Greg Taylor. Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales. CAS Spring meeting Phoenix Arizona May 2012

Size: px
Start display at page:

Download "Greg Taylor. Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales. CAS Spring meeting Phoenix Arizona May 2012"

Transcription

1 Chain ladder correlations Greg Taylor Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales CAS Spring meeting Phoenix Arizona 0-3 May 0 Overview The chain ladder produces cell-by-cell forecasts of future claims experience There are two distinct families of model that support the chain ladder algorithm Consideration will be given to the correlations between the forecasts of different cells (conditional on information to date) Separately for the two families Paper to appear shortly as: Chain ladder correlations Variance 5()

2 Framework and notation Claims reserving trapezium Accident period k = 3 J Y kj Observations Often in the literature = J and the trapezium becomes a triangle Framework and notation Claims reserving trapezium Accident period k = 3 J Y kj Observations Calendar time moves in this direction Calendar periods are represented along diagonals 3

3 Framework and notation Claims reserving trapezium Accident period k = 3 J Y kj F U T U R E Observations To be predicted on the basis of past 4 Framework and notation Claims reserving trapezium Accident period k = 3 J X kj F U T U R E Cumulative row sums X kj min J, k i To be predicted on the basis of past 5 Y ki 3

4 Chain ladder algorithm Claims reserving trapezium Accident period k = 3 J X kj F U T U R E Cumulative row sums X kj Calculate min J, k i j j Y ˆ f X / X, j k, j kj k k Forecast Xˆ X fˆ ˆf kj k, k k j ki Last diagonal from the past 6 Correlations of predictions Accident period k = 3 J F U T U R E 7 4

5 Correlations of predictions Accident period k = 3 J F U T U R E Latest information available for row (conditions forecasts) Forecasts of future experience 8 Correlations of predictions Accident period k = 3 J F U T U R E Latest information available for row (conditions forecasts) Forecasts of future experience Consider correlations of within-row forecasts conditioned on most recent information Corr [X k,j+m,x k,j+m+n X kj ] 9 5

6 Correlations of predictions Accident period k = 3 J F U T U R E Latest information available for row (conditions forecasts) Forecasts of future experience Consider correlations of within-row forecasts conditioned on most recent information Corr [X k,j+m,x k,j+m+n X kj ] = ρ k,j+m,j+m+n j 0 ODP Mack model (ODPM) Accident periods are stochastically independent, ie Y kj, Y hi are independent if k h (ODPM) For each k the X kj (j varying) form a Markov chain (ODPM3) For each k=,,, and j=,,,j-, X k,j+ X kj ~ ODP(f j X kj,φ j+ ) Parameters f j are referred to as age-to-age factors Example of a recursive model Recursive because each observation depends on predecessor in same row 6

7 ODP cross-classified model (ODPCC) All random variables Y kj are stochastically independent (ODPCC) For each k =,,, and j =,,, J, a)y kj ~ ODP(α k β j,φ j ) b) J j= β j = Example of a non-recursive model Non-recursive because each observation independent d of predecessors in same row Relevance of ODP Mack and cross-classified models Very different models But in both cases chain ladder algorithm gives MLE forecasts But what about correlations of the forecasts under the respective models? 3 7

8 Conditional correlations of predictors Explicit expressions for ρ k,j+m,j+m+n j = Corr[X k,j+m,x k,j+m+n X kj ] can be obtained (see paper) These are not especially informative in themselves Subsequent discussion concentrates on their properties 4 Properties of conditional correlations ODP Mack model 5 8

9 Properties of conditional correlations ODP Mack model Accident period k = 3 J Correlation decreases as separation increases 6 Properties of conditional correlations ODP Mack model φ i, i=j+,,j+m φ i, i=j+m+,,j+m+n 7 9

10 Properties of conditional correlations ODP Mack model φ i, i=j+,,j+m φ i, i=j+m+,,j+m+n Accident period k = 3 J Correlation increases as overdispersion increases in this region and decreases in this region 8 Properties of conditional correlations ODP Mack model φ i, i=j+,,j+m φ i, i=j+m+,,j+m+n ρ kj+mj+m+n j k,j+m,j+m+n j as any f i, i=j+,,j+m+n provided that φ i f i /(f i -), i=j+,,j+m φ i f i /(f i -), i=j+m+,,j+m+n 9 0

11 Properties of conditional correlations ODP Mack model 3 J Accident period k = φ i, i=j+,,j+m φ i, i=j+m+,,j+m+n ρ kj+mj+m+n j k,j+m,j+m+n j as any f i, i=j+,,j+m+n provided that φ i f i /(f i -), i=j+,,j+m φ i f i /(f i -), i=j+m+,,j+m+n Correlation increases as claims development increases in this region and decreases in this 0 region Properties of conditional correlations ODP Mack model ODP cross-classified model φ i, i=j+,,j+m φ i, i=j+,,j+m φ i, i=j+m+,,j+m+n φ i, i=j+m+,,j+m+n ρ kj+mj+m+n j k,j+m,j+m+n j as any f i, ρ k,j+m,j+m+n j m as any i=j+,,j+m+n provided that β i, i=j+,,j+m φ i f i /(f i -), i=j+,,j+m β i, i=j+m+,,j+m+n φ i f i /(f i -), i=j+m+,,j+m+n Again effect of increasing or decreasing claims development

12 Claims development in recursive and nonrecursive models Claims development effects of correlations expressed in terms of: The f i for recursive models The β i for non-recursive models BUT the two can be shown to be related: f j = j+ i=j β i / j i=j β i Then Properties of conditional correlations (cont d) ODP Mack model ODP cross-classified model φ i, i=j+,,j+m φ i, i=j+m+,,j+m+n f i, i=j+,,j+m+n provided that φ i f i /(f i -), i=j+,,j+m φ i f i /(f i -), i=j+m+,,j+m+n φ i, i=j+,,j+m φ i, i=j+m+,,j+m+n f i, i=j+,,j+m+n provided that Φ i+ f i /(f i -), i=j+,,j+m Φ i+ f i /(f i -), i=j+m+,,j+m+n Now almost identical 3

13 Comparison between correlations of recursive and non-recursive models () Consider the case of recursive and non-recursive models with common values of the f i, φ i The models have been seen to have similar ordering properties Are they actually different? 4 Comparison between correlations of recursive and non-recursive models () Denote ρ k,j+m,j+m+n j by ρ NR k,j+m,j+m+n j for the non-recursive model ρ k,j+m,j+m+n j by ρ R k,j+m,j+m+n j for the recursive model Then ρ NR k,j+m,j+m+n j ρ R k,j+m,j+m+n j ρ NR k,j+m,j+m+n j / ρ R k,j+m,j+m+n j as j 5 3

14 Conclusion The recursive and non-recursive models considered here are quite different but generate identical (chain ladder) forecasts However their prediction errors differ How should one decide which of these chain ladder models to adopt? Correlation properties of forecasts might provide one criterion for the decision eg if one wishes to assume heavy correlations, one might adopt the recursive form 6 Questions? 7 4

A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS

A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS Greg Taylor Taylor Fry Consulting Actuaries Level, 55 Clarence Street Sydney NSW 2000 Australia Professorial Associate Centre for Actuarial Studies

More information

Chain ladder with random effects

Chain ladder with random effects Greg Fry Consulting Actuaries Sydney Australia Astin Colloquium, The Hague 21-24 May 2013 Overview Fixed effects models Families of chain ladder models Maximum likelihood estimators Random effects models

More information

CHAIN LADDER FORECAST EFFICIENCY

CHAIN LADDER FORECAST EFFICIENCY CHAIN LADDER FORECAST EFFICIENCY Greg Taylor Taylor Fry Consulting Actuaries Level 8, 30 Clarence Street Sydney NSW 2000 Australia Professorial Associate, Centre for Actuarial Studies Faculty of Economics

More information

Synchronous bootstrapping of loss reserves

Synchronous bootstrapping of loss reserves Synchronous bootstrapping of loss reserves Greg Taylor Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales Gráinne McGuire Taylor Fry Consulting Actuaries ASTIN Colloquium

More information

Calendar Year Dependence Modeling in Run-Off Triangles

Calendar Year Dependence Modeling in Run-Off Triangles Calendar Year Dependence Modeling in Run-Off Triangles Mario V. Wüthrich RiskLab, ETH Zurich May 21-24, 2013 ASTIN Colloquium The Hague www.math.ethz.ch/ wueth Claims reserves at time I = 2010 accident

More information

Bootstrapping the triangles

Bootstrapping the triangles Bootstrapping the triangles Prečo, kedy a ako (NE)bootstrapovat v trojuholníkoch? Michal Pešta Charles University in Prague Faculty of Mathematics and Physics Actuarial Seminar, Prague 19 October 01 Overview

More information

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited Daniel H. Alai 1 Michael Merz 2 Mario V. Wüthrich 3 Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland

More information

Claims Reserving under Solvency II

Claims Reserving under Solvency II Claims Reserving under Solvency II Mario V. Wüthrich RiskLab, ETH Zurich Swiss Finance Institute Professor joint work with Michael Merz (University of Hamburg) April 21, 2016 European Congress of Actuaries,

More information

GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA

GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA DISCUSSION OF THE MEAN SQUARE ERROR OF PREDICTION IN THE CHAIN LADDER RESERVING METHOD BY GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA For a dozen or so years the chain ladder models of Murphy and Mack

More information

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI Analytics Software Beyond deterministic chain ladder reserves Neil Covington Director of Solutions Management GI Objectives 2 Contents 01 Background 02 Formulaic Stochastic Reserving Methods 03 Bootstrapping

More information

Triangles in Life and Casualty

Triangles in Life and Casualty Triangles in Life and Casualty Gary G. Venter, Guy Carpenter LLC gary.g.venter@guycarp.com Abstract The loss development triangles in casualty insurance have a similar setup to the mortality datasets used

More information

GREG TAYLOR ABSTRACT

GREG TAYLOR ABSTRACT MAXIMUM LIELIHOOD AND ESTIMATION EFFICIENCY OF THE CHAIN LADDER BY GREG TAYLOR ABSTRACT The chain ladder is considered in relation to certain recursive and non-recursive models of claim observations. The

More information

DELTA METHOD and RESERVING

DELTA METHOD and RESERVING XXXVI th ASTIN COLLOQUIUM Zurich, 4 6 September 2005 DELTA METHOD and RESERVING C.PARTRAT, Lyon 1 university (ISFA) N.PEY, AXA Canada J.SCHILLING, GIE AXA Introduction Presentation of methods based on

More information

ONE-YEAR AND TOTAL RUN-OFF RESERVE RISK ESTIMATORS BASED ON HISTORICAL ULTIMATE ESTIMATES

ONE-YEAR AND TOTAL RUN-OFF RESERVE RISK ESTIMATORS BASED ON HISTORICAL ULTIMATE ESTIMATES FILIPPO SIEGENTHALER / filippo78@bluewin.ch 1 ONE-YEAR AND TOTAL RUN-OFF RESERVE RISK ESTIMATORS BASED ON HISTORICAL ULTIMATE ESTIMATES ABSTRACT In this contribution we present closed-form formulas in

More information

Stochastic Incremental Approach for Modelling the Claims Reserves

Stochastic Incremental Approach for Modelling the Claims Reserves International Mathematical Forum, Vol. 8, 2013, no. 17, 807-828 HIKARI Ltd, www.m-hikari.com Stochastic Incremental Approach for Modelling the Claims Reserves Ilyes Chorfi Department of Mathematics University

More information

Identification of the age-period-cohort model and the extended chain ladder model

Identification of the age-period-cohort model and the extended chain ladder model Identification of the age-period-cohort model and the extended chain ladder model By D. KUANG Department of Statistics, University of Oxford, Oxford OX TG, U.K. di.kuang@some.ox.ac.uk B. Nielsen Nuffield

More information

Various Extensions Based on Munich Chain Ladder Method

Various Extensions Based on Munich Chain Ladder Method Various Extensions Based on Munich Chain Ladder Method etr Jedlička Charles University, Department of Statistics 20th June 2007, 50th Anniversary ASTIN Colloquium etr Jedlička (UK MFF) Various Extensions

More information

Individual reserving a survey. R in Insurance, Paris 08-June-2017 Alexandre Boumezoued, joint work with Laurent Devineau

Individual reserving a survey. R in Insurance, Paris 08-June-2017 Alexandre Boumezoued, joint work with Laurent Devineau Individual reserving a survey R in Insurance, Paris 08-June-2017 Alexandre Boumezoued, joint work with Laurent Devineau Agenda 1 Context 2 Model 3 Results 4 Practical illustration 2 Context From aggregate

More information

Markov Chains Absorption Hamid R. Rabiee

Markov Chains Absorption Hamid R. Rabiee Markov Chains Absorption Hamid R. Rabiee Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is (i.e., p ii = ). A

More information

Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business

Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Michal Pešta Charles University in Prague Faculty of Mathematics and Physics Ostap Okhrin Dresden University of Technology

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Model selection Mean square error

More information

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit David Vener Department of Mathematics, MIT May 5, 3 Introduction In 8.366, we discussed the relationship

More information

Multivariate Chain Ladder

Multivariate Chain Ladder Multivariate Chain Ladder Carsten Pröhl and Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden schmidt@mathtu-dresdende Multivariate Chain Ladder p1/44 Multivariate Chain

More information

A Loss Reserving Method for Incomplete Claim Data

A Loss Reserving Method for Incomplete Claim Data A Loss Reserving Method for Incomplete Claim Data René Dahms Bâloise, Aeschengraben 21, CH-4002 Basel renedahms@baloisech June 11, 2008 Abstract A stochastic model of an additive loss reserving method

More information

Various extensions based on Munich Chain Ladder method

Various extensions based on Munich Chain Ladder method Various extensions based on Munich Chain Ladder method Topic 3 Liability Risk - erve models Jedlicka, etr Charles University, Department of Statistics Sokolovska 83 rague 8 Karlin 180 00 Czech Republic.

More information

Markov Chains Absorption (cont d) Hamid R. Rabiee

Markov Chains Absorption (cont d) Hamid R. Rabiee Markov Chains Absorption (cont d) Hamid R. Rabiee 1 Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is 1 (i.e.,

More information

RECURSION EQUATION FOR

RECURSION EQUATION FOR Math 46 Lecture 8 Infinite Horizon discounted reward problem From the last lecture: The value function of policy u for the infinite horizon problem with discount factor a and initial state i is W i, u

More information

Recent Development in Claims Reserving

Recent Development in Claims Reserving WDS'06 roceedings o Contributed apers, art, 118 123, 2006 SBN 80-86732-84-3 MATFZRESS Recent Development in Claims Reserving Jedlička Charles University, Faculty o Mathematics and hysics, rague, Czech

More information

Math/CS 466/666: Homework Solutions for Chapter 3

Math/CS 466/666: Homework Solutions for Chapter 3 Math/CS 466/666: Homework Solutions for Chapter 3 31 Can all matrices A R n n be factored A LU? Why or why not? Consider the matrix A ] 0 1 1 0 Claim that this matrix can not be factored A LU For contradiction,

More information

Theoretical Statistical Correlation for Biometric Identification Performance

Theoretical Statistical Correlation for Biometric Identification Performance Theoretical Statistical Correlation for Biometric Identification Performance Michael E. Schuckers schuckers@stlawu.edu Theoretical Statistical Correlation for Biometric Identification Performance p. 1/20

More information

A few basics of credibility theory

A few basics of credibility theory A few basics of credibility theory Greg Taylor Director, Taylor Fry Consulting Actuaries Professorial Associate, University of Melbourne Adjunct Professor, University of New South Wales General credibility

More information

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES State space models in actuarial science by Piet de Jong piet.dejong@mq.edu.au Research Paper No. 2005/02 July 2005 Division of Economic and Financial

More information

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E 05//0 5:26:04 09/6/0 (259) 6 7 8 9 20 2 22 2 09/7 0 02 0 000/00 0 02 0 04 05 06 07 08 09 0 2 ay 000 ^ 0 X Y / / / / ( %/ ) 2 /0 2 ( ) ^ 4 / Y/ 2 4 5 6 7 8 9 2 X ^ X % 2 // 09/7/0 (260) ay 000 02 05//0

More information

The Chain Ladder Reserve Uncertainties Revisited

The Chain Ladder Reserve Uncertainties Revisited The Chain Ladder Reserve Uncertainties Revisited by Alois Gisler Paper to be presented at the ASTIN Colloquium 6 in Lisbon Abstract: Chain ladder () is still one of the most popular and most used reserving

More information

6.842 Randomness and Computation March 3, Lecture 8

6.842 Randomness and Computation March 3, Lecture 8 6.84 Randomness and Computation March 3, 04 Lecture 8 Lecturer: Ronitt Rubinfeld Scribe: Daniel Grier Useful Linear Algebra Let v = (v, v,..., v n ) be a non-zero n-dimensional row vector and P an n n

More information

(x t. x t +1. TIME SERIES (Chapter 8 of Wilks)

(x t. x t +1. TIME SERIES (Chapter 8 of Wilks) 45 TIME SERIES (Chapter 8 of Wilks) In meteorology, the order of a time series matters! We will assume stationarity of the statistics of the time series. If there is non-stationarity (e.g., there is a

More information

Chapter 8 Dynamic Programming

Chapter 8 Dynamic Programming Chapter 8 Dynamic Programming Copyright 007 Pearson Addison-Wesley. All rights reserved. Dynamic Programming Dynamic Programming is a general algorithm design technique for solving problems defined by

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

The Mabinogion Sheep Problem

The Mabinogion Sheep Problem The Mabinogion Sheep Problem Kun Dong Cornell University April 22, 2015 K. Dong (Cornell University) The Mabinogion Sheep Problem April 22, 2015 1 / 18 Introduction (Williams 1991) we are given a herd

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Introduction Goal: Classify objects by learning nonlinearity There are many problems for which linear discriminants are insufficient for minimum error In previous methods, the

More information

arxiv: v1 [stat.ap] 19 Jun 2013

arxiv: v1 [stat.ap] 19 Jun 2013 Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Michal Pešta a,, Ostap Okhrin b arxiv:1306.4529v1 [stat.ap] 19 Jun 2013 a Charles University in Prague, Faculty of

More information

Forecasting with the age-period-cohort model and the extended chain-ladder model

Forecasting with the age-period-cohort model and the extended chain-ladder model Forecasting with the age-period-cohort model and the extended chain-ladder model By D. KUANG Department of Statistics, University of Oxford, Oxford OX1 3TG, U.K. di.kuang@some.ox.ac.uk B. Nielsen Nuffield

More information

Stochastic Problems. 1 Examples. 1.1 Neoclassical Growth Model with Stochastic Technology. 1.2 A Model of Job Search

Stochastic Problems. 1 Examples. 1.1 Neoclassical Growth Model with Stochastic Technology. 1.2 A Model of Job Search Stochastic Problems References: SLP chapters 9, 10, 11; L&S chapters 2 and 6 1 Examples 1.1 Neoclassical Growth Model with Stochastic Technology Production function y = Af k where A is random Let A s t

More information

Individual loss reserving with the Multivariate Skew Normal framework

Individual loss reserving with the Multivariate Skew Normal framework May 22 2013, K. Antonio, KU Leuven and University of Amsterdam 1 / 31 Individual loss reserving with the Multivariate Skew Normal framework Mathieu Pigeon, Katrien Antonio, Michel Denuit ASTIN Colloquium

More information

Chapter 8 Dynamic Programming

Chapter 8 Dynamic Programming Chapter 8 Dynamic Programming Copyright 2007 Pearson Addison-Wesley. All rights reserved. Dynamic Programming Dynamic Programming is a general algorithm design technique for solving problems defined by

More information

A REVIEW AND APPLICATION OF HIDDEN MARKOV MODELS AND DOUBLE CHAIN MARKOV MODELS

A REVIEW AND APPLICATION OF HIDDEN MARKOV MODELS AND DOUBLE CHAIN MARKOV MODELS A REVIEW AND APPLICATION OF HIDDEN MARKOV MODELS AND DOUBLE CHAIN MARKOV MODELS Michael Ryan Hoff A Dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment

More information

McGill University Department of Electrical and Computer Engineering

McGill University Department of Electrical and Computer Engineering McGill University Department of Electrical and Computer Engineering ECSE 56 - Stochastic Control Project Report Professor Aditya Mahajan Team Decision Theory and Information Structures in Optimal Control

More information

Stochastic Processes

Stochastic Processes MTHE/STAT455, STAT855 Fall 202 Stochastic Processes Final Exam, Solutions (5 marks) (a) (0 marks) Condition on the first pair to bond; each of the n adjacent pairs is equally likely to bond Given that

More information

arxiv: v1 [stat.ap] 17 Jun 2013

arxiv: v1 [stat.ap] 17 Jun 2013 Modeling Dependencies in Claims Reserving with GEE Šárka Hudecová a, Michal Pešta a, arxiv:1306.3768v1 [stat.ap] 17 Jun 2013 a Charles University in Prague, Faculty of Mathematics and Physics, Department

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

Uncertainty Runs Rampant in the Universe C. Ebeling circa Markov Chains. A Stochastic Process. Into each life a little uncertainty must fall.

Uncertainty Runs Rampant in the Universe C. Ebeling circa Markov Chains. A Stochastic Process. Into each life a little uncertainty must fall. Uncertainty Runs Rampant in the Universe C. Ebeling circa 2000 Markov Chains A Stochastic Process Into each life a little uncertainty must fall. Our Hero - Andrei Andreyevich Markov Born: 14 June 1856

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Lecture 7: Stochastic Dynamic Programing and Markov Processes

Lecture 7: Stochastic Dynamic Programing and Markov Processes Lecture 7: Stochastic Dynamic Programing and Markov Processes Florian Scheuer References: SLP chapters 9, 10, 11; LS chapters 2 and 6 1 Examples 1.1 Neoclassical Growth Model with Stochastic Technology

More information

An Introduction to Multivariate Methods

An Introduction to Multivariate Methods Chapter 12 An Introduction to Multivariate Methods Multivariate statistical methods are used to display, analyze, and describe data on two or more features or variables simultaneously. I will discuss multivariate

More information

REGRESSION TREE CREDIBILITY MODEL

REGRESSION TREE CREDIBILITY MODEL LIQUN DIAO AND CHENGGUO WENG Department of Statistics and Actuarial Science, University of Waterloo Advances in Predictive Analytics Conference, Waterloo, Ontario Dec 1, 2017 Overview Statistical }{{ Method

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Case study -3: Monthly streamflows

More information

IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2011, Professor Whitt Class Lecture Notes: Tuesday, March 1.

IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2011, Professor Whitt Class Lecture Notes: Tuesday, March 1. IEOR 46: Introduction to Operations Research: Stochastic Models Spring, Professor Whitt Class Lecture Notes: Tuesday, March. Continuous-Time Markov Chains, Ross Chapter 6 Problems for Discussion and Solutions.

More information

Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting

Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting Anne Philippe Laboratoire de Mathématiques Jean Leray Université de Nantes Workshop EDF-INRIA,

More information

Currie, Iain Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh EH14 4AS, UK

Currie, Iain Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh EH14 4AS, UK An Introduction to Generalized Linear Array Models Currie, Iain Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh EH14 4AS, UK E-mail: I.D.Currie@hw.ac.uk 1 Motivating

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Chapter 5 THE APPLICATION OF THE Z TRANSFORM. 5.3 Stability

Chapter 5 THE APPLICATION OF THE Z TRANSFORM. 5.3 Stability Chapter 5 THE APPLICATION OF THE Z TRANSFORM 5.3 Stability Copyright c 2005- Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org February 13, 2008 Frame # 1 Slide # 1 A. Antoniou Digital Signal

More information

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0 4 Determinants The determinant of a square matrix is a scalar (i.e. an element of the field from which the matrix entries are drawn which can be associated to it, and which contains a surprisingly large

More information

Risk-Sensitive and Average Optimality in Markov Decision Processes

Risk-Sensitive and Average Optimality in Markov Decision Processes Risk-Sensitive and Average Optimality in Markov Decision Processes Karel Sladký Abstract. This contribution is devoted to the risk-sensitive optimality criteria in finite state Markov Decision Processes.

More information

Determinants: Introduction and existence

Determinants: Introduction and existence Math 5327 Spring 2018 Determinants: Introduction and existence In this set of notes I try to give the general theory of determinants in a fairly abstract setting. I will start with the statement of the

More information

arxiv: v1 [stat.me] 25 Jan 2015 Table of Contents

arxiv: v1 [stat.me] 25 Jan 2015 Table of Contents Comparison of Stochastic Claims Reserving Models in Insurance László Martinek 1, Miklós Arató 1 and Miklós Mályusz 1 1 Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary January 27,

More information

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2 Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution Defn: Z R 1 N(0,1) iff f Z (z) = 1 2π e z2 /2 Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) (a column

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University Chap 1. Overview of Statistical Learning (HTF, 2.1-2.6, 2.9) Yongdai Kim Seoul National University 0. Learning vs Statistical learning Learning procedure Construct a claim by observing data or using logics

More information

Markov Chains (Part 4)

Markov Chains (Part 4) Markov Chains (Part 4) Steady State Probabilities and First Passage Times Markov Chains - 1 Steady-State Probabilities Remember, for the inventory example we had (8) P &.286 =.286.286 %.286 For an irreducible

More information

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition Applied mathematics PhD candidate, physics MA UC Berkeley April 26, 2013 UCB 1/19 Symmetric positive-definite I Definition A symmetric matrix A R n n is positive definite iff x T Ax > 0 holds x 0 R n.

More information

Problems. HW problem 5.7 Math 504. Spring CSUF by Nasser Abbasi

Problems. HW problem 5.7 Math 504. Spring CSUF by Nasser Abbasi Problems HW problem 5.7 Math 504. Spring 2008. CSUF by Nasser Abbasi 1 Problem 6.3 Part(A) Let I n be an indicator variable de ned as 1 when (n = jj I n = 0 = i) 0 otherwise Hence Now we see that E (V

More information

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education Deciphering Math Notation Billy Skorupski Associate Professor, School of Education Agenda General overview of data, variables Greek and Roman characters in math and statistics Parameters vs. Statistics

More information

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory Danaïl Davidov under the supervision of Jean-Philippe Boucher Département de mathématiques Université

More information

Linear Algebra Solutions 1

Linear Algebra Solutions 1 Math Camp 1 Do the following: Linear Algebra Solutions 1 1. Let A = and B = 3 8 5 A B = 3 5 9 A + B = 9 11 14 4 AB = 69 3 16 BA = 1 4 ( 1 3. Let v = and u = 5 uv = 13 u v = 13 v u = 13 Math Camp 1 ( 7

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION GENERALIZED LINEAR MODELS BEYOND THE EXPONENTIAL FAMILY WITH LOSS RESERVE APPLICATIONS* BY GARY G. VENTER ABSTRACT The formulation of generalized linear models in Klugman, Panjer and Willmot (2004) is

More information

Linear Prediction Theory

Linear Prediction Theory Linear Prediction Theory Joseph A. O Sullivan ESE 524 Spring 29 March 3, 29 Overview The problem of estimating a value of a random process given other values of the random process is pervasive. Many problems

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Direct Methods for Solving Linear Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview General Linear Systems Gaussian Elimination Triangular Systems The LU Factorization

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Regression on Principal components

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Copyright c 2007 by Karl Sigman 1 Simulating normal Gaussian rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Fundamental to many applications

More information

Generalized Boosted Models: A guide to the gbm package

Generalized Boosted Models: A guide to the gbm package Generalized Boosted Models: A guide to the gbm package Greg Ridgeway April 15, 2006 Boosting takes on various forms with different programs using different loss functions, different base models, and different

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

On Finding Optimal Policies for Markovian Decision Processes Using Simulation

On Finding Optimal Policies for Markovian Decision Processes Using Simulation On Finding Optimal Policies for Markovian Decision Processes Using Simulation Apostolos N. Burnetas Case Western Reserve University Michael N. Katehakis Rutgers University February 1995 Abstract A simulation

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

reversed chain is ergodic and has the same equilibrium probabilities (check that π j =

reversed chain is ergodic and has the same equilibrium probabilities (check that π j = Lecture 10 Networks of queues In this lecture we shall finally get around to consider what happens when queues are part of networks (which, after all, is the topic of the course). Firstly we shall need

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Cohort Effect Structure in the Lee-Carter Residual Term. Naoki Sunamoto, FIAJ. Fukoku Mutual Life Insurance Company

Cohort Effect Structure in the Lee-Carter Residual Term. Naoki Sunamoto, FIAJ. Fukoku Mutual Life Insurance Company Cohort Effect Structure in the Lee-Carter Residual Term Naoki Sunamoto, FIAJ Fukoku Mutual Life Insurance Company 2-2 Uchisaiwaicho 2-chome, Chiyoda-ku, Tokyo, 100-0011, Japan Tel: +81-3-3593-7445, Fax:

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

A Dynamic model for requirements planning with application to supply chain optimization

A Dynamic model for requirements planning with application to supply chain optimization This summary presentation is based on: Graves, Stephen, D.B. Kletter and W.B. Hetzel. "A Dynamic Model for Requirements Planning with Application to Supply Chain Optimization." Operations Research 46,

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

New Perspectives and Methods in Loss Reserving Using Generalized Linear Models

New Perspectives and Methods in Loss Reserving Using Generalized Linear Models New Perspectives and Methods in Loss Reserving Using Generalized Linear Models Jian Tao A Thesis for The Department of Mathematics and Statistics Presented in Partial Fulfillment of the Requirements for

More information

Generalized Mack Chain-Ladder Model of Reserving with Robust Estimation

Generalized Mack Chain-Ladder Model of Reserving with Robust Estimation Generalized Mac Chain-Ladder Model of Reserving with Robust Estimation Przemyslaw Sloma Abstract n the present paper we consider the problem of stochastic claims reserving in the framewor of Development

More information