Actuariat de l Assurance Non-Vie # 10 A. Charpentier (Université de Rennes 1)

Size: px
Start display at page:

Download "Actuariat de l Assurance Non-Vie # 10 A. Charpentier (Université de Rennes 1)"

Transcription

1 Actuariat de l Assurance Non-Vie # 10 A. Charpentier (Université de Rennes 1) ENSAE ParisTech, Octobre / Décembre

2 Généralités sur les Provisions pour Sinistres à Payer Références: de Jong & Heller (2008), section 1.5 et 8.1, and Wüthrich & Merz (2015), chapitres 1 à 3, et Pigeon (2015). Les provisions techniques sont les provisions destinées à permettre le réglement intégral des engagements pris envers les assurés et bénéficaires de contrats. Elles sont liées à la technique même de l assurance, et imposées par la réglementation. It is hoped that more casualty actuaries will involve themselves in this important area. IBNR reserves deserve more than just a clerical or cursory treatment and we believe, as did Mr. Tarbell Chat the problem of incurred but not reported claim reserves is essentially actuarial or statistical. Perhaps in today s environment the quotation would be even more relevant if it stated that the problem...is more actuarial than statistical. Bornhuetter & Ferguson 2

3 La vie des sinistres date t 1 : survenance du sinistre période [t 1, t 2 ] : IBNR Incureed But Not Reported date t 2 : déclaration du sinistre à l assureur période [t 2, t 3 ] : IBNP Incureed But Not Paid période [t 2, t 6 ] : IBNS Incureed But Not Settled dates t 3, t 4, t 5 : paiements date t 6 : clôture du 3

4 La vie des sinistres À la survenance, un montant estimé est indiqué par les gestionnaires de sinistres (charge dossier/dossier). Ensuite deux opérations sont possibles : effectuer un paiement réviser le montant du 4

5 La vie des sinistres: Problématique des PSAP La Provision pour Sinistres à Payer est la différence entre le montant du sinistre et le paiement déjà 5

6 Triangles de Paiements : du micro au macro Analyse micro Sinistres i = 1,, n Montant de i à la date t, C i (t) = j:t i,j t Y i,j Provision (idéale) à la date t, R i (t) = C i ( ) C i (t) survenances, date T i,0 déclaration, date T i,0 + Q i paiements, dates j T i,j = T i,0 + Q i + k=1 et montants (T i,j, Y i,j ) Z 6

7 Triangles de Paiements : du micro au macro Analyse macro On agrége les sinistres par année de survenance : S i = {k : T k,0 [i, i + 1)} On regarde les paiements effectués après j années Y i,j = k S i T k,l [j,j+1) Z k,l Ici Y n 7

8 Triangles de Paiements : du micro au macro Analyse macro On agrége les sinistres par année de survenance : S i = {k : T k,0 [i, i + 1)} On regarde les paiements effectués après j années Y i,j = k S i T k,l [j,j+1) Z k,l Ici Y n 1,1 et Y 8

9 Triangles de Paiements : du micro au macro Analyse macro On agrége les sinistres par année de survenance : S i = {k : T k,0 [i, i + 1)} On regarde les paiements effectués après j années Y i,j = k S i T k,l [j,j+1) Z k,l Ici Y n 1,2, Y n,1 et Y 9

10 Triangles de Paiements : du micro au macro les provisions techniques peuvent représenter 75% du bilan, le ratio de couverture (provision / chiffre d affaire) peut dépasser 2, certaines branches sont à développement long, en montant n n + 1 n + 2 n + 3 n + 4 habitation 55% 90% 94% 95% 96% automobile 55% 80% 85% 88% 90% dont corporels 15% 40% 50% 65% 70% R.C. 10% 25% 35% 40% 10

11 Triangles de Paiements : complément sur les données micro On note Ft n l information accessible à la date t, Ft n = σ {(T i,0, T i,j, X i,j ), i = 1,, n, T i,j t} n et C( ) = C i ( ). i=1 Notons que M t = E [C( ) F ] est une martingale, i.e. E[M t+h F t ] = M t alors que V t = Var [C( ) F ] est une sur-martingale, i.e. E[V t+h F t ] V 11

12 Triangles de Paiements : les méthodes usuelles Source : 12

13 Triangles de Paiements : les méthodes usuelles Source : 13

14 Triangles de Paiements : les méthodes usuelles Source : 14

15 Triangles de Paiements : les méthodes usuelles Source : 15

16 Exemples de cadence de paiement: multirisques 16

17 Exemples de cadence de paiement: risque incendies 17

18 Exemples de cadence de paiement: automobile 18

19 Exemples de cadence de paiement: automobile 19

20 Exemples de cadence de paiement: automobile 20

21 Exemples de cadence de paiement: responsabilité civile 21

22 Exemples de cadence de paiement: responabilité civile 22

23 Exemples de cadence de paiement: assurance 23

24 Les triangles: incréments de paiements Notés Y i,j, pour l année de survenance i, et l année de développement j,

25 Les triangles: paiements cumulés Notés C i,j = Y i,0 + Y i,1 + + Y i,j, pour l année de survenance i, et l année de développement j,

26 Les triangles: nombres de sinistres Notés N i,j sinistres survenus l année i connus (déclarés) au bout de j années,

27 La prime acquise Notée π i, prime acquise pour l année i année i P i

28 Triangles 1 > rm( list =ls ()) 2 > source (" http :// freakonometrics. free.fr/ bases.r") 3 > ls () 4 [1] " INCURRED " " NUMBER " " PAID " " PREMIUM " 5 > PAID 6 [,1] [,2] [,3] [,4] [,5] [,6] 7 [1,] [2,] NA 9 [3,] NA NA 10 [4,] NA NA NA 11 [5,] NA NA NA NA 12 [6,] 5217 NA NA NA NA 28

29 Triangles? Actually, there might be two different cases in practice, the first one being when initial data are missing In that case it is mainly an index-issue in 29

30 Triangles? Actually, there might be two different cases in practice, the first one being when final data are missing, i.e. some tail factor should be included In that case it is necessary to extrapolate (with past information) the final loss (tail 30

31 The Chain Ladder estimate We assume here that C i,j+1 = λ j C i,j for all i, j = 0, 1,, n. A natural estimator for λ j based on past history is λ j = n j i=0 n j C i,j+1 for all j = 0, 1,, n 1. C i,j i=0 Hence, it becomes possible to estimate future payments using Ĉ i,j = [ λn+1 i λ ] j 1 C i,n+1 31

32 La méthode Chain Ladder, en pratique λ 0 =

33 La méthode Chain Ladder, en pratique λ 0 =

34 La méthode Chain Ladder, en pratique λ 0 =

35 La méthode Chain Ladder, en pratique λ 1 =

36 La méthode Chain Ladder, en pratique λ 1 =

37 La méthode Chain Ladder, en pratique λ 2 =

38 La méthode Chain Ladder, en pratique λ 2 =

39 La méthode Chain Ladder, en pratique λ 3 =

40 La méthode Chain Ladder, en pratique λ 4 =

41 La méthode Chain Ladder, en pratique One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 41

42 Computational Issues 1 > library ( ChainLadder ) 2 > MackChainLadder ( PAID ) 3 MackChainLadder ( Triangle = PAID ) 4 5 Latest Dev.To. Date Ultimate IBNR Mack.S.E CV( IBNR ) 6 1 4, , NaN 7 2 4, , , , , , , , , ,367 2, Totals 14 Latest : 32, Dev : Ultimate : 35, IBNR : 42

43 18 Mack.S.E CV( IBNR ): 43

44 Three ways to look at triangles There are basically three kind of approaches to model development developments as percentages of total incured, i.e. consider ϕ = (ϕ 0, ϕ 1,, ϕ n ), with ϕ 0 + ϕ ϕ n = 1, such that E(Y i,j ) = ϕ j E(C i,n ), where j = 0, 1,, n. developments as rates of total incured, i.e. consider γ = (γ 0, γ 1,, γ n ), such that E(C i,j ) = γ j E(C i,n ), where j = 0, 1,, n. developments as factors of previous estimation, i.e. consider λ = (λ 0, λ 1,, λ n ), such that E(C i,j+1 ) = λ j E(C i,j ), where j = 0, 1,, 44

45 Three ways to look at triangles From a mathematical point of view, it is strictly equivalent to study one of those. Hence, γ j = ϕ 0 + ϕ ϕ j = 1 1 1, λ j λ j+1 λ n 1 ϕ j = γ 0 if j = 0 γ j γ j 1 if j 1 = λ j = γ j+1 = ϕ 0 + ϕ ϕ j + ϕ j+1 γ j ϕ 0 + ϕ ϕ j 1 1 λ 0 λ λ j+1 λ j+2 1, if j = 0 λ n λ n 1 λ j λ j+1 1 λ n 1, if j 45

46 Three ways to look at triangles On the previous triangle, n λ j 1, , , , , ,0000 γ j 70,819% 97,796% 98,914% 99,344% 99,529% 100,000% ϕ j 70,819% 26,977% 1,118% 0,430% 0,185% 46

47 d-triangles It is possible to define the d-triangles, with empirical λ s, i.e. λ i,j

48 The Chain-Ladder estimate The Chain-Ladder estimate is probably the most popular technique to estimate claim reserves. Let F t denote the information avalable at time t, or more formally the filtration generated by {C i,j, i + j t} - or equivalently {X i,j, i + j t} Assume that incremental payments are independent by occurence years, i.e.. C i1, and C i2, are independent for any i 1 and i 2 [H 1 ] Further, assume that (C i,j ) j 0 is Markov, and more precisely, there exist λ j s and σj 2 s such that E(C i,j+1 F i+j ) = E(C i,j+1 C i,j ) = λ j C i,j [H 2 ] Var(C i,j+1 F i+j ) = Var(C i,j+1 C i,j ) = σj 2 C i,j [H 3 ] Under those assumption (see Mack (1993)), one gets E(C i,j+k F i+j ) = (C i,j+k C i,j ) = λ j λ j+1 λ j+k 1 C 48

49 Testing assumptions Assumption H 2 can be interpreted as a linear regression model, i.e. Y i = β 0 + X i β 1 + ε i, i = 1,, n, where ε is some error term, such that E(ε) = 0, where β 0 = 0, Y i = C i,j+1 for some j, X i = C i,j, and β 1 = λ j. { n j } Weighted least squares can be considered, i.e. min ω i (Y i β 0 β 1 X i ) 2 where the ω i s are proportional to Var(Y i ) 1. This leads to { n j } 1 min (C i,j+1 λ j C i,j ) 2. C i,j i=1 As in any linear regression model, it is possible to test assumptions H 1 and H 2, the following graphs can be considered, given j plot C i,j+1 s versus C i,j s. Points should be on the straight line with slope λ j. i=1 plot (standardized) residuals ε i,j = C i,j+1 λ j C i,j Ci,j versus C i,j 49

50 Testing assumptions H 1 is the accident year independent assumption. More precisely, we assume there is no calendar effect. Define the diagonal B k = {C k,0, C k 1,1, C k 2,2, C 2,k 2, C 1,k 1, C 0,k }. If there is a calendar effect, it should affect adjacent factor lines, { Ck,1 A k =, C k 1,2, C k 2,3 C 1,k,,, C } 0,k+1 = δ k+1, C k,0 C k 1,1 C k 2,2 C 1,k 1 C 0,k δ k and A k 1 = { Ck 1,1 C k 1,0, C k 2,2 C k 2,1, C k 3,3 C k 3,2,, C 1,k 1 C 1,k 2, C 0,k C 0,k 1 } = δ k δ k 1. For each k, let N + k denote the number of elements exceeding the median, and N k the number of elements lower than the mean. The two years are independent, N + k and N k should be closed, i.e. N k = min ( N + k, N ) k should be closed to ( N + k + N ) k 50

51 Testing assumptions Since N k and N + k are two binomial distributions B ( p = 1/2, n = N k + N + ) k, then E (N k ) = n k 2 n k 1 n [ ] k m k 2 n where n k = N + k k + N k and m nk 1 k = 2 and V (N k ) = n k (n k 1) 2 n k 1 m k n k (n k 1) 2 n k + E (N k ) E (N k ) 2. Under some normality assumption on N, a 95% confidence interval can be derived, i.e. E (Z) ± 1.96 V 51

52 et

53 From Chain-Ladder to Grossing-Up The idea of the Chain-Ladder technique was to estimate the λ j s, so that we can derive estimates for C i,n, since Ĉ i,n = Ĉi,n i n k=n i+1 λ k Based on the Chain-Ladder link ratios, λ, it is possible to define grossing-up coefficients n 1 γ j = λ k k=j and thus, the total loss incured for accident year i is then Ĉ i,n = Ĉi,n i γ n γ n 53

54 Variant of the Chain-Ladder Method (1) Historically (see e.g.), the natural idea was to consider a (standard) average of individual link ratios. Several techniques have been introduces to study individual link-ratios. A first idea is to consider a simple linear model, λ i,j = a j i + b j. Using OLS techniques, it is possible to estimate those coefficients simply. Then, we project those ratios using predicted one, λ i,j = â j i + b 54

55 Variant of the Chain-Ladder Method (2) A second idea is to assume that λ j is the weighted sum of λ,j s, λ j = j 1 ω i,j λ i,j i=0 j 1 ω i,j i=0 If ω i,j = C i,j we obtain the chain ladder estimate. An alternative is to assume that ω i,j = i + j + 1 (in order to give more weight to recent 55

56 Variant of the Chain-Ladder Method (3) Here, we assume that cumulated run-off triangles have an exponential trend, i.e. C i,j = α j exp(i β j ). In order to estimate the α j s and β j s is to consider a linear model on log C i,j, log C i,j = a j +β j i + ε i,j. }{{} log(α j ) Once the β j s have been estimated, set γ j = exp( β j ), and define Γ i,j = γ n i j j C 56

57 The extended link ratio family of estimators For convenience, link ratios are factors that give relation between cumulative payments of one development year (say j) and the next development year (j + 1). They are simply the ratios y i /x i, where x i s are cumulative payments year j (i.e. x i = C i,j ) and y i s are cumulative payments year j + 1 (i.e. y i = C i,j+1 ). For example, the Chain Ladder estimate is obtained as λ j = n j i=0 y i n j k=0 x k = n j i=0 x i n j k=1 x k yi x i. But several other link ratio techniques can be considered, e.g. λ j = 1 n j + 1 n j i=0 y i x i, i.e. the simple arithmetic mean, λ j = ( n j i=0 y i x i ) n j+1, i.e. the geometric 57

58 λ j = n j i=0 x 2 i n j k=1 x2 k yi x i, i.e. the weighted average by volume squared, Hence, these techniques can be related to weighted least squares, i.e. y i = βx i + ε i, where ε i N (0, σ 2 x δ i ), for some δ > 0. E.g. if δ = 0, we obtain the arithmetic mean, if δ = 1, we obtain the Chain Ladder estimate, and if δ = 2, the weighted average by volume squared. The interest of this regression approach, is that standard error for predictions can be derived, under standard (and testable) assumptions. Hence standardized residuals (σx δ/2 i ) 1 ε i are N (0, 1), i.e. QQ plot E(y i x i ) = βx i, i.e. graph of x i versus y 58

59 Properties of the Chain-Ladder estimate Further λ j = n j 1 i=0 C i,j+1 n j 1 i=0 C i,j is an unbiased estimator for λ j, given F j, and λ j and λ j+h are non-correlated, given F j. Hence, an unbiased estimator for E(C i,j F n ) is Ĉ i,j = λ n i λ n i+1 λ ) j 2 ( λj 1 1 C i,n i. Recall that λ j is the estimator with minimal variance among all linear estimators obtained from λ i,j = C i,j+1 /C i,j s. Finally, recall that σ 2 j = 1 n j 1 n j 1 i=0 ( Ci,j+1 C i,j λ j ) 2 C i,j is an unbiased estimator of σ 2 j, given F j (see Mack (1993) or Denuit & Charpentier 59

60 Prediction error of the Chain-Ladder estimate We stress here that estimating reserves is a prediction process: based on past observations, we predict future amounts. Recall that prediction error can be explained as follows, E[(Y Ŷ )2 ] }{{} prediction variance ( ) 2] = E[ (Y EY ) + (E(Y ) Ŷ ) E[(Y EY ) 2 ] + E[(EY }{{} Ŷ )2 ]. }{{} process variance estimation variance the process variance reflects randomness of the random variable the estimation variance reflects uncertainty of statistical 60

61 Process variance of reserves per occurrence year The amount of reserves for accident year i is simply R i = ( λn i λ n i+1 λ ) n 2 λn 1 1 C i,n i. Note that E( R i F n ) = R i Since Var( R i F n ) = Var(C i,n F n ) = Var(C i,n C i,n i ) n n = λ 2 l σke[c 2 i,k C i,n i ] k=i+1 l=k+1 and a natural estimator for this variance is then Var( R n n i F n ) = λ 2 l σ 2 kĉi,k k=i+1 l=k+1 n = Ĉi,n k=i+1 σ k 2 λ 2 61

62 Note that it is possible to get not only the variance of the ultimate cumulate payments, but also the variance of any increment. Hence Var(Y i,j F n ) = Var(Y i,j C i,n i ) = E[Var(Y i,j C i,j 1 ) C i,n i ] + Var[E(Y i,j C i,j 1 ) C i,n i ] = E[σ 2 i C i,j 1 C i,n i ] + Var[(λ j 1 1)C i,j 1 C i,n i ] and a natural estimator for this variance is then Var(Y i,j F n ) = Var(C i,j F n ) + (1 2 λ j 1 ) Var(C i,j 1 F n ) where, from the expressions given above, Var(C i,j F n ) = C i,n i j 1 k=i+1 σ 2 k λ 2 62

63 Parameter variance when estimating reserves per occurrence year So far, we have obtained an estimate for the process error of technical risks (increments or cumulated payments). But since parameters λ j s and σj 2 are estimated from past information, there is an additional potential error, also called parameter error (or estimation error). Hence, we have to quantify E ([R i R ) i ] 2. In order to quantify that error, Murphy (1994) assume the following underlying model, C i,j = λ j 1 C i,j 1 + η i,j with independent variables η i,j. From the structure of the conditional variance, Var(C i,j+1 F i+j ) = Var(C i,j+1 C i,j ) = σ 2 j C 63

64 Parameter variance when estimating reserves per occurrence year it is natural to write the equation above C i,j = λ j 1 C i,j 1 + σ j 1 Ci,j 1 ε i,j, with independent and centered variables with unit variance ε i,j. Then E ([R i R ) i ] 2 F n = R i 2 ( n i 1 k=0 λ 2 i+k σ 2 i+k C,i+k + σ 2 n 1 [ λ n 1 1] 2 C,i+k Based on that estimator, it is possible to derive the following estimator for the Conditional Mean Square Error of reserve prediction for occurrence year i, CMSE i = Var( R i F n ) + E ([R i R ) i ] 2 F n. 64

65 Variance of global reserves (for all occurrence years) The estimate total amount of reserves is Var( R) = Var( R 1 ) + + Var( R n ). In order to derive the conditional mean square error of reserve prediction, define the covariance term, for i < j, as ( n ) CMSE i,j = R σ i+k 2 σ j 2 i Rj +, C,k [ λ j 1 1] λ j 1 C,j+k k=i λ 2 i+k then the conditional mean square error of overall reserves CMSE = n i=1 CMSE i + 2 j>i CMSE 65

66 Application on our triangle 1 > MackChainLadder ( PAID ) 2 3 Latest Dev.To. Date Ultimate IBNR Mack.S.E CV( IBNR ) 4 1 4, , NaN 5 2 4, , , , , , , , , ,367 2, Totals 12 Latest : 32, Dev : Ultimate : 35, IBNR : 2, Mack.S.E CV( IBNR ): 66

67 Application on our triangle 1 > MackChainLadder ( PAID )$f 2 [1] > MackChainLadder ( PAID )$f.se 4 [1] e e e e e > MackChainLadder ( PAID )$ sigma 6 [1] > MackChainLadder ( PAID )$ sigma ^2 8 [1] e e e e e 67

68 A short word on Munich Chain Ladder Munich chain ladder is an extension of Mack s technique based on paid (P ) and incurred (I) losses. Here we adjust the chain-ladder link-ratios λ j s depending if the momentary (P/I) ratio is above or below average. It integrated correlation of residuals between P vs. I/P and I vs. P/I chain-ladder link-ratio to estimate the correction factor. Use standard Chain Ladder technique on the two 68

69 A short word on Munich Chain Ladder The (standard) payment triangle, P

70 Computational Issues 1 > MackChainLadder ( PAID ) 2 3 Latest Dev.To. Date Ultimate IBNR Mack.S.E CV( IBNR ) 4 1 4, , NaN 5 2 4, , , , , , , , , ,367 2, Totals 12 Latest : 32, Dev : Ultimate : 35, IBNR : 2, Mack.S.E CV( IBNR ): 70

71 A short word on Munich Chain Ladder The Incurred Triangle (I) with estimated losses,

72 Computational Issues 1 > MackChainLadder ( INCURRED ) 2 3 Latest Dev.To. Date Ultimate IBNR Mack.S.E CV( IBNR ) 4 1 4, , NaN 5 2 4, , Inf 6 3 5, , , , , , , , Totals 12 Latest : 35, Dev : Ultimate : 34, IBNR : Mack.S.E (keep only here Ĉn = 34, 524, to be compared with the previous 35, 72

73 Computational Issues 1 > MunichChainLadder (PAID, INCURRED ) 2 3 Latest Paid Latest Incurred Latest P/ I Ratio Ult. Paid Ult. Incurred Ult. P/ I Ratio 4 1 4,456 4, ,456 4, ,730 4, ,753 4, ,420 5, ,455 5, ,020 6, ,086 6, ,794 7, ,983 6, ,217 7, ,538 7,

74 11 Totals 12 Paid Incurred P/ I Ratio 13 Latest : 32,637 35, Ultimate : 35,271 35, It is possible to get a model mixing the two approaches 74

75 Bornhuetter Ferguson One of the difficulties with using the chain ladder method is that reserve forecasts can be quite unstable. The Bornhuetter & Ferguson (1972) method provides a procedure for stabilizing such estimates. Recall that in the standard chain ladder model, Ĉ i,n = F n C i,n i, where F n = n 1 k=n i λ k If R i denotes the estimated outstanding reserves, R i = Ĉi,n C i,n i = Ĉi,n F n 1 F 75

76 Bornhuetter Ferguson For a bayesian interpretation of the Bornhutter-Ferguson model, England & Verrall (2002) considered the case where incremental paiments Y i,j are i.i.d. overdispersed Poisson variables. Here E(Y i,j ) = a i b j and Var(Y i,j ) = ϕ a i b j, where we assume that b b n = 1. Parameter a i is assumed to be a drawing of a random variable A i G(α i, β i ), so that E(A i ) = α i /β i, so that E(C i,n ) = α i β i = C i, which is simply a prior expectation of the final loss 76

77 Bornhuetter Ferguson The posterior distribution of X i,j+1 is then E(X i,j+1 F i+j ) = ( Z i,j+1 C i,j + [1 Z i,j+1 ] C i F j ) (λ j 1) where Z i,j+1 = F 1 j βϕ + F j, where F j = λ j+1 λ n. Hence, Bornhutter-Ferguson technique can be interpreted as a Bayesian method, and a a credibility estimator (since bayesian with conjugated distributed leads to 77

78 Bornhuetter Ferguson The underlying assumptions are here assume that accident years are independent assume that there exist parameters µ = (µ 0,, µ n ) and a pattern β = (β 0, β 1,, β n ) with β n = 1 such that E(C i,0 ) = β 0 µ i Hence, one gets that E(C i,j ) = β j µ i. E(C i,j+k F i+j ) = C i,j + [β j+k β j ] µ i The sequence (β j ) denotes the claims development pattern. The Bornhuetter-Ferguson estimator for E(C i,n Ci, 1,, C i,j ) is Ĉ i,n = C i,j + [1 β j i ] µ 78

79 where µ i is an estimator for E(C i,n ). If we want to relate that model to the classical Chain Ladder one, β j is n k=j+1 1 λ k Consider the classical triangle. Assume that the estimator µ i is a plan value (obtain from some business plan). For instance, consider a 105% loss ratio per accident 79

80 Bornhuetter Ferguson i premium µ i λ i 1, 380 1, 011 1, 004 1, 002 1, 005 β i 0, 708 0, 978 0, 989 0, 993 0, 995 Ĉ i,n R i

81 Boni-Mali As point out earlier, the (conditional) mean square error of prediction (MSE) is i.e X is mse t ( X) = E ([X X] ) 2 F t ( = Var(X F t ) + E E (X F t ) }{{} X ) 2 }{{} process variance parameter estimation error a predictor for X an estimator for E(X F t ). But this is only a a long-term view, since we focus on the uncertainty over the whole runoff period. It is not a one-year solvency view, where we focus on changes over the next accounting 81

82 Boni-Mali From time t = n and time t = n + 1, n j 1 n j (n) λ j = i=0 C i,j+1 n j 1 and λ (n+1) j = i=0 C i,j+1 n j i=0 C i,j i=0 C i,j and the ultimate loss predictions are then Ĉ (n) i = C i,n i n j=n i λ j (n) and Ĉ (n+1) i = C i,n i+1 n j=n i+1 λ j 82

83 Boni-Mali and the 83

84 Boni-Mali and the 84

85 Boni-Mali and the 85

86 Boni-Mali In order to study the one-year claims development, we have to focus on R (n) i and Y i,n i+1 + R (n+1) i The boni-mali for accident year i, from year n to year n + 1 is then BM (n,n+1) i = R (n) i [ Y i,n i+1 + ] (n+1) R i = Ĉ(n) i Ĉ(n+1) i. Thus, the conditional one-year runoff uncertainty is mse( ( [Ĉ(n) (n,n+1) BM i ) = E i Ĉ(n+1) i ] 2 Fn 86

87 Boni-Mali Hence, mse( BM (n,n+1) i ) = [Ĉ(n) + i ] 2 [ σ 2 n i /[ λ (n) n i ]2 C i,n i n 1 j=n i+1 C n j,j n j k=0 C k,j (n) /[ λ n i ]2 i 1 k=0 C k,n i + σ2 n i σ j 2 (n) /[ λ j ] 2 n j 1 k=0 C k,j Further, it is possible to derive the MSEP for aggregated accident years (see Merz & Wüthrich 87

88 Boni-Mali, Computational Issues 1 > CDR ( MackChainLadder ( PAID )) 2 IBNR CDR (1) S.E. Mack.S.E Total

89 Ultimate Loss and Tail Factor The idea - introduced by Mack (1999) - is to compute λ = λ k k n and then to compute C i, = C i,n λ. Assume here that λ i are exponentially decaying to 1, i.e. log(λ k 1) s are linearly decaying 1 > Lambda = MackChainLadder ( PAID )$f [1:( ncol ( PAID ) -1)] 2 > logl <- log ( Lambda -1) 3 > tps <- 1:( ncol ( PAID ) -1) 4 > modele <- lm( logl ~ tps ) 5 > logp <- predict ( modele, newdata = data. frame ( tps = seq (6,1000) )) 6 > ( facteur <- prod ( exp ( logp ) +1) ) 7 [1] 89

90 Ultimate Loss and Tail Factor 1 > DIAG <- diag ( PAID [,6:1]) 2 > PRODUIT <- c(1, rev ( Lambda )) 3 > sum (( cumprod ( PRODUIT ) -1)* DIAG ) 4 [1] > sum (( cumprod ( PRODUIT )* facteur -1) * DIAG ) 6 [1] The ultimate loss is here 0.07% larger, and the reserves are 1% 90

91 Ultimate Loss and Tail Factor 1 > M a ck Ch ai n La dd er ( Triangle = PAID, tail = TRUE ) 2 3 Latest Dev.To. Date Ultimate IBNR Mack.S.E CV( IBNR ) 4 0 4, , , , , , , , , , , ,372 2, Totals 12 Latest : 32, Dev : Ultimate : 35, IBNR : 2, Mack.S.E CV( IBNR ): 91

92 From Chain Ladder to London Chain and London Pivot La méthode dite London Chain a été introduite par Benjamin & Eagles (1986). On suppose ici que la dynamique des (C ij ) j=1,..,n est donnée par un modèle de type AR (1) avec constante, de la forme C i,k+1 = λ k C ik + α k pour tout i, k = 1,.., n De façon pratique, on peut noter que la méthode standard de Chain Ladder, reposant sur un modèle de la forme C i,k+1 = λ k C ik, ne pouvait être appliqué que lorsque les points (C i,k, C i,k+1 ) sont sensiblement alignés (à k fixé) sur une droite passant par l origine. La méthode London Chain suppose elle aussi que les points soient alignés sur une même droite, mais on ne suppose plus qu elle passe par 0. Example:On obtient la droite passant au mieux par le nuage de points et par 0, et la droite passant au mieux par le nuage de 92

93 From Chain Ladder to London Chain and London Pivot Dans ce modèle, on a alors 2n paramètres à identifier : λ k et α k pour k = 1,..., n. La méthode la plus naturelle consiste à estimer ces paramètres à l aide des moindres carrés, c est à dire que l on cherche, pour tout k, { ) n k } ( λk, α k = arg min (C i,k+1 α k λ k C i,k ) 2 ce qui donne, finallement i=1 λ k = 1 n k n k i=1 C i,kc i,k+1 C (k) k n k i=1 C2 i,k C(k)2 k 1 n k C (k) k+1 où C (k) k = 1 n k n k i=1 C i,k et C (k) k+1 = 1 n k et où la constante est donnée par α k = C (k) k+1 λ k C (k) k. n k i=1 C 93

94 From Chain Ladder to London Chain and London Pivot Dans le cas particulier du triangle que nous étudions, on obtient k λ k α k

95 From Chain Ladder to London Chain and London Pivot The completed (cumulated) triangle is then

96 From Chain Ladder to London Chain and London Pivot One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 43, 78, 222 and 2266 per accident year, i.e. the total is 2631 (to be compared with 2427, obtained with the Chain Ladder 96

97 From Chain Ladder to London Chain and London Pivot La méthode dite London Pivot a été introduite par Straub, dans Nonlife Insurance Mathematics (1989). On suppose ici que C i,k+1 et C i,k sont liés par une relation de la forme C i,k+1 + α = λ k. (C i,k + α) (de façon pratique, les points (C i,k, C i,k+1 ) doivent être sensiblement alignés (à k fixé) sur une droite passant par le point dit pivot ( α, α)). Dans ce modèle, (n + 1) paramètres sont alors a estimer, et une estimation par moindres carrés ordinaires donne des estimateurs de façon 97

98 Introduction to factorial models: Taylor (1977) This approach was studied in a paper entitled Separation of inflation and other effects from the distribution of non-life insurance claim delays We assume the incremental payments are functions of two factors, one related to accident year i, and one to calendar year i + j. Hence, assume that Y ij = r j µ i+j 1 for all i, j r 1 µ 1 r 2 µ 2 r n 1 µ n 1 r n µ n r 1 µ 2 r 2 µ 3 r n 1 µ n.. et r 1 µ 1 r 2 µ 2 r n 1 µ n 1 r n µ n r 1 µ 2 r 2 µ 3 r n 1 µ n.. r 1 µ n 1 r 2 µ n r 1 µ n 1 r 2 µ n r 1 µ n r 1 µ 98

99 Hence, incremental payments are functions of development factors, r j, and a calendar factor, µ i+j 1, that might be related to some inflation 99

100 Introduction to factorial models: Taylor (1977) In order to identify factors r 1, r 2,.., r n and µ 1, µ 2,..., µ n, i.e. 2n coefficients, an additional constraint is necessary, e.g. on the r j s, r 1 + r r n = 1 (this will be called arithmetic separation method). Hence, the sum on the latest diagonal is d n = Y 1,n + Y 2,n Y n,1 = µ n (r 1 + r r k ) = µ n On the first sur-diagonal d n 1 = Y 1,n 1 +Y 2,n Y n 1,1 = µ n 1 (r 1 + r r n 1 ) = µ n 1 (1 r n ) and using the nth column, we get γ n = Y 1,n = r n µ n, so that r n = γ n µ n and µ n 1 = d n 1 1 r n More generally, it is possible to iterate this idea, and on the ith sur-diagonal, d n i = Y 1,n i + Y 2,n i Y n i,1 = µ n i (r 1 + r r n i ) = µ n i (1 [r n + r n r n i+1 100

101 Introduction to factorial models: Taylor (1977) and finally, based on the n i + 1th column, γ n i+1 = Y 1,n i+1 + Y 2,n i Y i 1,n i+1 = r n i+1 µ n i r n i+1 µ n 1 + r n i+1 µ n r n i+1 = γ n i+1 µ n + µ n µ n i+1 and µ k i = d n i 1 [r n + r n r n i+1 ] k µ k r k in %

102 Introduction to factorial models: Taylor (1977) The challenge here is to forecast forecast values for the µ k s. Either a linear model or an exponential model can be considered

103 Lemaire (1982) and autoregressive models Instead of a simple Markov process, it is possible to assume that the C i,j s can be modeled with an autorgressive model in two directions, rows and columns, C i,j = αc i 1,j + βc i,j

104 Zehnwirth (1977) Here, we consider the following model for the C i,j s C i,j = exp (α i + γ i j) (1 + j) β i, which can be seen as an extended Gamma model. α i is a scale parameter, while β i and γ i are shape parameters. Note that log C i,j = α i + β i log (1 + j) + γ i j. For convenience, we usually assume that β i = β et γ i = γ. Note that if log C i,j is assume to be Gaussian, then C i,j will be lognormal. But then, estimators one the C i,j s while be 104

105 Zehnwirth (1977) Assume that log C i,j N ( X i,j β, σ 2), then, if parameters were obtained using maximum likelihood techniques E (Ĉi,j ) ( σ = E exp (X i,j β 2 )) + 2 ( = C i,j exp n 1 σ 2 ) (1 σ2 n 2 n ) n 1 2 > C i,j, Further, the homoscedastic assumption might not be relevant. Thus Zehnwirth suggested σ 2 i,j = V ar (log C i,j ) = σ 2 (1 + j) 105

106 Regression and reserving De Vylder (1978) proposed a least squares factor method, i.e. we need to find α = (α 0,, α n ) and β = (β 0,, β n ) such or equivalently, assume that ( α, β) = argmin n i,j=0 (X i,j α i β j ) 2, X i,j N (α i β j, σ 2 ), independent. A more general model proposed by De Vylder is the following ( α, β, γ) = argmin n i,j=0 (X i,j α i β j γ i+j 1 ) 2. In order to have an identifiable model, De Vylder suggested to assume γ k = γ k (so that this coefficient will be related to some inflation 106

Claims Reserving under Solvency II

Claims Reserving under Solvency II Claims Reserving under Solvency II Mario V. Wüthrich RiskLab, ETH Zurich Swiss Finance Institute Professor joint work with Michael Merz (University of Hamburg) April 21, 2016 European Congress of Actuaries,

More information

ONE-YEAR AND TOTAL RUN-OFF RESERVE RISK ESTIMATORS BASED ON HISTORICAL ULTIMATE ESTIMATES

ONE-YEAR AND TOTAL RUN-OFF RESERVE RISK ESTIMATORS BASED ON HISTORICAL ULTIMATE ESTIMATES FILIPPO SIEGENTHALER / filippo78@bluewin.ch 1 ONE-YEAR AND TOTAL RUN-OFF RESERVE RISK ESTIMATORS BASED ON HISTORICAL ULTIMATE ESTIMATES ABSTRACT In this contribution we present closed-form formulas in

More information

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited Daniel H. Alai 1 Michael Merz 2 Mario V. Wüthrich 3 Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland

More information

Bootstrapping the triangles

Bootstrapping the triangles Bootstrapping the triangles Prečo, kedy a ako (NE)bootstrapovat v trojuholníkoch? Michal Pešta Charles University in Prague Faculty of Mathematics and Physics Actuarial Seminar, Prague 19 October 01 Overview

More information

Stochastic Incremental Approach for Modelling the Claims Reserves

Stochastic Incremental Approach for Modelling the Claims Reserves International Mathematical Forum, Vol. 8, 2013, no. 17, 807-828 HIKARI Ltd, www.m-hikari.com Stochastic Incremental Approach for Modelling the Claims Reserves Ilyes Chorfi Department of Mathematics University

More information

Calendar Year Dependence Modeling in Run-Off Triangles

Calendar Year Dependence Modeling in Run-Off Triangles Calendar Year Dependence Modeling in Run-Off Triangles Mario V. Wüthrich RiskLab, ETH Zurich May 21-24, 2013 ASTIN Colloquium The Hague www.math.ethz.ch/ wueth Claims reserves at time I = 2010 accident

More information

GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA

GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA DISCUSSION OF THE MEAN SQUARE ERROR OF PREDICTION IN THE CHAIN LADDER RESERVING METHOD BY GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA For a dozen or so years the chain ladder models of Murphy and Mack

More information

Chain ladder with random effects

Chain ladder with random effects Greg Fry Consulting Actuaries Sydney Australia Astin Colloquium, The Hague 21-24 May 2013 Overview Fixed effects models Families of chain ladder models Maximum likelihood estimators Random effects models

More information

Various Extensions Based on Munich Chain Ladder Method

Various Extensions Based on Munich Chain Ladder Method Various Extensions Based on Munich Chain Ladder Method etr Jedlička Charles University, Department of Statistics 20th June 2007, 50th Anniversary ASTIN Colloquium etr Jedlička (UK MFF) Various Extensions

More information

Various extensions based on Munich Chain Ladder method

Various extensions based on Munich Chain Ladder method Various extensions based on Munich Chain Ladder method Topic 3 Liability Risk - erve models Jedlicka, etr Charles University, Department of Statistics Sokolovska 83 rague 8 Karlin 180 00 Czech Republic.

More information

A Loss Reserving Method for Incomplete Claim Data

A Loss Reserving Method for Incomplete Claim Data A Loss Reserving Method for Incomplete Claim Data René Dahms Bâloise, Aeschengraben 21, CH-4002 Basel renedahms@baloisech June 11, 2008 Abstract A stochastic model of an additive loss reserving method

More information

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI Analytics Software Beyond deterministic chain ladder reserves Neil Covington Director of Solutions Management GI Objectives 2 Contents 01 Background 02 Formulaic Stochastic Reserving Methods 03 Bootstrapping

More information

Non-Life Insurance: Mathematics and Statistics

Non-Life Insurance: Mathematics and Statistics Exercise sheet 1 Exercise 1.1 Discrete Distribution Suppose the random variable N follows a geometric distribution with parameter p œ (0, 1), i.e. ; (1 p) P[N = k] = k 1 p if k œ N \{0}, 0 else. (a) Show

More information

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire Outils de Recherche Opérationnelle en Génie MTH 8414 Astuce de modélisation en Programmation Linéaire Résumé Les problèmes ne se présentent pas toujours sous une forme qui soit naturellement linéaire.

More information

The Chain Ladder Reserve Uncertainties Revisited

The Chain Ladder Reserve Uncertainties Revisited The Chain Ladder Reserve Uncertainties Revisited by Alois Gisler Paper to be presented at the ASTIN Colloquium 6 in Lisbon Abstract: Chain ladder () is still one of the most popular and most used reserving

More information

Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business

Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Michal Pešta Charles University in Prague Faculty of Mathematics and Physics Ostap Okhrin Dresden University of Technology

More information

Reserving for multiple excess layers

Reserving for multiple excess layers Reserving for multiple excess layers Ben Zehnwirth and Glen Barnett Abstract Patterns and changing trends among several excess-type layers on the same business tend to be closely related. The changes in

More information

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory Danaïl Davidov under the supervision of Jean-Philippe Boucher Département de mathématiques Université

More information

Individual reserving a survey. R in Insurance, Paris 08-June-2017 Alexandre Boumezoued, joint work with Laurent Devineau

Individual reserving a survey. R in Insurance, Paris 08-June-2017 Alexandre Boumezoued, joint work with Laurent Devineau Individual reserving a survey R in Insurance, Paris 08-June-2017 Alexandre Boumezoued, joint work with Laurent Devineau Agenda 1 Context 2 Model 3 Results 4 Practical illustration 2 Context From aggregate

More information

Apprentissage automatique Méthodes à noyaux - motivation

Apprentissage automatique Méthodes à noyaux - motivation Apprentissage automatique Méthodes à noyaux - motivation MODÉLISATION NON-LINÉAIRE prédicteur non-linéaire On a vu plusieurs algorithmes qui produisent des modèles linéaires (régression ou classification)

More information

Individual loss reserving with the Multivariate Skew Normal framework

Individual loss reserving with the Multivariate Skew Normal framework May 22 2013, K. Antonio, KU Leuven and University of Amsterdam 1 / 31 Individual loss reserving with the Multivariate Skew Normal framework Mathieu Pigeon, Katrien Antonio, Michel Denuit ASTIN Colloquium

More information

Generalized Mack Chain-Ladder Model of Reserving with Robust Estimation

Generalized Mack Chain-Ladder Model of Reserving with Robust Estimation Generalized Mac Chain-Ladder Model of Reserving with Robust Estimation Przemyslaw Sloma Abstract n the present paper we consider the problem of stochastic claims reserving in the framewor of Development

More information

DELTA METHOD and RESERVING

DELTA METHOD and RESERVING XXXVI th ASTIN COLLOQUIUM Zurich, 4 6 September 2005 DELTA METHOD and RESERVING C.PARTRAT, Lyon 1 university (ISFA) N.PEY, AXA Canada J.SCHILLING, GIE AXA Introduction Presentation of methods based on

More information

Greg Taylor. Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales. CAS Spring meeting Phoenix Arizona May 2012

Greg Taylor. Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales. CAS Spring meeting Phoenix Arizona May 2012 Chain ladder correlations Greg Taylor Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales CAS Spring meeting Phoenix Arizona 0-3 May 0 Overview The chain ladder produces

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES State space models in actuarial science by Piet de Jong piet.dejong@mq.edu.au Research Paper No. 2005/02 July 2005 Division of Economic and Financial

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Statistiques en grande dimension

Statistiques en grande dimension Statistiques en grande dimension Christophe Giraud 1,2 et Tristan Mary-Huart 3,4 (1) Université Paris-Sud (2) Ecole Polytechnique (3) AgroParistech (4) INRA - Le Moulon M2 MathSV & Maths Aléa C. Giraud

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

New Perspectives and Methods in Loss Reserving Using Generalized Linear Models

New Perspectives and Methods in Loss Reserving Using Generalized Linear Models New Perspectives and Methods in Loss Reserving Using Generalized Linear Models Jian Tao A Thesis for The Department of Mathematics and Statistics Presented in Partial Fulfillment of the Requirements for

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018 Random variables Florence Perronnin Univ. Grenoble Alpes, LIG, Inria September 28, 2018 Florence Perronnin (UGA) Random variables September 28, 2018 1 / 42 Variables aléatoires Outline 1 Variables aléatoires

More information

Best linear unbiased prediction when error vector is correlated with other random vectors in the model

Best linear unbiased prediction when error vector is correlated with other random vectors in the model Best linear unbiased prediction when error vector is correlated with other random vectors in the model L.R. Schaeffer, C.R. Henderson To cite this version: L.R. Schaeffer, C.R. Henderson. Best linear unbiased

More information

Recent Development in Claims Reserving

Recent Development in Claims Reserving WDS'06 roceedings o Contributed apers, art, 118 123, 2006 SBN 80-86732-84-3 MATFZRESS Recent Development in Claims Reserving Jedlička Charles University, Faculty o Mathematics and hysics, rague, Czech

More information

CHAIN LADDER FORECAST EFFICIENCY

CHAIN LADDER FORECAST EFFICIENCY CHAIN LADDER FORECAST EFFICIENCY Greg Taylor Taylor Fry Consulting Actuaries Level 8, 30 Clarence Street Sydney NSW 2000 Australia Professorial Associate, Centre for Actuarial Studies Faculty of Economics

More information

Triangles in Life and Casualty

Triangles in Life and Casualty Triangles in Life and Casualty Gary G. Venter, Guy Carpenter LLC gary.g.venter@guycarp.com Abstract The loss development triangles in casualty insurance have a similar setup to the mortality datasets used

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

A set of formulas for primes

A set of formulas for primes A set of formulas for primes by Simon Plouffe December 31, 2018 Abstract In 1947, W. H. Mills published a paper describing a formula that gives primes : if A 1.3063778838630806904686144926 then A is always

More information

arxiv: v1 [stat.ap] 17 Jun 2013

arxiv: v1 [stat.ap] 17 Jun 2013 Modeling Dependencies in Claims Reserving with GEE Šárka Hudecová a, Michal Pešta a, arxiv:1306.3768v1 [stat.ap] 17 Jun 2013 a Charles University in Prague, Faculty of Mathematics and Physics, Department

More information

Apprentissage automatique Machine à vecteurs de support - motivation

Apprentissage automatique Machine à vecteurs de support - motivation Apprentissage automatique Machine à vecteurs de support - motivation RÉGRESSION À NOYAU régression à noyau Algorithme de régression à noyau entraînement : prédiction : a = (K + λi N ) 1 t. y(x) =k(x) T

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

arxiv: v1 [stat.ap] 19 Jun 2013

arxiv: v1 [stat.ap] 19 Jun 2013 Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Michal Pešta a,, Ostap Okhrin b arxiv:1306.4529v1 [stat.ap] 19 Jun 2013 a Charles University in Prague, Faculty of

More information

Dependence structures with applications to actuarial science

Dependence structures with applications to actuarial science with applications to actuarial science Department of Statistics, ITAM, Mexico Recent Advances in Actuarial Mathematics, OAX, MEX October 26, 2015 Contents Order-1 process Application in survival analysis

More information

arxiv: v1 [stat.me] 25 Jan 2015 Table of Contents

arxiv: v1 [stat.me] 25 Jan 2015 Table of Contents Comparison of Stochastic Claims Reserving Models in Insurance László Martinek 1, Miklós Arató 1 and Miklós Mályusz 1 1 Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary January 27,

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER MLE Going the Way of the Buggy Whip Used to be gold standard of statistical estimation Minimum variance

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

On the existence of maximum likelihood estimators in a Poissongamma HGLM and a negative binomial regression model

On the existence of maximum likelihood estimators in a Poissongamma HGLM and a negative binomial regression model Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin Session CPS027) p.6433 On the existence of maximum likelihood estimators in a Poissongamma HGLM and a negative binomial regression

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 Lecture 2: Linear Models Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector

More information

Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13)

Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13) Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13) 1. Weighted Least Squares (textbook 11.1) Recall regression model Y = β 0 + β 1 X 1 +... + β p 1 X p 1 + ε in matrix form: (Ch. 5,

More information

DETERMINING HIGH VOLTAGE CABLE CONDUCTOR TEMPERATURES. Guy Van der Veken. Euromold, Belgium. INVESTIGATIONS. INTRODUCTION.

DETERMINING HIGH VOLTAGE CABLE CONDUCTOR TEMPERATURES. Guy Van der Veken. Euromold, Belgium. INVESTIGATIONS. INTRODUCTION. DETERMINING HIGH VOLTAGE CABLE CONDUCTOR TEMPERATURES. Guy Van der Veken. Euromold, Belgium. INTRODUCTION. INVESTIGATIONS. Type tests on MV cable accessories are described in CENELEC HD68 and HD69 documents.

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Inference when identifying assumptions are doubted. A. Theory. Structural model of interest: B 1 y t1. u t. B m y tm. u t i.i.d.

Inference when identifying assumptions are doubted. A. Theory. Structural model of interest: B 1 y t1. u t. B m y tm. u t i.i.d. Inference when identifying assumptions are doubted A. Theory B. Applications Structural model of interest: A y t B y t B m y tm nn n i.i.d. N, D D diagonal A. Theory Bayesian approach: Summarize whatever

More information

Solutions to the Spring 2015 CAS Exam ST

Solutions to the Spring 2015 CAS Exam ST Solutions to the Spring 2015 CAS Exam ST (updated to include the CAS Final Answer Key of July 15) There were 25 questions in total, of equal value, on this 2.5 hour exam. There was a 10 minute reading

More information

Identification of the age-period-cohort model and the extended chain ladder model

Identification of the age-period-cohort model and the extended chain ladder model Identification of the age-period-cohort model and the extended chain ladder model By D. KUANG Department of Statistics, University of Oxford, Oxford OX TG, U.K. di.kuang@some.ox.ac.uk B. Nielsen Nuffield

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

A Short Course in Basic Statistics

A Short Course in Basic Statistics A Short Course in Basic Statistics Ian Schindler November 5, 2017 Creative commons license share and share alike BY: C 1 Descriptive Statistics 1.1 Presenting statistical data Definition 1 A statistical

More information

Estimation of the extreme value index and high quantiles under random censoring

Estimation of the extreme value index and high quantiles under random censoring Estimation of the extreme value index and high quantiles under random censoring Jan Beirlant () & Emmanuel Delafosse (2) & Armelle Guillou (2) () Katholiee Universiteit Leuven, Department of Mathematics,

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

A set of formulas for primes

A set of formulas for primes A set of formulas for primes by Simon Plouffe December 31, 2018 Abstract In 1947, W. H. Mills published a paper describing a formula that gives primes : if A 1.3063778838630806904686144926 then A is always

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection SG 21006 Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 28

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 4 (2011/12) 1 February 20, 2012 Outline: 1. Failure Time 2. Loss Frequency 3. Loss Severity 4. Aggregate Claim ====================================================

More information

2.5 Forecasting and Impulse Response Functions

2.5 Forecasting and Impulse Response Functions 2.5 Forecasting and Impulse Response Functions Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

GLM I An Introduction to Generalized Linear Models

GLM I An Introduction to Generalized Linear Models GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March Presented by: Tanya D. Havlicek, ACAS, MAAA ANTITRUST Notice The Casualty Actuarial Society is committed

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 4 (2011/12) 1 February 20, 2012 Outline: 1. Failure Time 2. Loss Frequency 3. Loss Severity 4. Aggregate Claim ====================================================

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION GENERALIZED LINEAR MODELS BEYOND THE EXPONENTIAL FAMILY WITH LOSS RESERVE APPLICATIONS* BY GARY G. VENTER ABSTRACT The formulation of generalized linear models in Klugman, Panjer and Willmot (2004) is

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Kato s inequality when u is a measure. L inégalité de Kato lorsque u est une mesure

Kato s inequality when u is a measure. L inégalité de Kato lorsque u est une mesure Kato s inequality when u is a measure L inégalité de Kato lorsque u est une mesure Haïm Brezis a,b, Augusto C. Ponce a,b, a Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, BC 187, 4

More information

On a multivariate implementation of the Gibbs sampler

On a multivariate implementation of the Gibbs sampler Note On a multivariate implementation of the Gibbs sampler LA García-Cortés, D Sorensen* National Institute of Animal Science, Research Center Foulum, PB 39, DK-8830 Tjele, Denmark (Received 2 August 1995;

More information

A DIFFERENT APPROACH TO MULTIPLE CORRESPONDENCE ANALYSIS (MCA) THAN THAT OF SPECIFIC MCA. Odysseas E. MOSCHIDIS 1

A DIFFERENT APPROACH TO MULTIPLE CORRESPONDENCE ANALYSIS (MCA) THAN THAT OF SPECIFIC MCA. Odysseas E. MOSCHIDIS 1 Math. Sci. hum / Mathematics and Social Sciences 47 e année, n 86, 009), p. 77-88) A DIFFERENT APPROACH TO MULTIPLE CORRESPONDENCE ANALYSIS MCA) THAN THAT OF SPECIFIC MCA Odysseas E. MOSCHIDIS RÉSUMÉ Un

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

Course 4 Solutions November 2001 Exams

Course 4 Solutions November 2001 Exams Course 4 Solutions November 001 Exams November, 001 Society of Actuaries Question #1 From the Yule-Walker equations: ρ φ + ρφ 1 1 1. 1 1+ ρ ρφ φ Substituting the given quantities yields: 0.53 φ + 0.53φ

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS

A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS Greg Taylor Taylor Fry Consulting Actuaries Level, 55 Clarence Street Sydney NSW 2000 Australia Professorial Associate Centre for Actuarial Studies

More information

Forecasting with the age-period-cohort model and the extended chain-ladder model

Forecasting with the age-period-cohort model and the extended chain-ladder model Forecasting with the age-period-cohort model and the extended chain-ladder model By D. KUANG Department of Statistics, University of Oxford, Oxford OX1 3TG, U.K. di.kuang@some.ox.ac.uk B. Nielsen Nuffield

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

Mixture distributions in Exams MLC/3L and C/4

Mixture distributions in Exams MLC/3L and C/4 Making sense of... Mixture distributions in Exams MLC/3L and C/4 James W. Daniel Jim Daniel s Actuarial Seminars www.actuarialseminars.com February 1, 2012 c Copyright 2012 by James W. Daniel; reproduction

More information

Statistical View of Least Squares

Statistical View of Least Squares Basic Ideas Some Examples Least Squares May 22, 2007 Basic Ideas Simple Linear Regression Basic Ideas Some Examples Least Squares Suppose we have two variables x and y Basic Ideas Simple Linear Regression

More information

A few basics of credibility theory

A few basics of credibility theory A few basics of credibility theory Greg Taylor Director, Taylor Fry Consulting Actuaries Professorial Associate, University of Melbourne Adjunct Professor, University of New South Wales General credibility

More information

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn!

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Questions?! C. Porciani! Estimation & forecasting! 2! Cosmological parameters! A branch of modern cosmological research focuses

More information

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Séminaire de Statistiques de l'irma Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Romain Biard LMB, Université de Franche-Comté en collaboration avec

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information