Properties of Second Generation High Temperature Superconductor

Size: px
Start display at page:

Download "Properties of Second Generation High Temperature Superconductor"

Transcription

1 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.1 Properties of Second Generation High Temperature Superconductor J. Qi, D. T. Tran, A. Wadlington, B. Badger, B. Hayhurst, and M. J. Madsen Department of Physics, Wabash College, Crawfordsville, IN (Dated: December 15, 2014) In this paper we reported the on-axis magnetic field of two superconducting loops of wire, one soldered and one connected by tape. Our measurements indicate that the magnetic field, created by flux pinning in the type-ii superconducting wire, is consistent with a magnetic quadrupole. Also, the magnetic field for the soldered and tape-connected wire show the same on-axis field maps. This is evidence that the soldered loop does not make a complete superconducting current loop.

2 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.2 I. INTRODUCTION The science about superconductor is always a promising research area. With the recently development in the type-ii superconductor, we now have the superconducting material whose critical temperature is much higher than the original type I superconductor. Researches about pulse-field magnetization [2][3][4] indicate that a current could be induced through a type-ii superconducting loop through flux pinning. However, there is not much research we find that investigates the structure of induced current inside the superconducting loop. In this experiment, we examine the structure of the induced current in a soldered superconducting loop. The z-component of magnetic field on the axis of the loop is mapped and compared with classical wire models. II. THEORETICAL MODEL Using Lenz s Law, if there is a nonzero magnetic flux goes through the closed loop, we can induce a current in the loop by expel the magnetic flux through the loop. If we do that while the wire loop is superconducting, because theoretically there is no electrical resistance in the loop, the induced current in the loop will stay forever. Flux pinning also has effect on the magnetic flux since the loop is a thin Type II superconductor. It is more clearly shown when we took out the magnet out from the center of the loop when it is in its superconducting state. The loop was pinned in space with the magnet, leading to the fact that the removal of the magnet from the center of the loop involves keeping the loop from levitating with the magnet out of the liquid nitrogen chamber[1]. Because the superconducting is in circular shape around the center. We came up with two models for the induced current: a simply circular current (Fig.(1)(a)) and two circular current with currents in opposite directions (Fig.(1)(b)). The z-components of magnetic field on the axis of those two current configurations are easy two calculate. For configuration (a), and for configuration (b), B z = µ 0 2πR 2 I, (1) 4π (z 2 + R 2 ) 3/2 B z = µ 0 4π 2πR 2 I ( h + z) 2 + R 2 ) 3/2 µ 0 4π 2πR 2 I. (2) ((h + z) 2 + R 2 ) 3/2

3 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.3 where z is position in the z direction, r is the radius of the current loop, h is half of the separation between two current loops and I is the current in the loop. With Eq.(1) and Eq.(2), the z-component magnetic field maps are as Fig.(1)(c). It is obviously that the shape of the field maps are different. The field map for the single circular current is an even function around the center, but the field map for the double circular currents is an odd function around the center. FIG. 1. (a) Model for a single circular loop around a center, where I is the current, r is the radius of the circular loop; (b) Model for a double circular with two parts 2h apart and carrying same currents in opposite direction; (c) The expected graph for the z-component of magnetic field on the center axis of two configuration: the blue one is from setup (a) and the red one is from the setup (b) III. EXPERIMENTS PROCEDURE To compare the field map with our model, we first built two configurations of classical wires (Fig.(2)) according to our model. By putting current in the wire loops by power supply, we measure the on-axis z-component magnetic field map for both configurations. we put the two configurations of classical wires in the same conditions and created two on-axis field maps. Those magnetic field maps will be used to compare with those from superconducting loops. The next step for our experiment is to build the loop of superconducting wires. For the first one, we soldered the two ends of wire together to make a loop (Fig.(3)(b)). For

4 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.4 FIG. 2. Two configuration of wires from according to our model. (a) is a single circular wire loop with 10 turns and (b) is a double circular wire loop with currents in opposite directions, 5 turns. We built those two loop using magnetic wire. The currents going through both wires are 1A. the second, we use nonconducting tape to put the two ends of superconductor together (Fig.(3)(c)). However, for investigating quadruple field behaviour later, we let the two ends of superconductor do not touch each other(fig.(3)). In this way, we built circular shaped open loops of superconductor for three different width (1 cm, 0.6 cm, and 0.3cm). FIG. 3. The setup for constructing the superconducting wire loop with solder or tape to connect two ends. Part (b) use soldering to connect two ends of superconducting wire together, and part (c) use tape to connect but separate two ends. Then we put the superconducting wire and a strong magnet in a container and then use liquid nitrogen to cool the system below T c. Since the temperature of the liquid nitrogen is significantly below T c, we just need to wait for about less than a minute to make sure the wire become superconducting. After the wire has reached its superconduting state, we

5 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.5 removed the magnet so there would be a current induced in the loop (Fig.4). FIG. 4. Process to induce the current in the superconducting wire by magnet: a) Put the magnet at the center of the superconductor wire and put them together into liquid nitrogen; b) Remove the magnet, but hold the superconducting wire at its original position; c) After removing the magnet, there will be current induced in the superconducting wire, and we can use a magnetic probe to measure the magnetic field of this current. Then, we use a magnetic probe to test the persistence of the current (Fig.4). To achieve this, we measure the magnetic field from the current in the loop. As we measured the magnetic field for a sufficiently long time (roughly more than 10 3 seconds), we saw the current will stay for sufficient time for our later measurement of field maps. After trying with three width of superconducting loops and measure the magnetic field, we found that the 1cm width wire give a most significant and persistent reading for the magnetic field. Thus, for the following experiments, we just used the 1cm loop. As we are interested in is the structure of the current in the superconducting loop we then measure the on axis z-component magnetic field maps of the superconducting current wire. To achieve this, we build to an apparatus (Fig.(5)) to measure the z component of magnetic field along the axis the current loop. We measured the magnetic field, ranging from 5cm to 5cm, from the center of the current loop. With those data, we built a field map for the superconducting current loop: the change of z component of magnetic field versus the change in z direction distance from the center. We used this process to generate

6 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.6 FIG. 5. Apparatus for measuring the z component of magnetic field of the current loop with different position on z axis. Part (a) is the top view and part (b) is the side view of the apparatus. While measuring the z-component magnetic field on the axis of the superconducting wire, we put the wire loop inside the liquid nitrogen area and put insert a magnetic probe in the center hole. The magnetic probe is labelled with 0.5cm marks, such that we can record the position of the probe. By changing the position of magnetic probe, we can get the z-component of magnetic field at different positions field maps for both the soldered and the taped loop. IV. DATA AND DISCUSSION Using two configurations for the classical wires, we created two field maps for those wires. The shape of the field maps of those wires are as expected by our model (Fig. (1)). Using our data for the z component of magnetic field at different positions on the axis and above the superconducting loop, we got the field map for the soldered superconducting wire loop (Fig.(7)). The shape of the field map shows a add function about z position. Compared with field maps from the classical wire configurations, our superconducting loops data agrees best with the double circular loop (Fig.(6)(b)) also. Thus, we suspect the structure of the current in the superconducting loop is similar to the model (b) in Fig.(1). We also got the same field map for the taped superconducting wire loop (Fig.(7)). The shape of the field map shows a add function about z position. Even this is not a closed wire

7 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.7 FIG. 6. The field map for the z component of magnetic field versus positions on z direction for the two classical wires configurations. The red one is for the single circular wire. The Blue one is for the double circular wire. loop, its field map shows strong similarity with that of the soldered wire. Compared with field maps from the classical wire configurations, our superconducting loops data also agrees best with the double circular loop (Fig.(6)(b)) also. Thus, the current in both soldered and taped wire loops are most possible magnetic quadruples. This indicates that the soldered superconducting wire loops is not a closed loop. V. CONCLUSION AND FUTURE WORK In our experiment, the field map for the z-component of magnetic field shows a quadruple behaviour for both soldered and taped wire. we suspected that the current induced in the magnetic field is most likely an Eddy current. As we compared the field maps for superconducting wire with two different configurations of classical wires we build, the data shows a similarity to the configuration with double current with opposite directions. This indicates the soldered wire does not make a closed superconducting loop. A direction for the future work is to use a 3D magnetic field probe to create a 3D vector field map for magnetic

8 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.8 FIG. 7. The field map for the z component of magnetic field versus positions on z direction for the 1cm width soldered superconducting loop. The shape of the field map shows a odd function behaviour about z. field, which will be more straightforward for comparison. [1] Cardwell, D. A., and N. Hari Babu. Improved Magnetic Flux Pinning in Bluk (RE)BCO Superconductore. AIP, 3 Mar [2] Mizutani, U., T. Oka, Y. Itoh, Y. Yanagi, M. Yoshikawa, and H. Ikuta. Pulsed-field Magnetization Applied to High-Tc Superconductors. Applied Superconductivity (1998): [3] Ohsaki, Hiroyuki, Tatsuya Shimosaki, and Naoyuki Nozawa. Pulse Field Magnetization of a Ring-shaped Bulk Superconductor. Superconductor Science and Technology 15.5 (2002): [4] Sander, M. Novel Pulsed Magnetization Process for Cryo-permanent Magnets. Physica C: Superconductivity (2003): ScienceDirect. Web. 28 Sept. 2014

9 WJP, PHY 381 (2014) Wabash Journal of Physics v2.1, p.9 FIG. 8. The field map for the z component of magnetic field versus positions on z direction for the 1cm width taped superconducting loop. The shape of the field map shows a odd function behaviour about z.

Persistent Current in Type II Superconducting Loop

Persistent Current in Type II Superconducting Loop WJP, PHY381 (2014) Wabash Journal of Physics v1.3, p.1 Persistent Current in Type II Superconducting Loop Badger, Bradon, Hayhurst, Brian, and Dr. Martin Madsen Department of Physics, Wabash College, Crawfordsville,

More information

Axial Magnetic Field of Superconducting Loops

Axial Magnetic Field of Superconducting Loops WJP, PHY381 (2015) Wabash Journal of Physics v2.3, p.1 Axial Magnetic Field of Superconducting Loops Inbum Lee, Tianhao Yang, and M. J. Madsen Department of Physics, Wabash College, Crawfordsville, IN

More information

Pulse field magnetization of a ring-shaped bulk superconductor

Pulse field magnetization of a ring-shaped bulk superconductor INSTITUTE OF PHYSICS PUBLISHING Supercond. Sci. Technol. 15 2002) 754 758 SUPERCONDUCTOR SCIENCE AND TECHNOLOGY PII: S0953-204802)34458-0 Pulse field magnetization of a ring-shaped bulk superconductor

More information

Improving the Meta-String Experiment Apparatus

Improving the Meta-String Experiment Apparatus WJP, PHY381 (2014) Wabash Journal of Physics v2.2, p.1 Improving the Meta-String Experiment Apparatus J. Caddick, T. Le, and M. J. Madsen. Department of Physics, Wabash College, Crawfordsville, IN 47933

More information

MINI MAGLEV KIT QUANTUM

MINI MAGLEV KIT QUANTUM MINI MAGLEV KIT QUANTUM LEVITATION info@quantumlevitation.com QUANTUM LEVITATION Discovered 100 years ago, superconductivity continues to fascinate and attract the interest of scientists and non-scientists

More information

Experiment 12: Superconductivity

Experiment 12: Superconductivity Experiment 12: Superconductivity Using a superconducting ceramic disk (composition: YBa 2 Cu 3 0 7 ), you will demonstrate the Meissner effect (by magnetic levitation) and measure its critical temperature.

More information

LECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich

LECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich LECTURE 23 INDUCED EMF Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 23.1 to 23.4. Induced emf Magnetic flux Faraday s law Lenz s law Quiz: 1 3 Consider the circuits shown. Which of the following

More information

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward

More information

Comparison of Trapped Field Characteristic of Bulk Magnet System Using Various Type Refrigerators

Comparison of Trapped Field Characteristic of Bulk Magnet System Using Various Type Refrigerators Journal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Trapped Field Characteristic of Bulk Magnet System Using Various Type Refrigerators To cite this article: K Yokoyama et al 2018 J.

More information

5G50.52 Energy Storage with Superconductors

5G50.52 Energy Storage with Superconductors 5G50.52 Energy Storage with Superconductors Abstract Superconductors oppose magnetic fields and are generally considered to have zero resistivity. Theoretically then, a current in a superconducting ring

More information

Negative magnetic relaxation in superconductors. E.P.Krasnoperov

Negative magnetic relaxation in superconductors. E.P.Krasnoperov Negative magnetic relaxation in superconductors E.P.Krasnoperov NRC Kurchatov Institute, 123182, Moscow MPTI, 141700, Russia, Moscow reg. It was observed that the trapped magnetic moment of HTS tablets

More information

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition Journal of the Advanced Undergraduate Physics Laboratory Investigation Volume 1 Issue 1 Article 3 2013 Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data

More information

Mid Term Exam. Electricity and Magnetism PHY204

Mid Term Exam. Electricity and Magnetism PHY204 Attempt all Question Time Allowed: 2h 15 minutes Mid Term Exam Electricity and Magnetism PHY204 Instructor: Dr. Anzar Khaliq You are provided with a formula sheet. No other formulas outside of that sheet

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

Resistance. If we take a sample of conducting material; and connect its ends to a battery: Cross section, A

Resistance. If we take a sample of conducting material; and connect its ends to a battery: Cross section, A Resistance If we take a sample of conducting material; and connect its ends to a battery: Cross section, A Resistance Cross section, A So: Or: Ohm s Law Current is directly proportional to the potential

More information

Equipartition of Current in Parallel Conductors on Cooling Through the Superconducting Transition

Equipartition of Current in Parallel Conductors on Cooling Through the Superconducting Transition Equipartition of Current in Parallel Conductors on Cooling Through the Superconducting Transition S. Sarangi, S.P. Chockalingam, Raghav G Mavinkurve and S.V.Bhat* Department of Physics, Indian Institute

More information

doi: /j.physc

doi: /j.physc doi: 10.1016/j.physc.2013.06.016 Experimental evaluation of the magnetization process in a high T c bulk superconducting magnet using magnetic resonance imaging Daiki Tamada* 1, 2, Takashi Nakamura 1,

More information

Energy Levels Zero energy. From Last Time Molecules. Today. n- and p-type semiconductors. Energy Levels in a Metal. Junctions

Energy Levels Zero energy. From Last Time Molecules. Today. n- and p-type semiconductors. Energy Levels in a Metal. Junctions Today From Last Time Molecules Symmetric and anti-symmetric wave functions Lightly higher and lower energy levels More atoms more energy levels Conductors, insulators and semiconductors Conductors and

More information

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives:

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Measuring the magnetic field of a current passing through long straight and conductor wire as a function of the current. Measuring the magnetic

More information

Superconductivity. Dirk van Delft and Peter Kes, "The discovery of superconductivity", Physics Today 63(9), 38, 2010.

Superconductivity. Dirk van Delft and Peter Kes, The discovery of superconductivity, Physics Today 63(9), 38, 2010. Experiment Nr. 31 Superconductivity 1. Introduction When cooled down below a characteristic critical temperature T c a specific phase transition of electron system can be observed in certain materials.

More information

The Effect of Cooling Systems on HTS Microstrip Antennas

The Effect of Cooling Systems on HTS Microstrip Antennas PIERS ONLINE, VOL. 4, NO. 2, 28 176 The Effect of Cooling Systems on HTS Microstrip Antennas S. F. Liu 1 and S. D. Liu 2 1 Xidian University, Xi an 7171, China 2 Xi an Institute of Space Radio Technology,

More information

Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett

Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett (References: de Gannes chapters 1-3, Tinkham chapter 1) Statements refer to classic (pre-1970) superconductors

More information

Magnetic Flux. Conference 8. Physics 102 General Physics II

Magnetic Flux. Conference 8. Physics 102 General Physics II Physics 102 Conference 8 Magnetic Flux Conference 8 Physics 102 General Physics II Monday, March 24th, 2014 8.1 Quiz Problem 8.1 Suppose we want to set up an EMF of 12 Volts in a circular loop of wire

More information

Lecture 30: WED 04 NOV

Lecture 30: WED 04 NOV Physics 2113 Jonathan Dowling Lecture 30: WED 04 NOV Induction and Inductance II Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,

More information

Avoiding quenching in superconducting rings

Avoiding quenching in superconducting rings Avoiding quenching in superconducting rings Autors: H. González-Jorge, D. González-Salgado, J. Peleteiro, E. Carballo, and G. Domarco Departamento de Física Aplicada, Universidad de Vigo, Facultad de Ciencias,

More information

PHY 1214 General Physics II

PHY 1214 General Physics II PHY 1214 General Physics II Lecture 20 Magnetic Flux and Faraday s Law July 6-7, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6)

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetisation

Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetisation Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetisation M D Ainslie 1, H Fujishiro 2, T Ujiie 2, J Zou 1, A R Dennis 1, Y-H Shi 1, D A

More information

Maglev by a passive HT C superconducting short runner above the magnetic guideway

Maglev by a passive HT C superconducting short runner above the magnetic guideway Maglev by a passive HT C superconducting short runner above the magnetic guideway G. D Ovidio 1, F. Crisi 2, A. Navarra 2 & G. Lanzara 1 1 Transportation Department, University of L Aquila, Italy 2 Science

More information

Critical parameters of

Critical parameters of Critical parameters of superconductors 2005-03-30 Why do this experiment? Superconductivity is a very interesting property from both commercial and basic scientific points of view. Superconductors are

More information

Physics 115. Magnetic forces, Coils, Induction. General Physics II. Session 29

Physics 115. Magnetic forces, Coils, Induction. General Physics II. Session 29 Physics 115 General Physics II Session 29 Magnetic forces, Coils, Induction R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/22/14 1 Lecture Schedule Today

More information

Pulsed field magnetization of 0-0 and bridge-seeded Y-Ba-Cu-O bulk superconductors

Pulsed field magnetization of 0-0 and bridge-seeded Y-Ba-Cu-O bulk superconductors Pulsed field magnetization of 0-0 and 45-45 bridge-seeded Y-Ba-Cu-O bulk superconductors M. D. Ainslie 1, J. Zou 1, H. Mochizuki 2, H. Fujishiro 2, Y-H. Shi 1, A. R. Dennis 1 and D. A. Cardwell 1 1 Bulk

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

What s so super about superconductivity?

What s so super about superconductivity? What s so super about superconductivity? Mark Rzchowski Physics Department Electrons can flow through the wire when pushed by a battery. Electrical resistance But remember that the wire is made of atoms.

More information

Measuring the Speed of Light on a Nanosecond Time Scale

Measuring the Speed of Light on a Nanosecond Time Scale WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring the Speed of Light on a Nanosecond Time Scale Bradley C. Vest, Thomas Warn, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville,

More information

Measuring the Muon Lifetime

Measuring the Muon Lifetime WJP, PHY38 (200) Wabash Journal of Physics v4.0, p. Measuring the Muon Lifetime L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: March,

More information

Experiment 19: The Current Balance

Experiment 19: The Current Balance Experiment 19: The Current Balance Figure 19.1: Current Balance Arrangement for Varying Current or Length From Left to Right: Power Supply, Current Balance Assembly, Ammeter (20A DCA scale, 20A jack).

More information

Effect of Pre-magnetization on Quasistatic Force Characteristics in a Space Superconducting Interface Structure Adopting High T c Superconductors

Effect of Pre-magnetization on Quasistatic Force Characteristics in a Space Superconducting Interface Structure Adopting High T c Superconductors Effect of Pre-magnetization on Quasistatic Force Characteristics in a Space Superconducting Interface Structure Adopting High T c Superconductors Wenjiang Yang, Long Yu, Weijia Yuan & Yu Liu Journal of

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

Superconductivity. Never store liquid nitrogen in a container with a tight fitting lid.

Superconductivity. Never store liquid nitrogen in a container with a tight fitting lid. Superconductivity 1 Introduction In this lab we will do some very simple experiments involving superconductors. You will not have to take much data; much of what you do will be qualitative. However, in

More information

Lecture 35. PHYC 161 Fall 2016

Lecture 35. PHYC 161 Fall 2016 Lecture 35 PHYC 161 Fall 2016 Induced electric fields A long, thin solenoid is encircled by a circular conducting loop. Electric field in the loop is what must drive the current. When the solenoid current

More information

Cosmic Muon Shower Study with QuarkNet

Cosmic Muon Shower Study with QuarkNet WJP, PHY381 (2015) Wabash Journal of Physics v4.2, p.1 Cosmic Muon Shower Study with QuarkNet Brian Hayhurst, Jia Qi, and James Brown Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Magnetism 2. D. the charge moves at right angles to the lines of the magnetic field. (1)

Magnetism 2. D. the charge moves at right angles to the lines of the magnetic field. (1) Name: Date: Magnetism 2 1. A magnetic force acts on an electric charge in a magnetic field when A. the charge is not moving. B. the charge moves in the direction of the magnetic field. C. the charge moves

More information

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law.

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law. PHY222 LAB 6 AMPERE S LAW Print Your Name Print Your Partners' Names Instructions Read section A prior to attending your lab section. You will return this handout to the instructor at the end of the lab

More information

Group Members: Erick Iciarte Kelly Mann Daniel Willis Miguel Lastres

Group Members: Erick Iciarte Kelly Mann Daniel Willis Miguel Lastres Group Members: Erick Iciarte Kelly Mann Daniel Willis Miguel Lastres How it works A superconductor is a material that exhibits zero resistance when exposed to very cold temperatures. Temperatures required

More information

Physics 9 WS M5 (rev. 1.0) Page 1

Physics 9 WS M5 (rev. 1.0) Page 1 Physics 9 WS M5 (rev. 1.0) Page 1 M-3. Faraday s Law Questions for discussion 1. In the figure below, there is a non-uniform magnetic field pointing into the page. a) If you move the metal loop to the

More information

Homework due next Tuesday 11:59 PM Next Sunday: no in-person office hour (try a skype office hour 7:45 8:15?)

Homework due next Tuesday 11:59 PM Next Sunday: no in-person office hour (try a skype office hour 7:45 8:15?) Homework due next Tuesday 11:59 PM Next Sunday: no in-person office hour (try a skype office hour 7:45 8:15?) SUNDAY Nov 18: SECOND HOUR EXAM 6:10-7:30 PM in SEC 111 (Ch. 26-30) -- no recitations the previous

More information

Brown University PHYS 0060 Physics Department LAB B -190

Brown University PHYS 0060 Physics Department LAB B -190 Physics Department LAB B -190 THE FORCE OF A MAGNETIC FIELD ON A MOVING ELECTRIC CHARGE DETERMINATION OF THE RATIO OF CHARGE TO MASS, e/m, FOR ELECTRONS References: H.D. Young, University Physics, Eleventh

More information

5G50.51 Superconductor Suspension

5G50.51 Superconductor Suspension 5G50.51 uperconductor uspension Abstract A superconductor is an object that, under certain conditions, has zero electrical resistance. A unique and interesting property of superconducting materials is

More information

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

More information

Relativistic Electrons

Relativistic Electrons Relativistic Electrons Physics 300 1 Introduction In this experiment you will make independent measurements of the momentum and kinetic energy of electrons emitted from a β source. You will use these data

More information

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2 First Name: Last Name: Section: n 1 March 26, 2003 Physics 202 EXAM 2 Print your name and section clearly on all five pages. (If you do not know your section number, write your TA s name.) Show all work

More information

Types of Magnetism and Magnetic Domains

Types of Magnetism and Magnetic Domains Types of Magnetism and Magnetic Domains Magnets or objects with a Magnetic Moment A magnet is an object or material that attracts certain metals, such as iron, nickel and cobalt. It can also attract or

More information

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving 6: Ampere s Law and Faraday s Law Section Table Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Mitigation of Demagnetization of Bulk Superconductors by Time-Varying External Magnetic Fields

Mitigation of Demagnetization of Bulk Superconductors by Time-Varying External Magnetic Fields Mitigation of Demagnetization of Bulk Superconductors by Time-Varying External Magnetic Fields Jin Zou, Student Member, IEEE, Mark D. Ainslie, Member, IEEE, Di Hu, Student Member, IEEE, and David A. Cardwell

More information

Equipotentials and Electric Fields

Equipotentials and Electric Fields Equipotentials and Electric Fields PURPOSE In this lab, we will investigate the relationship between the equipotential surfaces and electric field lines in the region around several different electrode

More information

Mapping the Electric Field and Equipotential Lines. Multimeter Pushpins Connecting wires

Mapping the Electric Field and Equipotential Lines. Multimeter Pushpins Connecting wires Circle Your Lab Day: M T W Th F Name: Lab Partner: Lab Partner: Mapping the Electric Field and Equipotential Lines. Equipment: Cork board Conductive paper DC Power supply Multimeter Pushpins Connecting

More information

Physica C 468 (2008) Contents lists available at ScienceDirect. Physica C. journal homepage:

Physica C 468 (2008) Contents lists available at ScienceDirect. Physica C. journal homepage: Physica C 468 (2008) 1036 1040 Contents lists available at ScienceDirect Physica C journal homepage: www.elsevier.com/locate/physc A V shaped superconducting levitation module for lift and guidance of

More information

Coupled Electromagnetic-Thermal Analysis of YBCO Bulk Magnets for the Excitation System of Low-Speed Electric Generators

Coupled Electromagnetic-Thermal Analysis of YBCO Bulk Magnets for the Excitation System of Low-Speed Electric Generators S-P-04.14 1 Coupled Electromagnetic-Thermal Analysis of YBCO Bulk Magnets for the Excitation System of Low-Speed Electric Generators J. Arnaud and P.J. Costa Branco Abstract This paper examines the use

More information

Electricity and Magnetism Module 6 Student Guide

Electricity and Magnetism Module 6 Student Guide Concepts of this Module Electricity and Magnetism Module 6 Student Guide Interactions of permanent magnets with other magnets, conductors, insulators, and electric charges. Magnetic fields of permanent

More information

Homework 6 solutions PHYS 212 Dr. Amir

Homework 6 solutions PHYS 212 Dr. Amir Homework 6 solutions PHYS 1 Dr. Amir Chapter 8 18. (II) A rectangular loop of wire is placed next to a straight wire, as shown in Fig. 8 7. There is a current of.5 A in both wires. Determine the magnitude

More information

Magnetism. and its applications

Magnetism. and its applications Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3 - Magnetic force, either attractive or repelling varies

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Magnetic flux What is a magnetic flux? This is very similar to the concept of an electric flux through an area

More information

Dependence of Levitation Force on Frequency of an Oscillating Magnetic Levitation Field in a Bulk YBCO Superconductor

Dependence of Levitation Force on Frequency of an Oscillating Magnetic Levitation Field in a Bulk YBCO Superconductor Dependence of Levitation Force on Frequency of an Oscillating Magnetic Levitation Field in a Bulk YBCO Superconductor Hamilton Carter a, Stephen Pate b, George Goedecke c a. Department of Physics, New

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials Electric Fields and Equipotentials Note: There is a lot to do in this lab. If you waste time doing the first parts, you will not have time to do later ones. Please read this handout before you come to

More information

Experimental Investigation of High-Temperature Superconducting Magnet for Maglev

Experimental Investigation of High-Temperature Superconducting Magnet for Maglev Experimental Investigation of High-Temperature Superconducting Magnet for Maglev Ken Nagashima, Masafumi Ogata, Katsutoshi Mizuno, Yuuki Arai, Hitoshi Hasegawa, Takashi Sasakawa Railway Technical Research

More information

High-performance permanent magnets from. Applications potential

High-performance permanent magnets from. Applications potential High-performance permanent magnets from bulk RE-BCO superconductors- Applications potential Dr. M.Z. Wu, Dr. I. Stanca Magnetworld AG Jena February 2017 Outline Introduction Price factors for super-magnets

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Lab 5 Projectile Motion 47 Name Date Partners Lab 5: Projectile Motion OVERVIEW We learn in our study of kinematics that two-dimensional motion is a straightforward application of onedimensional motion.

More information

CONDENSED MATTER: towards Absolute Zero

CONDENSED MATTER: towards Absolute Zero CONDENSED MATTER: towards Absolute Zero The lowest temperatures reached for bulk matter between 1970-2000 AD. We have seen the voyages to inner & outer space in physics. There is also a voyage to the ultra-cold,

More information

Magnetic Susceptibility of 123 Superconductor

Magnetic Susceptibility of 123 Superconductor Magnetic Susceptibility of 123 Superconductor Ricardo Vasquez Department of Physics, Purdue University, West Lafayette, IN April 2000 Abstract Superconductors experience a drastic change in magnetic properties

More information

Lab 4: Projectile Motion

Lab 4: Projectile Motion 59 Name Date Partners OVEVIEW Lab 4: Projectile Motion We learn in our study of kinematics that two-dimensional motion is a straightforward extension of one-dimensional motion. Projectile motion under

More information

SUPERCONDUCTOR JOULE LOSSES IN THE ZERO-FIELD- COOLED (ZFC) MAGLEV VEHICLE

SUPERCONDUCTOR JOULE LOSSES IN THE ZERO-FIELD- COOLED (ZFC) MAGLEV VEHICLE ID EUCAS-15_3A-LS-P-04.14 1 SUPERCONDUCTOR JOULE LOSSES IN THE ZERO-FIELD- COOLED (ZFC) MAGLEV VEHICLE J. Fernandes, I. Montes, R. Sousa, C. Cardeira and P.J. Costa Branco Abstract This paper estimates

More information

Development of a cryogenic induction motor for use with a superconducting magnetic bearing

Development of a cryogenic induction motor for use with a superconducting magnetic bearing Physica C 426 431 (2005) 746 751 www.elsevier.com/locate/physc Development of a cryogenic induction motor for use with a superconducting magnetic bearing Tomotake Matsumura a, *, Shaul Hanany a, John R.

More information

Measuring Cosmic Ray Muon Decay Constant and Flux

Measuring Cosmic Ray Muon Decay Constant and Flux WJP, PHY381 (2015) Wabash Journal of Physics v3.3, p.1 Measuring Cosmic Ray Muon Decay Constant and Flux R.C. Dennis, D.T. Tran, J. Qi, and J. Brown Department of Physics, Wabash College, Crawfordsville,

More information

Solution for Fq. A. up B. down C. east D. west E. south

Solution for Fq. A. up B. down C. east D. west E. south Solution for Fq A proton traveling due north enters a region that contains both a magnetic field and an electric field. The electric field lines point due west. It is observed that the proton continues

More information

Development of a magnetic resonance microscope

Development of a magnetic resonance microscope Development of a magnetic resonance microscope using a high T c bulk superconducting magnet Kyohei Ogawa 1, Takashi Nakamura 2, Yasuhiko Terada 1, Katsumi Kose 1,a), Tomoyuki Haishi 3 1. Institute of Applied

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: Date: AP REVIEW 4 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a positively charged glass rod is used to charge a metal

More information

Physics 180B Fall 2008 Test Points

Physics 180B Fall 2008 Test Points Physics 180B Fall 2008 Test 2-120 Points Name You can cross off questions or problems worth up to15 points. Circle your answers or pu them in the box provided. 1) The Mass Spectrometer. Draw the Acclerator,

More information

Faraday's Law Warm Up

Faraday's Law Warm Up Faraday's Law-1 Faraday's Law War Up 1. Field lines of a peranent agnet For each peranent agnet in the diagra below draw several agnetic field lines (or a agnetic vector field if you prefer) corresponding

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

Physics 212 Question Bank III 2006

Physics 212 Question Bank III 2006 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)

More information

Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field

Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field Oleg A. Chevtchenko *1, Johan J. Smit 1, D.J. de Vries 2, F.W.A. de Pont 2 1 Technical University

More information

AS mentioned in [1], the drift of a levitated/suspended body

AS mentioned in [1], the drift of a levitated/suspended body IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 17, NO. 3, SEPTEMBER 2007 3803 Drift of Levitated/Suspended Body in High-T c Superconducting Levitation Systems Under Vibration Part II: Drift Velocity

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

More information

High-Performance Y-based Superconducting Wire and Their Applications

High-Performance Y-based Superconducting Wire and Their Applications High-Performance Y-based Superconducting Wire and Their Applications Yasuhiro Iijima 1 Yttrium(Y)-based superconducting wires are expected to be applied to various superconducting apparatus. They have

More information

Influence of the voltage taps position on the self-field DC and AC transport characterization of HTS superconducting tapes

Influence of the voltage taps position on the self-field DC and AC transport characterization of HTS superconducting tapes Influence of the voltage taps position on the self-field DC and AC transport characterization of HTS superconducting tapes M. Vojenčiak a,*, F. Grilli a, A. Stenvall b, A. Kling a, W. Goldacker a a Karlsruhe

More information

Our goal for today. 1. To go over the pictorial approach to Lenz s law.

Our goal for today. 1. To go over the pictorial approach to Lenz s law. Our goal for today 1. To go over the pictorial approach to Lenz s law. Lenz s Law Exposing a coil or loop to a changing magnetic flux will generate a current if the circuit is complete. The direction of

More information

Lecture 29: MON 02 NOV

Lecture 29: MON 02 NOV Physics 2113 Jonathan Dowling Lecture 29: MON 02 NOV Induction and Inductance I Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,

More information

Small Levitating Disk

Small Levitating Disk Small Levitating Disk What Happens A magnet will levitate above a piece of superconductor which is kept cold in liquid nitrogen. The magnet can be spun like a spinning top and will continue to spin for

More information

Unit 3: Gravitational, Electric and Magnetic Fields Unit Test

Unit 3: Gravitational, Electric and Magnetic Fields Unit Test Unit 3: Gravitational, Electric and Magnetic Fields Unit Test Name: Knowledge & Understanding Application Thinking & Inquiry Communication Total 15 18 5 6 44 Part 1: Multiple Choice 1. Two charged spheres

More information

Transition Temperatures in Yttrium Barium Copper Oxide (YBCO)

Transition Temperatures in Yttrium Barium Copper Oxide (YBCO) Transition Temperatures in Yttrium Barium Copper Oxide (YBCO) Department of Physics: PH 2651, Worcester Polytechnic Institute, Worcester, MA 01609 (Dated: February 24, 2015) In 1911 it was observed that

More information

Problem Fig

Problem Fig Problem 9.53 A flexible circular loop 6.50 cm in diameter lies in a magnetic field with magnitude 0.950 T, directed into the plane of the page, as shown. The loop is pulled at the points indicated by the

More information

Experiment Guide for RC Circuits

Experiment Guide for RC Circuits Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

More information

Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany Simulation and experiments of Stacks of High Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization with Multi-Pulse Technique Shengnan Zou 1, Víctor M. R. Zermeño 1, A.

More information

Experiment 4: Motion in a Plane

Experiment 4: Motion in a Plane Experiment 4: Motion in a Plane Part 1: Projectile Motion. You will verify that a projectile s velocity and acceleration components behave as described in class. A ball bearing rolls off of a ramp, becoming

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

Available online at ScienceDirect. Physics Procedia 67 (2015 ) Calibration of a HTS based LOX 400mm level sensor

Available online at   ScienceDirect. Physics Procedia 67 (2015 ) Calibration of a HTS based LOX 400mm level sensor Available online at www.sciencedirect.com ScienceDirect Physics Procedia 67 (2015 ) 1169 1174 25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in

More information

October 23. Physics 272. Fall Prof. Philip von Doetinchem

October 23. Physics 272. Fall Prof. Philip von Doetinchem Physics 272 October 23 Fall 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_fall_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Fall 14 - von Doetinchem - 170 Motional electromotive

More information