kx pxx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx qxx 2 q ( ) (q k)x + kx 2

82 Here, t 2 t or t = s s 1 = q(x x 1) 2 p(x x 2. So, t = 1 ) 2 x x 1 and s = 1 x x 2 1 and s = 1. k(k p)(x x1 ) k(k q)(x x2 )

83 Example 9: Q2 equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+pq(p q) (x+x 1 +x 2 +x 12 ) pq(p q)(p 2 pq+q 2 )=0 Lax operators: (k p)(kp x 1 )+kx L=t p ( k(k p)(k 2 kp+p 2 ) x x 1 )+xx 1 p ( ) (k p)(kp x)+kx 1 (k q)(kq x 2 )+kx M =s q ( k(k q)(k 2 kq+q 2 ) x x 2 )+xx 2 q ( ) (k q)(kq x)+kx 2

84 with t = 1 k(k p)((x x 1 ) 2 2p 2 (x+x 1 )+p 4 ) and s = 1 k(k q)((x x 2 ) 2 2q 2 (x+x 2 )+q 4 ) Note: t 2 t s = q ( (x x1 ) 2 2p 2 (x + x 1 ) + p 4) s 1 p ( (x x 2 ) 2 2q 2 (x + x 2 ) + q 4) = p ( (X + X 1 ) 2 p 2) ( (X X 1 ) 2 p 2) q ( (X + X 2 ) 2 q 2) ( (X X 2 ) 2 q 2) with x = X 2, and, consequently, x 1 = X 2 1, x 2 = X 2 2.

85 Example 10: Q3 equation (ABS 2003) (q 2 p 2 )(xx 12 +x 1 x 2 )+q(p 2 1)(xx 1 +x 2 x 12 ) p(q 2 1)(xx 2 +x 1 x 12 ) δ2 4pq (p2 q 2 )(p 2 1)(q 2 1)=0 Lax operators: 4kp ( p(k 2 1)x+(p 2 k 2 ) )x 1 L=t (p 2 1)(δ 2 k 2 δ 2 k 4 δ 2 p 2 +δ 2 k 2 p 2 4k 2 pxx 1 ) 4k 2 p(p 2 1) 4kp ( p(k 2 1)x 1 +(p 2 k 2 )x ) 4kq ( q(k 2 1)x+(q 2 k 2 ) )x 2 M=s (q 2 1)(δ 2 k 2 δ 2 k 4 δ 2 q 2 +δ 2 k 2 q 2 4k 2 qxx 2 ) 4k 2 q(q 2 1) 4kq ( q(k 2 1)x 2 +(q 2 k 2 )x )

86 with t= 1 2k p(k 2 1)(k 2 p 2 )(4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2 ) and s= 2k 1 q(k 2 1)(k 2 q 2 )(4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2 ).

87 Note: t 2 t s s 1 = q(q2 1) ( 4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x x 1 ) 2 4p(p 1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x x 2 ) 2 4q(q 1) 2 xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x+x 1 ) 2 4p(p+1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x+x 2 ) 2 4q(q+1) 2 xx 2 +δ 2 (1 q 2 ) 2)

88 where 4p 2 (x 2 +x 2 1) 4p(1+p 2 )xx 1 +δ 2 (1 p 2 ) 2 = δ 2 (p e X+X 1 )(p e (X+X1) )(p e X X 1 )(p e (X X1) ) = δ 2 (p cosh(x + X 1 )+sinh(x + X 1 )) (p cosh(x + X 1 ) sinh(x + X 1 )) (p cosh(x X 1 )+sinh(x X 1 )) (p cosh(x X 1 ) sinh(x X 1 )) with x = δ cosh(x), and, consequently, x 1 = δ cosh(x 1 ), x 2 = δ cosh(x 2 ).

89 Example 11: Q3 equation (δ) = 0 (ABS 2003) (q 2 p 2 )(xx 12 + x 1 x 2 ) + q(p 2 1)(xx 1 + x 2 x 12 ) p(q 2 1)(xx 2 + x 1 x 12 ) = 0 Lax operators: L=t (p2 k 2 )x 1 +p(k 2 1)x k(p 2 1)xx 1 (p 2 1)k ( (p 2 k 2 )x+p(k 2 ) 1)x 1 M =s (q2 k 2 )x 2 +q(k 2 1)x k(q 2 1)xx 2 (q 2 1)k ( (q 2 k 2 )x+q(k 2 ) 1)x 2

90 with t = 1 px x 1 and s = 1 qx x 2 or t = 1 px 1 x and s = 1 qx 2 x or t = 1 (k 2 1)(p 2 k 2 )(px x 1 )(px 1 x) and s = 1. (k 2 1)(q 2 k 2 )(qx x 2 )(qx 2 x) Note: t 2 t s s 1 = (q2 1)(px x 1 )(px 1 x) (p 2 1)(qx x 2 )(qx 2 x).

91 Example 12: (α, β) equation (Quispel 1983) ( (p α)x (p+β)x1 ) ( (p β)x2 (p+α)x 12 ) ( (q α)x (q+β)x 2 ) ( (q β)x1 (q+α)x 12 ) =0 Lax operators: L=t (p α)(p β)x+(k2 p 2 )x 1 (k α)(k β)xx 1 (k+α)(k+β) ( (p+α)(p+β)x 1 +(k 2 p 2 )x ) M =s (q α)(q β)x+(k2 q 2 )x 2 (k α)(k β)xx 2 (k+α)(k+β) ( (q+α)(q+β)x 2 +(k 2 q 2 )x )

92 with t = 1 (α p)x+(β+p)x 1 ) and s = 1 (α q)x+(β+q)x 2 ) or t = or t = 1 (β p)x+(α+p)x 1 ) and s = 1 (β q)x+(α+q)x 2 ) 1 (p 2 k 2 )((β p)x+(α+p)x 1)((α p)x+(β+p)x 1) and s = Note: t 2 t 1 (q 2 k 2 )((β q)x+(α+q)x 2)((α q)x+(β+q)x 2) s s 1 = ( (β p)x+(α+p)x 1)((α p)x+(β+p)x 1) ((β q)x+(α+q)x 2)((α q)x+(β+q)x 2).

93 Example 13: A1 equation (ABS 2003) p(x+x 2 )(x 1 +x 12 ) q(x+x 1 )(x 2 +x 12 ) δ 2 pq(p q) = 0 Q1 if x 1 x 1 and x 2 x 2 Lax operators: L = t (k p)x 1 + kx p ( δ 2 ) k(k p) + xx 1 p ( ) (k p)x + kx 1 M = s (k q)x 2 + kx q ( δ 2 ) k(k q) + xx 2 q ( ) (k q)x + kx 2

94 with t = 1 k(k p)((δp+x+x 1 )(δp x x 1 )) and s = 1 k(k q)((δq+x+x 2 )(δq x x 2 )) Note: t 2 t s s 1 = q (δp+(x+x 1 ))(δp (x+x 1 )) p(δq+(x+x 2 ))(δq (x+x 2 )). However, the choices t = cannot be used. 1 δp±(x+x 1 ) and s = 1 δq±(x+x 2 ) Needs further investigation!

95 Example 14: A2 equation (ABS 2003) (q 2 p 2 )(xx 1 x 2 x ) + q(p 2 1)(xx 2 + x 1 x 12 ) p(q 2 1)(xx 1 + x 2 x 12 ) = 0 Q3 with δ = 0 via Möbius transformation: x x, x 1 1 x 1, x 2 1 x 2, x 12 x 12, p p, q q Lax operators: k(p L=t 2 1)x ( p 2 k 2 +p(k 2 ) 1)xx 1 p(k 2 1)+(p 2 k 2 )xx 1 k(p 2 1)x 1 k(q M =s 2 1)x ( q 2 k 2 +q(k 2 ) 1)xx 2 q(k 2 1)+(q 2 k 2 )xx 2 k(q 2 1)x 2

96 with t = and s = 1 (k 2 1)(k 2 p 2 )(p xx 1 )(pxx 1 1) 1 (k 2 1)(k 2 q 2 )(q xx 2 )(qxx 2 1) Note: t 2 t s s 1 = (q2 1)(p xx 1 )(pxx 1 1) (p 2 1)(q xx 2 )(qxx 2 1). However, the choices t = 1 p xx 1 and s = 1 q xx 2 or t = 1 pxx 1 1 and s = 1 qxx 2 1 cannot be used. Needs further investigation!

97 Example 15: Discrete sine-gordon equation xx 1 x 2 x 12 pq(xx 12 x 1 x 2 ) 1 = 0 H3 with δ = 0 via extended Möbius transformation: x x, x 1 x 1, x 2 1 x 2, x 12 1 x 12, p 1 p, q q Discrete sine-gordon equation is NOT consistent around the cube, but has a Lax pair! Lax operators: L = p kx 1 M = k x px 1 x qx 2 x 1 kx x 2 k q

98 Example 16: Quotient-difference (QD) system x 2 y 2 xy 1 = 0 x 2 + y 12 x 1 y 1 = 0 QD system is defined on a stencil. QD system is NOT consistent around the cube, but has a Lax pair! Lax operators: L = y k y k x M = 1 k 0 k y k x + y 2

99 Conclusions and Future Work Mathematica code works for scalar P Es in 2D defined on quad-graphs (quadrilateral faces). Mathematica code is being extended to systems of P Es in 2D defined on quad-graphs. Code can be used to test (i) consistency around the cube and compute or test (ii) Lax pairs. Consistency around cube = P E has Lax pair. P E has Lax pair consistency around cube. Indeed, there are P Es with a Lax pair that are not consistent around the cube. Examples: discrete sine-gordon equation and QD system.

100 Avoid the determinant method to avoid square roots! Factorization plays an essential role! Hard case: Q4 equation (elliptic curves, Weierstraß functions) (Nijhoff 2001). Software cannot handle Q4. Future Work: Extension to more complicated systems of P Es, not necessarily defined on quad-graphs. Holy Grail: Find Lax pairs for P Es in 3D: Lax pair will be expressed in terms of tensors. Consistency around a hypercube. Examples: discrete Kadomtsev-Petviashvili (KP) equations.

101 Thank You

Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube

Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube Willy Hereman Department of Applied Mathematics and Statistics Colorado School of Mines Golden,

More information

Symbolic Computation of Lax Pairs of Nonlinear Systems of Partial Difference Equations using Multidimensional Consistency

Symbolic Computation of Lax Pairs of Nonlinear Systems of Partial Difference Equations using Multidimensional Consistency Symbolic Computation of Lax Pairs of Nonlinear Systems of Partial Difference Equations using Multidimensional Consistency Willy Hereman Department of Applied Mathematics and Statistics Colorado School

More information

SYMBOLIC COMPUTATION OF LAX PAIRS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS

SYMBOLIC COMPUTATION OF LAX PAIRS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS SYMBOLIC COMPUTATION OF LAX PAIRS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS by Terry J. Bridgman c Copyright by Terry J. Bridgman, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board

More information

Symmetry Reductions of Integrable Lattice Equations

Symmetry Reductions of Integrable Lattice Equations Isaac Newton Institute for Mathematical Sciences Discrete Integrable Systems Symmetry Reductions of Integrable Lattice Equations Pavlos Xenitidis University of Patras Greece March 11, 2009 Pavlos Xenitidis

More information

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS Proceedings of the International Conference on Difference Equations, Special Functions and Orthogonal Polynomials, World Scientific (2007 ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS ANASTASIOS

More information

SYMBOLIC VERIFICATION OF OPERATOR AND MATRIX LAX PAIRS FOR SOME COMPLETELY INTEGRABLE NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

SYMBOLIC VERIFICATION OF OPERATOR AND MATRIX LAX PAIRS FOR SOME COMPLETELY INTEGRABLE NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS SYMBOLIC VERIFICATION OF OPERATOR AND MATRIX LAX PAIRS FOR SOME COMPLETELY INTEGRABLE NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS by Jennifer Larue A thesis submitted to the Faculty and the Board of Trustees

More information

arxiv: v1 [nlin.si] 25 Mar 2009

arxiv: v1 [nlin.si] 25 Mar 2009 Linear quadrilateral lattice equations and multidimensional consistency arxiv:0903.4428v1 [nlin.si] 25 Mar 2009 1. Introduction James Atkinson Department of Mathematics and Statistics, La Trobe University,

More information

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y k p p Y < 5 # X < k < kk

More information

From discrete differential geometry to the classification of discrete integrable systems

From discrete differential geometry to the classification of discrete integrable systems From discrete differential geometry to the classification of discrete integrable systems Vsevolod Adler,, Yuri Suris Technische Universität Berlin Quantum Integrable Discrete Systems, Newton Institute,

More information

Continuous and Discrete Homotopy Operators with Applications in Integrability Testing. Willy Hereman

Continuous and Discrete Homotopy Operators with Applications in Integrability Testing. Willy Hereman Continuous and Discrete Homotopy Operators with Applications in Integrability Testing Willy Hereman Department of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado, USA http://www.mines.edu/fs

More information

Soliton solutions to the ABS list

Soliton solutions to the ABS list to the ABS list Department of Physics, University of Turku, FIN-20014 Turku, Finland in collaboration with James Atkinson, Frank Nijhoff and Da-jun Zhang DIS-INI, February 2009 The setting CAC The setting

More information

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations Proceedings of 0th International Conference in MOdern GRoup ANalysis 2005, 222 230 Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations A. TONGAS, D. TSOUBELIS and V. PAPAGEORGIOU

More information

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions Willy Hereman and Douglas Poole Department of Mathematical and Computer Sciences Colorado

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib, #4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0

More information

arxiv:nlin/ v1 [nlin.si] 17 Sep 2006

arxiv:nlin/ v1 [nlin.si] 17 Sep 2006 Seed and soliton solutions for Adler s lattice equation arxiv:nlin/0609044v1 [nlin.si] 17 Sep 2006 1. Introduction James Atkinson 1, Jarmo Hietarinta 2 and Frank Nijhoff 1 1 Department of Applied Mathematics,

More information

Conservation laws for difference equations. Peter Hydon (Surrey) Elizabeth Mansfield (Kent) Olexandr Rasin (Bar-Ilan) Tim Grant (Surrey)

Conservation laws for difference equations. Peter Hydon (Surrey) Elizabeth Mansfield (Kent) Olexandr Rasin (Bar-Ilan) Tim Grant (Surrey) Conservation laws for difference equations Peter Hydon (Surrey) Elizabeth Mansfield (Kent) Olexandr Rasin (Bar-Ilan) Tim Grant (Surrey) Introduction: What is a conservation law? What is a conservation

More information

Solving Nonlinear Wave Equations and Lattices with Mathematica. Willy Hereman

Solving Nonlinear Wave Equations and Lattices with Mathematica. Willy Hereman Solving Nonlinear Wave Equations and Lattices with Mathematica Willy Hereman Department of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado, USA http://www.mines.edu/fs home/whereman/

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F

More information

GEOMETRY OF DISCRETE INTEGRABILITY. THE CONSISTENCY APPROACH

GEOMETRY OF DISCRETE INTEGRABILITY. THE CONSISTENCY APPROACH GEOMETRY OF DISCRETE INTEGRABILITY. THE CONSISTENCY APPROACH Alexander I. Bobenko Institut für Mathematik, Fakultät 2, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany 1 ORIGIN

More information

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o V ()\\ ))? K K Y 6 96 Y - Y Y V 5 Z ( z x z \ - \ - - z - q q x x - x 5 9 Q \ V - - Y x 59 7 x x - Y - x - - x z - z x - ( 7 x V 9 z q &? - 9 - V ( x - - - V- [ Z x z - -x > -) - - > X Z z ( V V V

More information

Introduction to the Hirota bilinear method

Introduction to the Hirota bilinear method Introduction to the Hirota bilinear method arxiv:solv-int/9708006v1 14 Aug 1997 J. Hietarinta Department of Physics, University of Turku FIN-20014 Turku, Finland e-mail: hietarin@utu.fi Abstract We give

More information

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES ? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5

More information

group: A new connection

group: A new connection Schwarzian integrable systems and the Möbius group: A new connection March 4, 2009 History The Schwarzian KdV equation, SKdV (u) := u t u x [ uxxx u x 3 2 uxx 2 ] ux 2 = 0. History The Schwarzian KdV equation,

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G q G Y Y 29 8 $ 29 G 6 q )

More information

Integrability of P Es

Integrability of P Es Lecture 3 Integrability of P Es Motivated by the lattice structure emerging from the permutability/superposition properties of the Bäcklund transformations of the previous Lecture, we will now consider

More information

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN . Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN Joint work with ÜNAL GÖKTAŞ and Grant Erdmann Graduate Seminar Department

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X

More information

2. Examples of Integrable Equations

2. Examples of Integrable Equations Integrable equations A.V.Mikhailov and V.V.Sokolov 1. Introduction 2. Examples of Integrable Equations 3. Examples of Lax pairs 4. Structure of Lax pairs 5. Local Symmetries, conservation laws and the

More information

SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS. Willy Hereman

SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS. Willy Hereman . SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS Willy Hereman Dept. of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO q q P XXX F Y > F P Y ~ Y P Y P F q > ##- F F - 5 F F?? 5 7? F P P?? - - F - F F - P 7 - F P - F F % P - % % > P F 9 P 86 F F F F F > X7 F?? F P Y? F F F P F F

More information

New Exact Solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli Equation

New Exact Solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli Equation Applied Mathematical Sciences, Vol. 6, 2012, no. 12, 579-587 New Exact Solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli Equation Ying Li and Desheng Li School of Mathematics and System Science

More information

Multiple-Soliton Solutions for Extended Shallow Water Wave Equations

Multiple-Soliton Solutions for Extended Shallow Water Wave Equations Studies in Mathematical Sciences Vol. 1, No. 1, 2010, pp. 21-29 www.cscanada.org ISSN 1923-8444 [Print] ISSN 1923-8452 [Online] www.cscanada.net Multiple-Soliton Solutions for Extended Shallow Water Wave

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Willy Hereman Department of Applied Mathematics and Statistics Colorado School of Mines Golden, Colorado whereman@mines.edu

More information

Lax Pairs Graham W. Griffiths 1 City University, UK. oo0oo

Lax Pairs Graham W. Griffiths 1 City University, UK. oo0oo Lax Pairs Graham W. Griffiths 1 City University, UK. oo0oo Contents 1 Introduction 1 Lax pair analysis.1 Operator form........................................... Operator usage..........................................

More information

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Dr. Asmaa Al Themairi Assistant Professor a a Department of Mathematical sciences, University of Princess Nourah bint Abdulrahman,

More information

On Miura Transformations and Volterra-Type Equations Associated with the Adler Bobenko Suris Equations

On Miura Transformations and Volterra-Type Equations Associated with the Adler Bobenko Suris Equations Symmetry, Integrability and Geometry: Methods and Applications On Miura Transformations and Volterra-Type Equations Associated with the Adler Bobenko Suris Equations SIGMA 4 (2008), 077, 14 pages Decio

More information

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X

More information

Relativistic Collisions as Yang Baxter maps

Relativistic Collisions as Yang Baxter maps Relativistic Collisions as Yang Baxter maps Theodoros E. Kouloukas arxiv:706.0636v2 [math-ph] 7 Sep 207 School of Mathematics, Statistics & Actuarial Science, University of Kent, UK September 9, 207 Abstract

More information

Classification of integrable equations on quad-graphs. The consistency approach

Classification of integrable equations on quad-graphs. The consistency approach arxiv:nlin/0202024v2 [nlin.si] 10 Jul 2002 Classification of integrable equations on quad-graphs. The consistency approach V.E. Adler A.I. Bobenko Yu.B. Suris Abstract A classification of discrete integrable

More information

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n. - - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-

More information

MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS . MACSYMA PROGRAM FOR THE PAINLEVÉ TEST FOR NONLINEAR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS Willy Hereman Mathematics Department and Center for the Mathematical Sciences University of Wisconsin at

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

The first three (of infinitely many) conservation laws for (1) are (3) (4) D t (u) =D x (3u 2 + u 2x ); D t (u 2 )=D x (4u 3 u 2 x +2uu 2x ); D t (u 3

The first three (of infinitely many) conservation laws for (1) are (3) (4) D t (u) =D x (3u 2 + u 2x ); D t (u 2 )=D x (4u 3 u 2 x +2uu 2x ); D t (u 3 Invariants and Symmetries for Partial Differential Equations and Lattices Λ Ünal Göktaοs y Willy Hereman y Abstract Methods for the computation of invariants and symmetries of nonlinear evolution, wave,

More information

Symbolic Computation of Recursion Operators of Nonlinear Differential-Difference Equations

Symbolic Computation of Recursion Operators of Nonlinear Differential-Difference Equations Symbolic Computation of Recursion Operators of Nonlinear Differential-Difference Equations Ünal Göktaş and Willy Hereman Department of Computer Engineering Turgut Özal University, Keçiören, Ankara, Turkey

More information

The elliptic sinh-gordon equation in the half plane

The elliptic sinh-gordon equation in the half plane Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 25), 63 73 Research Article The elliptic sinh-gordon equation in the half plane Guenbo Hwang Department of Mathematics, Daegu University, Gyeongsan

More information

Generalized bilinear differential equations

Generalized bilinear differential equations Generalized bilinear differential equations Wen-Xiu Ma Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA Abstract We introduce a kind of bilinear differential

More information

(EccL HUt, Mosheim, p. 40.) AGC3. Rgnres. We shall now proceed to show two things:

(EccL HUt, Mosheim, p. 40.) AGC3. Rgnres. We shall now proceed to show two things: P K K P / P V -K VX - x K D K GFF G D G DKX X P P F D K 8 6 Y X X X P 9 ] K V Y 0 - D 00 D P F G K K PXVK P > G K K V v v v v PK P v D > v Y v D P > P v v - v x V D - ()zx q - & 9 K x K > % x v - - P x

More information

Determinant Expressions for Discrete Integrable Maps

Determinant Expressions for Discrete Integrable Maps Typeset with ps2.cls Full Paper Determinant Expressions for Discrete Integrable Maps Kiyoshi Sogo Department of Physics, School of Science, Kitasato University, Kanagawa 228-8555, Japan Explicit

More information

Rogue periodic waves for mkdv and NLS equations

Rogue periodic waves for mkdv and NLS equations Rogue periodic waves for mkdv and NLS equations Jinbing Chen and Dmitry Pelinovsky Department of Mathematics, McMaster University, Hamilton, Ontario, Canada http://dmpeli.math.mcmaster.ca AMS Sectional

More information

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]

More information

Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms

Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms Second Order Lax Pairs of Nonlinear Partial Differential Equations with Schwarzian Forms Sen-yue Lou a b c, Xiao-yan Tang a b, Qing-Ping Liu b d, and T. Fukuyama e f a Department of Physics, Shanghai Jiao

More information

FASHIONABLE VISITORS RECORD AND GUIDE

FASHIONABLE VISITORS RECORD AND GUIDE BB k k B QY G p xp 00 - b BX B G B0 k Q Y B G p xp 00 - b XK BK Y? G K 4 >pg - G - g kg p b q b 862 B v y- YG 5 B p b b ( G v ) B py By? b pp p b g ( y p yg Gg k b g B B GB B () Q GB ( v) v By " x p 350

More information

Symbolic Computation of. Conserved Densities and Fluxes for. Nonlinear Systems of Differential-Difference. Equations

Symbolic Computation of. Conserved Densities and Fluxes for. Nonlinear Systems of Differential-Difference. Equations Symbolic Computation of Conserved Densities and Fluxes for Nonlinear Systems of Differential-Difference Equations by Holly Eklund Copyright c 003 Holly Eklund, All rights reserved. ii A thesis submitted

More information

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r? ? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (

More information

Weak Lax pairs for lattice equations

Weak Lax pairs for lattice equations Weak Lax pairs for lattice equations Jarmo Hietarinta 1,2 and Claude Viallet 1 1 LPTHE / CNRS / UPMC, 4 place Jussieu 75252 Paris CEDEX 05, France 2 Department of Physics and Astronomy, University of Turku,

More information

E-001 ELECTRICAL SYMBOL LEGEND SCIENCE BUILDING RENOVATION H PD SEISMIC REQUIREMENTS FOR ELECTRICAL SYSTEMS PER IBC-2012/ASCE 7-10

E-001 ELECTRICAL SYMBOL LEGEND SCIENCE BUILDING RENOVATION H PD SEISMIC REQUIREMENTS FOR ELECTRICAL SYSTEMS PER IBC-2012/ASCE 7-10 8 9 0 G H G H G H H Y Z H H, H Z H F H XP: F, X, Q G H G 0/0 H XG 00' GH F P FH FX H 0 /" GH-, H G HGH F H H H, K HP G, XG H F F, Y H H, '-0" Y H H H F F- H H H GH- H Q, G P G /8" HGH K F Y Z H F Y Y-

More information

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Willy Hereman Department of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado whereman@mines.edu

More information

arxiv: v1 [nlin.si] 2 May 2017

arxiv: v1 [nlin.si] 2 May 2017 On decomposition of the ABS lattice equations and related Bäcklund transformations arxiv:705.00843v [nlin.si] 2 May 207 Danda Zhang, Da-jun Zhang Department of Mathematics, Shanghai University, Shanghai

More information

Symbolic-Algebraic Methods for Linear Partial Differential Operators (LPDOs) RISC Research Institute for Symbolic Computation

Symbolic-Algebraic Methods for Linear Partial Differential Operators (LPDOs) RISC Research Institute for Symbolic Computation Symbolic-Algebraic Methods for Linear Partial Differential Operators (LPDOs) Franz Winkler joint with Ekaterina Shemyakova RISC Research Institute for Symbolic Computation Johannes Kepler Universität.

More information

Algorithmic Computation of Symmetries, Invariants and Recursion Operators for Systems of. Nonlinear Evolution and Differential-Difference.

Algorithmic Computation of Symmetries, Invariants and Recursion Operators for Systems of. Nonlinear Evolution and Differential-Difference. Algorithmic Computation of Symmetries, Invariants and Recursion Operators for Systems of Nonlinear Evolution and Differential-Difference Equations by Ünal GÖKTAŞ A thesis submitted to the Faculty and the

More information

Module 2: First-Order Partial Differential Equations

Module 2: First-Order Partial Differential Equations Module 2: First-Order Partial Differential Equations The mathematical formulations of many problems in science and engineering reduce to study of first-order PDEs. For instance, the study of first-order

More information

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations Usama Al Khawaja, Department of Physics, UAE University, 24 Jan. 2012 First International Winter School on Quantum Gases

More information

A Short historical review Our goal The hierarchy and Lax... The Hamiltonian... The Dubrovin-type... Algebro-geometric... Home Page.

A Short historical review Our goal The hierarchy and Lax... The Hamiltonian... The Dubrovin-type... Algebro-geometric... Home Page. Page 1 of 46 Department of Mathematics,Shanghai The Hamiltonian Structure and Algebro-geometric Solution of a 1 + 1-Dimensional Coupled Equations Xia Tiecheng and Pan Hongfei Page 2 of 46 Section One A

More information

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011 Direct Method of Construction of Conservation Laws for Nonlinear Differential Equations, its Relation with Noether s Theorem, Applications, and Symbolic Software Alexei F. Cheviakov University of Saskatchewan,

More information

Elliptic integrable lattice systems

Elliptic integrable lattice systems Elliptic integrable lattice systems Workshop on Elliptic integrable systems, isomonodromy problems, and hypergeometric functions Hausdorff Center for Mathematics, Bonn, July 21-25, 2008 Frank Nijhoff University

More information

arxiv: v2 [math-ph] 24 Feb 2016

arxiv: v2 [math-ph] 24 Feb 2016 ON THE CLASSIFICATION OF MULTIDIMENSIONALLY CONSISTENT 3D MAPS MATTEO PETRERA AND YURI B. SURIS Institut für Mathemat MA 7-2 Technische Universität Berlin Str. des 17. Juni 136 10623 Berlin Germany arxiv:1509.03129v2

More information

Integration of Bi-Hamiltonian Systems by Using the Dressing Method

Integration of Bi-Hamiltonian Systems by Using the Dressing Method Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 319 324 Integration of Bi-Hamiltonian Systems by Using the Dressing Method Yuriy BERKELA Carpathian Biosphere Reserve, Rakhiv,

More information

Two dimensional manifolds

Two dimensional manifolds Two dimensional manifolds We are given a real two-dimensional manifold, M. A point of M is denoted X and local coordinates are X (x, y) R 2. If we use different local coordinates, (x, y ), we have x f(x,

More information

Theorem 6.1 The addition defined above makes the points of E into an abelian group with O as the identity element. Proof. Let s assume that K is

Theorem 6.1 The addition defined above makes the points of E into an abelian group with O as the identity element. Proof. Let s assume that K is 6 Elliptic curves Elliptic curves are not ellipses. The name comes from the elliptic functions arising from the integrals used to calculate the arc length of ellipses. Elliptic curves can be parametrised

More information

PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >

PanHomc'r I'rui;* :.>r '.a'' W»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 > 5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Lecture Notes Dr. Q. M. Zaigham Zia Assistant Professor Department of Mathematics COMSATS Institute of Information Technology Islamabad, Pakistan ii Contents 1 Lecture 01

More information

Soliton Solutions of Noncommutative Integrable Systems

Soliton Solutions of Noncommutative Integrable Systems Soliton Solutions of Noncommutative Integrable Systems by Craig M Sooman A thesis submitted to the Faculty of Information and Mathematical Sciences at the University of Glasgow for the degree of Doctor

More information

Extra Problems and Examples

Extra Problems and Examples Extra Problems and Examples Steven Bellenot October 11, 2007 1 Separation of Variables Find the solution u(x, y) to the following equations by separating variables. 1. u x + u y = 0 2. u x u y = 0 answer:

More information

e y [cos(x) + i sin(x)] e y [cos(x) i sin(x)] ] sin(x) + ey e y x = nπ for n = 0, ±1, ±2,... cos(nπ) = ey e y 0 = ey e y sin(z) = 0,

e y [cos(x) + i sin(x)] e y [cos(x) i sin(x)] ] sin(x) + ey e y x = nπ for n = 0, ±1, ±2,... cos(nπ) = ey e y 0 = ey e y sin(z) = 0, Worked Solutions 83 Chapter 3: Power Series Solutions II: Generalizations Theory 34 a Suppose that e z = 0 for some z = x + iy Then both the real imaginary parts of e z must be zero, e x cos(y) = 0 e x

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch. HOMEWORK From Dieter -3, -4, 3-7 Module #3 Transformation of stresses in 3-D READING LIST DIETER: Ch., pp. 7-36 Ch. 3 in Roesler Ch. in McClintock and Argon Ch. 7 in Edelglass The Stress Tensor z z x O

More information

arxiv: v2 [nlin.si] 9 Aug 2017

arxiv: v2 [nlin.si] 9 Aug 2017 Whitham modulation theory for the Kadomtsev-Petviashvili equation Mark J. Ablowitz 1 Gino Biondini 23 and Qiao Wang 2 1 Department of Applied Mathematics University of Colorado Boulder CO 80303 2 Department

More information

-P" -p. and V n = a n + ft\ (1.2)

-P -p. and V n = a n + ft\ (1.2) R. S. Melham School of Mathematical Sciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 27 Australia {Submitted November 1997-Final Revision April 1998) 1. INTRODUCTION Define the sequences

More information

THE LAX PAIR FOR THE MKDV HIERARCHY. Peter A. Clarkson, Nalini Joshi & Marta Mazzocco

THE LAX PAIR FOR THE MKDV HIERARCHY. Peter A. Clarkson, Nalini Joshi & Marta Mazzocco Séminaires & Congrès 14, 006, p. 53 64 THE LAX PAIR FOR THE MKDV HIERARCHY by Peter A. Clarkson, Nalini Joshi & Marta Mazzocco Abstract. In this paper we give an algorithmic method of deriving the Lax

More information

SIGNATURES OVER FINITE FIELDS OF GROWTH PROPERTIES FOR LATTICE EQUATIONS

SIGNATURES OVER FINITE FIELDS OF GROWTH PROPERTIES FOR LATTICE EQUATIONS SIGNATURES OVER FINITE FIELDS OF GROWTH PROPERTIES FOR LATTICE EQUATIONS JOHN A. G. ROBERTS 1, DINH T. TRAN 1,2 Abstract. We study integrable lattice equations and their perturbations over finite fields.

More information

Linear Algebra Review (Course Notes for Math 308H - Spring 2016)

Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Dr. Michael S. Pilant February 12, 2016 1 Background: We begin with one of the most fundamental notions in R 2, distance. Letting (x 1,

More information

Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures

Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian Structures Jinghan Meng University

More information

Symmetry classification of KdV-type nonlinear evolution equations

Symmetry classification of KdV-type nonlinear evolution equations arxiv:nlin/0201063v2 [nlin.si] 16 Sep 2003 Symmetry classification of KdV-type nonlinear evolution equations F. Güngör Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University,

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

An Introduction to Linear Matrix Inequalities. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

An Introduction to Linear Matrix Inequalities. Raktim Bhattacharya Aerospace Engineering, Texas A&M University An Introduction to Linear Matrix Inequalities Raktim Bhattacharya Aerospace Engineering, Texas A&M University Linear Matrix Inequalities What are they? Inequalities involving matrix variables Matrix variables

More information

Linearization of Second-Order Ordinary Dif ferential Equations by Generalized Sundman Transformations

Linearization of Second-Order Ordinary Dif ferential Equations by Generalized Sundman Transformations Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 051, 11 pages Linearization of Second-Order Ordinary Dif ferential Equations by Generalized Sundman Transformations Warisa

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

Presentation for the Visiting Committee & Graduate Seminar SYMBOLIC COMPUTING IN RESEARCH. Willy Hereman

Presentation for the Visiting Committee & Graduate Seminar SYMBOLIC COMPUTING IN RESEARCH. Willy Hereman Presentation for the Visiting Committee & Graduate Seminar SYMBOLIC COMPUTING IN RESEARCH Willy Hereman Dept. of Mathematical and Computer Sciences Colorado School of Mines Golden, CO 80401-1887 Monday,

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation

Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation Commun. Theor. Phys. 55 (0) 949 954 Vol. 55, No. 6, June 5, 0 Infinite Sequence Soliton-Like Exact Solutions of ( + )-Dimensional Breaking Soliton Equation Taogetusang,, Sirendaoerji, and LI Shu-Min (Ó

More information

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding - G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8

More information