Dependence structures with applications to actuarial science

Size: px
Start display at page:

Download "Dependence structures with applications to actuarial science"

Transcription

1 with applications to actuarial science Department of Statistics, ITAM, Mexico Recent Advances in Actuarial Mathematics, OAX, MEX October 26, 2015

2 Contents Order-1 process Application in survival analysis Application in claims reserving (INBR) Application in solvency analysis (see Mendoza and Nieto-Barajas, 2006) Order-q process Application in time series modeling Application in disease mapping

3 Order1 process η 1 η 2 η 3 η 4 η 5 θ 1 θ 2 θ 3 θ 4 θ 5 Dependence among {θ k } is induced through latents {η k } Close form expressions when use conjugate distributions Want to ensure a given marginal distribution

4 Order1 process Nieto-Barajas and Walker (2002): Beta process: {θ k } BeP 1 (a, b, c) θ 1 Be(a, b), η k θ k Bin(c k, θ k ), θ k+1 η k Be(a + η k, b + c k η k ) θ k Be(a, b) marginally & Corr(θ k, θ k+1 ) = c k /(a + b + c k )

5 Order1 process Nieto-Barajas and Walker (2002): Beta process: {θ k } BeP 1 (a, b, c) θ 1 Be(a, b), η k θ k Bin(c k, θ k ), θ k+1 η k Be(a + η k, b + c k η k ) θ k Be(a, b) marginally & Corr(θ k, θ k+1 ) = c k /(a + b + c k ) Gamma process: {θ k } GaP 1 (a, b, c) θ 1 Ga(a, b), η k θ k Po(c k θ k ), θ k+1 η k Ga(a + c k, b + η k ) θ k Ga(a, b) marginally & Corr(θ k, θ k+1 ) = c k /(b + c k )

6 Survival Analysis Hazard rate modelling If T is a discrete r.v. with support on τ k then h(t) = θ k I (t = τ k ) with {θ k } BeP 1 (a, b, c) If T is a continuous r.v. and {τ k } are a partition of IR + then h(t) = θ k I (τ k1 < t τ k ) with {θ k } GaP 1 (a, b, c)

7 Survival Analysis Hazard rate modelling If T is a discrete r.v. with support on τ k then with {θ k } BeP 1 (a, b, c) h(t) = θ k I (t = τ k ) If T is a continuous r.v. and {τ k } are a partition of IR + then with {θ k } GaP 1 (a, b, c) h(t) = θ k I (τ k1 < t τ k ) This is old stuff!, but what it is new is that there is an R-package called BGPhazard that implements these models

8 Survival Analysis Example: Discrete survival model We analyse the 6-MP clinical trial data which consists of remission duration times (in months) for children with acute leukemia. The study consisted in comparing drug 6-MP versus placebo. We concentrate on the 21 patients who received placebo. Observed time values range from 1 to 23 and there are no censored observations. To define the prior we took a = b = and c t = 50 for all t. We use command BeMRes to fit the model and the command BePloth to produce graphs.

9 Survival Analysis: Order-1 Beta process Estimate of hazard rates time Hazard rate Hazard function Confidence band (95%) NelsonAalen based estimate

10 Survival Analysis: Order-1 Beta process Estimate of Survival Function Model estimate Confidence bound (95%) KaplanMeier KM Confidence bound (95%) times

11 Survival Analysis Example: Continuous survival model We define a piecewise hazard function The data are survival times of 33 leukemia patients. Times are measured in weeks from diagnosis. Three of the observations were censored. The prior was defined by taking a = b = and c k ξ iid Ga(1, ξ) for k = 1,..., K and ξ Ga(0.01, 0.01). We took K = 10 intervals and chose the partition τ k such that each interval contains approximately the same number of exact (not censored) observations. We used the command GaMRes to fit the model and command GaPloth to produce graphs.

12 Survival Analysis: Order-1 Gamma process Estimate of Survival Function Model estimate Confidence bound (95%) KaplanMeier KM Confidence bound (95%) times

13 Claims Reserving (INBR) Consider the run-off triangle Year of Development year origin 1 2 j n 1 n 1 X 11 X 12 X 1j X 1,n1 X 1n 2 X 21 X 22 X 2j X 2,n1.... i X i1 X i2 X i,n+1i... n 1 X n1,1 X n1,2 n X n1 X ij = Incremental claim amounts originated in year i and paid in development year j

14 Claims Reserving (INBR) de Alba and Nieto-Barajas (2008): Use a non-stationary GaP 1 (a, b, c) to introduce dependence across development years. Claims originated in different years remain independent X i1 Ga(a i1, b i1 ), η ik X ik Po(c ik X ik ), X i,k+1 η ik Ga(a i,k+1 + c ik, b i,k+1 + η ik ) {X i1,..., X i,n+1i } GaP 1 (a, b, c), where a ij = a i, b ij = b j and c ij = c j, with n i=1 (1/b j) = 1. This implies with λ j = c j /(b j + c j ) E(X ij X i,j1 ) = (1 λ j ) α i β j + λ j X i,j1,

15 Claims Reserving (INBR) Example: Taylor and Ashe s dataset Data consists of incremental claims in a n n triangle with n = 10 Transformed that data to millions to avoid numerical problems Took priors for (a, b, c): a i Ga(0.001, 0.001), (1/b 1,..., 1/b n ) Dir(1,..., 1) and c j Ga(0.01, 0.01)

16 Claims Reserving (INBR): Independence (c j = 0) alpha Origin year 1/beta Development year

17 Claims Reserving (INBR): Dependence alpha Origin year 1/beta Development year

18 Claims Reserving (INBR): Dependence lambda Development year

19 Claims Reserving (INBR): Reserves comparison Overdispersed Poisson Gamma-GLM Indep. Gamma Dep. Gamma De Jong Reserve Reserve Reserve Reserve Year Estimate 95%-q Estimate 95%-q Estimate 95%-q Estimate 95%-q Estimate Total

20 Order2 process η 1 η 2 η 3 η 4 η 5 θ 1 θ 2 θ 3 θ 4 θ 5 Throw more arrows to induce higher order dependence

21 Order2 process η 1 η 2 η 3 η 4 η 5 θ 1 θ 2 θ 3 θ 4 θ 5 Throw more arrows to induce higher order dependence There is no way to obtain a given marginal distribution: say beta or gamma

22 Order2 process η 1 η 2 η 3 η 4 η 5 θ 1 θ 2 θ 3 θ 4 θ 5 Throw more arrows to induce higher order dependence There is no way to obtain a given marginal distribution: say beta or gamma Unless we include an extra latent (layer)

23 Order2 process ω η 1 η 2 η 3 η 4 η 5 θ 1 θ 2 θ 3 θ 4 θ 5 With this common ancestor ω we can through more arrows and still ensure a given marginal

24 Space and time process This idea can be use to induce time and/or spatial dependence t = 1 t = 2 t = 3 θ 1,1 (η 1,1 ) θ 1,3 (η 1,3 ) θ 1,2 (η 1,2 ) θ 1,4 (η 1,4 ) θ 2,1 (η 2,1 ) θ 2,3 (η 2,3 ) θ 2,2 (η 2,2 ) θ 2,4 (η 2,4 ) θ 3,1 θ 3,2 (η 3,1 ) (η 6 3,2 ) θ 3,3 (η 3,3 ) θ 3,4 (η 3,4 ) ω

25 Order-q beta process Jara and al. (2013): Orderq (AR) beta process: {θ t } BeP q (a, b, c) ω Be(a, b) η t ω ind Bin(c t, ω) q q θ t η Be a + η tj, b + (c tj η tj ) θ t Be(a, b) marginally j=0 j=0

26 Order-q beta process Properties: (a + b) Corr(θ t, θ t+s ) = for s 1. ( qs ) j=0 c tj ( a + b + q j=0 c tj ( q ( + j=0 tj) c q j=0 c t+sj ) ( a + b + ), q j=0 c t+sj If c t = c for all t then {θ t } becomes strictly stationary with Corr(θ t, θ t+s ) = (a + b) max{q s + 1, 0}c + (q + 1)2 c 2 {a + b + (q + 1)c} 2. )

27 Autocorrelation in {θ t } lag lag

28 Order-q beta process Example: Unemployment rate in Chile Annual data from 1980 to 2010 Use our BeP q as likelihood for the data {Y t } Took priors for (a, b, c): a Un(0, 1000), b Un(0, 1000) and c t λ iid Po(λ) and λ Un(0, 1000)

29 Time series: Y t = Unemployement in Chile Unemployment Rate in Chile q=3 q=4 q=5 q=6 q=7 q= Year

30 Time series: Y t = Unemployement in Chile BeP BDM Year

31 Spatial process

32 Spatial process Nieto-Barajas and Bandyopadhyay (2013): Spatial gamma process: {θ t } SGaP(a, b, c) ω Ga(a, b) η ij ω ind Ga(c ij, ω) θ i η Ga a + c ij, b + η ij j i j i i is the set of neighbours of region i θ t Ga(a, b) marginally

33 Disease mapping Study: Mortality in pregnant women due to hypertensive disorder in Mexico in Areas are the States Y i = Number of deaths in region i E i = At risk: Number of births (in thousands) λ i = Maternity mortality rate Zero-inflated model f (y i ) = π i I (y i = 0) + (1 π i )Po(y i λ i E i ) λ i = θ i exp(β x i ) π i = ξ ie δ z i 1 + ξ i e δ z i β is a vector of reg. coeff. s.t. β k N(0, σ 2 0 ) θ i SGaP(a, a, c) ξ i Ga(b, b)

34 Disease mapping Six explanatory variables: X 1 number of medical units (hospitals + clinics) X 2 proportion of pregnant women with soc. sec. X 3 prop. of pregnant women who were seen by a physician in the first trimester of pregnancy X 4 public expenditure in health per capita in thousands of MX Z 1 poverty index Z 2 proportion of births in clinics and hospitals

35 Estimated mortality rate λ i [3.05,6.33) [6.33,6.67) [6.67,7.38) [7.38,8.73) [8.73,21.07]

36 Estimated zero inflated prob. π i [0,0.01) [0.01,0.04) [0.04,0.06) [0.06,0.5) [0.5,0.6]

37 References de Alba, E. & Nieto-Barajas, L. E. (2008). Claims reserving: A correlated bayesian model. Insurance: Mathematics and Economics 43, Jara, A., Nieto-Barajas, L. E. & Quintana, F. (2013). A time series model for responses on the unit interval. Bayesian Analysis 8, Mendoza, M. & Nieto-Barajas, L. E. (2006). Bayesian solvency analysis with autocorrelated observations. Applied Stochastic Models in Business and Industry 22, Nieto-Barajas, L. E. & Bandyopadhyay, D. (2013). A zero-inflated spatial gamma process model with applications to disease mapping. Journal of Agricultural, Biological and Environmental Statistics 18, Nieto-Barajas, L. E. & Walker, S. G. (2002). Markov beta and gamma processes for modelling hazard rates. Scandinavian Journal of Statistics 29,

Order-q stochastic processes. Bayesian nonparametric applications

Order-q stochastic processes. Bayesian nonparametric applications Order-q dependent stochastic processes in Bayesian nonparametric applications Department of Statistics, ITAM, Mexico BNP 2015, Raleigh, NC, USA 25 June, 2015 Contents Order-1 process Application in survival

More information

A Bayesian nonparametric dynamic AR model for multiple time series analysis

A Bayesian nonparametric dynamic AR model for multiple time series analysis A Bayesian nonparametric dynamic AR model for multiple time series analysis Luis E. Nieto Barajas (joint with Fernando Quintana) Department of Statistics ITAM, Mexico COBAL V 8 June 2017 Luis E. Nieto

More information

Introduction to BGPhazard

Introduction to BGPhazard Introduction to BGPhazard José A. García-Bueno and Luis E. Nieto-Barajas February 11, 2016 Abstract We present BGPhazard, an R package which computes hazard rates from a Bayesian nonparametric view. This

More information

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 4 Fall 2012 4.2 Estimators of the survival and cumulative hazard functions for RC data Suppose X is a continuous random failure time with

More information

Frailty Modeling for clustered survival data: a simulation study

Frailty Modeling for clustered survival data: a simulation study Frailty Modeling for clustered survival data: a simulation study IAA Oslo 2015 Souad ROMDHANE LaREMFiQ - IHEC University of Sousse (Tunisia) souad_romdhane@yahoo.fr Lotfi BELKACEM LaREMFiQ - IHEC University

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

DELTA METHOD and RESERVING

DELTA METHOD and RESERVING XXXVI th ASTIN COLLOQUIUM Zurich, 4 6 September 2005 DELTA METHOD and RESERVING C.PARTRAT, Lyon 1 university (ISFA) N.PEY, AXA Canada J.SCHILLING, GIE AXA Introduction Presentation of methods based on

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS INSTITUTE AND FACULTY OF ACTUARIES Curriculum 09 SPECIMEN SOLUTIONS Subject CSA Risk Modelling and Survival Analysis Institute and Faculty of Actuaries Sample path A continuous time, discrete state process

More information

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics Faculty of Health Sciences Regression models Counts, Poisson regression, 27-5-2013 Lene Theil Skovgaard Dept. of Biostatistics 1 / 36 Count outcome PKA & LTS, Sect. 7.2 Poisson regression The Binomial

More information

Bootstrapping the triangles

Bootstrapping the triangles Bootstrapping the triangles Prečo, kedy a ako (NE)bootstrapovat v trojuholníkoch? Michal Pešta Charles University in Prague Faculty of Mathematics and Physics Actuarial Seminar, Prague 19 October 01 Overview

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

STAT 705 Generalized linear mixed models

STAT 705 Generalized linear mixed models STAT 705 Generalized linear mixed models Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 24 Generalized Linear Mixed Models We have considered random

More information

Calendar Year Dependence Modeling in Run-Off Triangles

Calendar Year Dependence Modeling in Run-Off Triangles Calendar Year Dependence Modeling in Run-Off Triangles Mario V. Wüthrich RiskLab, ETH Zurich May 21-24, 2013 ASTIN Colloquium The Hague www.math.ethz.ch/ wueth Claims reserves at time I = 2010 accident

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Nonparametric Model Construction

Nonparametric Model Construction Nonparametric Model Construction Chapters 4 and 12 Stat 477 - Loss Models Chapters 4 and 12 (Stat 477) Nonparametric Model Construction Brian Hartman - BYU 1 / 28 Types of data Types of data For non-life

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

STAT 526 Spring Final Exam. Thursday May 5, 2011

STAT 526 Spring Final Exam. Thursday May 5, 2011 STAT 526 Spring 2011 Final Exam Thursday May 5, 2011 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will

More information

Package SimSCRPiecewise

Package SimSCRPiecewise Package SimSCRPiecewise July 27, 2016 Type Package Title 'Simulates Univariate and Semi-Competing Risks Data Given Covariates and Piecewise Exponential Baseline Hazards' Version 0.1.1 Author Andrew G Chapple

More information

Bayesian Nonparametric Autoregressive Models via Latent Variable Representation

Bayesian Nonparametric Autoregressive Models via Latent Variable Representation Bayesian Nonparametric Autoregressive Models via Latent Variable Representation Maria De Iorio Yale-NUS College Dept of Statistical Science, University College London Collaborators: Lifeng Ye (UCL, London,

More information

EXPERIENCE-BASED LONGEVITY ASSESSMENT

EXPERIENCE-BASED LONGEVITY ASSESSMENT EXPERIENCE-BASED LONGEVITY ASSESSMENT ERMANNO PITACCO Università di Trieste ermanno.pitacco@econ.units.it p. 1/55 Agenda Introduction Stochastic modeling: the process risk Uncertainty in future mortality

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 4 (2011/12) 1 February 20, 2012 Outline: 1. Failure Time 2. Loss Frequency 3. Loss Severity 4. Aggregate Claim ====================================================

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Chapter 7 Fall Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample

Chapter 7 Fall Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 7 Fall 2012 Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample H 0 : S(t) = S 0 (t), where S 0 ( ) is known survival function,

More information

Joint Modeling of Longitudinal Item Response Data and Survival

Joint Modeling of Longitudinal Item Response Data and Survival Joint Modeling of Longitudinal Item Response Data and Survival Jean-Paul Fox University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede,

More information

Lecture 4 - Survival Models

Lecture 4 - Survival Models Lecture 4 - Survival Models Survival Models Definition and Hazards Kaplan Meier Proportional Hazards Model Estimation of Survival in R GLM Extensions: Survival Models Survival Models are a common and incredibly

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 4 (2011/12) 1 February 20, 2012 Outline: 1. Failure Time 2. Loss Frequency 3. Loss Severity 4. Aggregate Claim ====================================================

More information

Bayesian semiparametric analysis of short- and long- term hazard ratios with covariates

Bayesian semiparametric analysis of short- and long- term hazard ratios with covariates Bayesian semiparametric analysis of short- and long- term hazard ratios with covariates Department of Statistics, ITAM, Mexico 9th Conference on Bayesian nonparametrics Amsterdam, June 10-14, 2013 Contents

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Dynamic Scheduling of the Upcoming Exam in Cancer Screening

Dynamic Scheduling of the Upcoming Exam in Cancer Screening Dynamic Scheduling of the Upcoming Exam in Cancer Screening Dongfeng 1 and Karen Kafadar 2 1 Department of Bioinformatics and Biostatistics University of Louisville 2 Department of Statistics University

More information

An Overview of Methods for Applying Semi-Markov Processes in Biostatistics.

An Overview of Methods for Applying Semi-Markov Processes in Biostatistics. An Overview of Methods for Applying Semi-Markov Processes in Biostatistics. Charles J. Mode Department of Mathematics and Computer Science Drexel University Philadelphia, PA 19104 Overview of Topics. I.

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Multistate models and recurrent event models

Multistate models and recurrent event models Multistate models Multistate models and recurrent event models Patrick Breheny December 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Multistate models In this final lecture,

More information

Inference for non-stationary, non-gaussian, Irregularly-Sampled Processes

Inference for non-stationary, non-gaussian, Irregularly-Sampled Processes Inference for non-stationary, non-gaussian, Irregularly-Sampled Processes Robert Wolpert Duke Department of Statistical Science wolpert@stat.duke.edu SAMSI ASTRO Opening WS Aug 22-26 2016 Aug 24 Hamner

More information

Claims Reserving under Solvency II

Claims Reserving under Solvency II Claims Reserving under Solvency II Mario V. Wüthrich RiskLab, ETH Zurich Swiss Finance Institute Professor joint work with Michael Merz (University of Hamburg) April 21, 2016 European Congress of Actuaries,

More information

Package threg. August 10, 2015

Package threg. August 10, 2015 Package threg August 10, 2015 Title Threshold Regression Version 1.0.3 Date 2015-08-10 Author Tao Xiao Maintainer Tao Xiao Depends R (>= 2.10), survival, Formula Fit a threshold regression

More information

2 Describing Contingency Tables

2 Describing Contingency Tables 2 Describing Contingency Tables I. Probability structure of a 2-way contingency table I.1 Contingency Tables X, Y : cat. var. Y usually random (except in a case-control study), response; X can be random

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory Danaïl Davidov under the supervision of Jean-Philippe Boucher Département de mathématiques Université

More information

Count and Duration Models

Count and Duration Models Count and Duration Models Stephen Pettigrew April 2, 2014 Stephen Pettigrew Count and Duration Models April 2, 2014 1 / 61 Outline 1 Logistics 2 Last week s assessment question 3 Counts: Poisson Model

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Pricing and Risk Analysis of a Long-Term Care Insurance Contract in a non-markov Multi-State Model

Pricing and Risk Analysis of a Long-Term Care Insurance Contract in a non-markov Multi-State Model Pricing and Risk Analysis of a Long-Term Care Insurance Contract in a non-markov Multi-State Model Quentin Guibert Univ Lyon, Université Claude Bernard Lyon 1, ISFA, Laboratoire SAF EA2429, F-69366, Lyon,

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

Multistate models and recurrent event models

Multistate models and recurrent event models and recurrent event models Patrick Breheny December 6 Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 1 / 22 Introduction In this final lecture, we will briefly look at two other

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

Approximating Dependence Structures of Repeated Stochastic Processes

Approximating Dependence Structures of Repeated Stochastic Processes Sankhyā : The Indian Journal of Statistics 2004, Volume 66, Part 3, pp 1-12 c 2004, Indian Statistical Institute Approximating Dependence Structures of Repeated Stochastic Processes Bertrand Clarke University

More information

TIME SERIES MODELS ON MEDICAL RESEARCH

TIME SERIES MODELS ON MEDICAL RESEARCH PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 49, NO. 3 4, PP. 175 181 (2005) TIME SERIES MODELS ON MEDICAL RESEARCH Mária FAZEKAS Department of Economic- and Agroinformatics, University of Debrecen e-mail:

More information

Concepts and Tests for Trend in Recurrent Event Processes

Concepts and Tests for Trend in Recurrent Event Processes JIRSS (2013) Vol. 12, No. 1, pp 35-69 Concepts and Tests for Trend in Recurrent Event Processes R. J. Cook, J. F. Lawless Department of Statistics and Actuarial Science, University of Waterloo, Ontario,

More information

Bayesian course - problem set 5 (lecture 6)

Bayesian course - problem set 5 (lecture 6) Bayesian course - problem set 5 (lecture 6) Ben Lambert November 30, 2016 1 Stan entry level: discoveries data The file prob5 discoveries.csv contains data on the numbers of great inventions and scientific

More information

Count and Duration Models

Count and Duration Models Count and Duration Models Stephen Pettigrew April 2, 2015 Stephen Pettigrew Count and Duration Models April 2, 2015 1 / 1 Outline Stephen Pettigrew Count and Duration Models April 2, 2015 2 / 1 Logistics

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem 1 Gambler s Ruin Problem Consider a gambler who starts with an initial fortune of $1 and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Scalable Joint Modeling of Longitudinal and Point Process Data:

Scalable Joint Modeling of Longitudinal and Point Process Data: Scalable Joint Modeling of Longitudinal and Point Process Data: Disease Trajectory Prediction and Improving Management of Chronic Kidney Disease Joe Futoma (jdf38@duke.edu) UAI Bayesian Applications Workshop,

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

Lecture 8 Stat D. Gillen

Lecture 8 Stat D. Gillen Statistics 255 - Survival Analysis Presented February 23, 2016 Dan Gillen Department of Statistics University of California, Irvine 8.1 Example of two ways to stratify Suppose a confounder C has 3 levels

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

Stochastic Modelling Unit 1: Markov chain models

Stochastic Modelling Unit 1: Markov chain models Stochastic Modelling Unit 1: Markov chain models Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 1 1 Stochastic Processes 2 Markov Chains 3 Poisson

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Chapter 2: Describing Contingency Tables - I

Chapter 2: Describing Contingency Tables - I : Describing Contingency Tables - I Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu]

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information

Estimating Markov-switching regression models in Stata

Estimating Markov-switching regression models in Stata Estimating Markov-switching regression models in Stata Ashish Rajbhandari Senior Econometrician StataCorp LP Stata Conference 2015 Ashish Rajbhandari (StataCorp LP) Markov-switching regression Stata Conference

More information

Estimation for Modified Data

Estimation for Modified Data Definition. Estimation for Modified Data 1. Empirical distribution for complete individual data (section 11.) An observation X is truncated from below ( left truncated) at d if when it is at or below d

More information

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III)

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III) Title: Spatial Statistics for Point Processes and Lattice Data (Part III) Lattice Data Tonglin Zhang Outline Description Research Problems Global Clustering and Local Clusters Permutation Test Spatial

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes Liverpool, UK, 4 5 November 3 Aki Vehtari Department of Biomedical Engineering and Computational Science (BECS) Outline Example: Alcohol related deaths in Finland Spatial priors and benefits of GP prior

More information

Modelling the risk process

Modelling the risk process Modelling the risk process Krzysztof Burnecki Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo Modelling the risk process 1 Risk process If (Ω, F, P) is a probability space

More information

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI Analytics Software Beyond deterministic chain ladder reserves Neil Covington Director of Solutions Management GI Objectives 2 Contents 01 Background 02 Formulaic Stochastic Reserving Methods 03 Bootstrapping

More information

MAS3301 Bayesian Statistics Problems 5 and Solutions

MAS3301 Bayesian Statistics Problems 5 and Solutions MAS3301 Bayesian Statistics Problems 5 and Solutions Semester 008-9 Problems 5 1. (Some of this question is also in Problems 4). I recorded the attendance of students at tutorials for a module. Suppose

More information

Survival Analysis. Lu Tian and Richard Olshen Stanford University

Survival Analysis. Lu Tian and Richard Olshen Stanford University 1 Survival Analysis Lu Tian and Richard Olshen Stanford University 2 Survival Time/ Failure Time/Event Time We will introduce various statistical methods for analyzing survival outcomes What is the survival

More information

Statistics/Mathematics 310 Larget April 14, Solution to Assignment #9

Statistics/Mathematics 310 Larget April 14, Solution to Assignment #9 Solution to Assignment #9 1. A sample s = (753.0, 1396.9, 1528.2, 1646.9, 717.6, 446.5, 848.0, 1222.0, 748.5, 610.1) is modeled as an i.i.d sample from a Gamma(α, λ) distribution. You may think of this

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i, Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives Often interest may focus on comparing a null hypothesis of no difference between groups to an ordered restricted alternative. For

More information

Mean-field dual of cooperative reproduction

Mean-field dual of cooperative reproduction The mean-field dual of systems with cooperative reproduction joint with Tibor Mach (Prague) A. Sturm (Göttingen) Friday, July 6th, 2018 Poisson construction of Markov processes Let (X t ) t 0 be a continuous-time

More information

Lecture 1. Introduction Statistics Statistical Methods II. Presented January 8, 2018

Lecture 1. Introduction Statistics Statistical Methods II. Presented January 8, 2018 Introduction Statistics 211 - Statistical Methods II Presented January 8, 2018 linear models Dan Gillen Department of Statistics University of California, Irvine 1.1 Logistics and Contact Information Lectures:

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Example using R: Heart Valves Study

Example using R: Heart Valves Study Example using R: Heart Valves Study Goal: Show that the thrombogenicity rate (TR) is less than two times the objective performance criterion R and WinBUGS Examples p. 1/27 Example using R: Heart Valves

More information

Lecture 1 Introduction to Multi-level Models

Lecture 1 Introduction to Multi-level Models Lecture 1 Introduction to Multi-level Models Course Website: http://www.biostat.jhsph.edu/~ejohnson/multilevel.htm All lecture materials extracted and further developed from the Multilevel Model course

More information

Maximum likelihood estimation of a log-concave density based on censored data

Maximum likelihood estimation of a log-concave density based on censored data Maximum likelihood estimation of a log-concave density based on censored data Dominic Schuhmacher Institute of Mathematical Statistics and Actuarial Science University of Bern Joint work with Lutz Dümbgen

More information

4. Comparison of Two (K) Samples

4. Comparison of Two (K) Samples 4. Comparison of Two (K) Samples K=2 Problem: compare the survival distributions between two groups. E: comparing treatments on patients with a particular disease. Z: Treatment indicator, i.e. Z = 1 for

More information

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline:

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline: CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity Outline: 1. NIEHS Uterine Fibroid Study Design of Study Scientific Questions Difficulties 2.

More information

Sleep data, two drugs Ch13.xls

Sleep data, two drugs Ch13.xls Model Based Statistics in Biology. Part IV. The General Linear Mixed Model.. Chapter 13.3 Fixed*Random Effects (Paired t-test) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE Annual Conference 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Author: Jadwiga Borucka PAREXEL, Warsaw, Poland Brussels 13 th - 16 th October 2013 Presentation Plan

More information

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic process X = {X(t), t2 T} is a collection of random variables (rvs); one rv

More information

Outline. 11. Time Series Analysis. Basic Regression. Differences between Time Series and Cross Section

Outline. 11. Time Series Analysis. Basic Regression. Differences between Time Series and Cross Section Outline I. The Nature of Time Series Data 11. Time Series Analysis II. Examples of Time Series Models IV. Functional Form, Dummy Variables, and Index Basic Regression Numbers Read Wooldridge (2013), Chapter

More information

Null Hypothesis Significance Testing p-values, significance level, power, t-tests

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Null Hypothesis Significance Testing p-values, significance level, power, t-tests 18.05 Spring 2014 January 1, 2017 1 /22 Understand this figure f(x H 0 ) x reject H 0 don t reject H 0 reject H 0 x = test

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2007

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2007 EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2007 Applied Statistics I Time Allowed: Three Hours Candidates should answer

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Chapter 2. Data Analysis

Chapter 2. Data Analysis Chapter 2 Data Analysis 2.1. Density Estimation and Survival Analysis The most straightforward application of BNP priors for statistical inference is in density estimation problems. Consider the generic

More information

Practice Exam #1 CAS Exam 3L

Practice Exam #1 CAS Exam 3L Practice Exam #1 CAS Exam 3L These practice exams should be used during the last month prior to your exam. This practice exam contains 25 questions, of equal value, corresponding to an exam of about 2.5

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation. PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.. Beta Distribution We ll start by learning about the Beta distribution, since we end up using

More information

Logistic regression model for survival time analysis using time-varying coefficients

Logistic regression model for survival time analysis using time-varying coefficients Logistic regression model for survival time analysis using time-varying coefficients Accepted in American Journal of Mathematical and Management Sciences, 2016 Kenichi SATOH ksatoh@hiroshima-u.ac.jp Research

More information