OPTIMIZING A SPACE MISSION USING ION PROPULSION

Size: px
Start display at page:

Download "OPTIMIZING A SPACE MISSION USING ION PROPULSION"

Transcription

1 Review of the Air Force Acadey No 3 (30) 015 OPTIMIZING A SPACE MISSION USING ION PROPULSION Grigore CICAN National Research and Develoent Institute for Gas Turbines COMOTI, Bucharest, Roania DOI: / Abstract: The urose of this aer is to describe a ethod of otiizing a sace ission using ion roulsion, the calculation ethod of the araeters that belong to a sacecraft equied with ion roulsion, the seed variation of a sacecraft deending on the evacuation seed of the articles for variation t, variation α and other araeters. The following eleents will be calculated: the evacuation seed variation deending on the otential acceleration, force variation deending on the otential acceleration, flow rate variation deending on the otential acceleration. Keywords: ission, ion roulsion, otiization, araeters, ayload, roellant 1. INTRODUCTION Fro the oldest ties one of the biggest dreas of huans was the flight, esecially the flight to other lanets. One of the first reviews of this idea was the great scientist Konstantin Eduardovitch Tsiolkovsky [3]. We can say that the history of odern rocket flying and astronautics starts in 1903 with the faous article Investigation of Universal Sace by Means of Reactive Devices, [6] fro which the following quote is taken. That article contains the rocket equation of Tsiolkovsky in differential for, which is the fundaental atheatical exression in the field of sace roulsion. In the field of electricity the first scientists who see the ossibility and the otential of electrical roulsion are: Robert H. Goddard [8], in 1906, exressed any of the just as sile inforation; Konstantin Eduardovitch Tsiolkovsky which in 1911 ublished an idea of electric roulsion: It is ossible that in tie we ay use electricity to roduce a large velocity for the articles ejected fro a rocket device [6] and Professor Heran Oberth, which in 199, included a chater on electric roulsion in his classic book about rockets and sace travel [5]. There are three tyes of electrical roulsion systes: electro-theral, electrostatic (ionic) and electroagnetic; a detailed descrition of these roulsion systes can be found in reference [1]. For studying the travel to Mars it was chosen the electrostatic (ionic) roulsion syste. This roulsion syste was develoed since the beginning of 60 s by rojects NASTAR. Over the tie this systes were ade and erfected esecially for satellites, in order to do the orbit correction and satellite transfer fro an orbit to another. After erfecting these roulsion systes they were used during soe Terra outer sace issions, the first success ission which used ionic roulsion was in 1998 during the Aerican Dee sace ission 1 [10]. Another successful ission which used the ionic roulsion was the Jaanese ission Hayabusa [11] fro the year 003 which had as ain objective the study of an asteroid. The last ajor success ission which used the ionic roulsion was Dawn [1] launched in 007, the urose of the ission was to study the Vesta and Ceres asteroids, which arrived at her destination in 015 assing near Mars by using the lanet s gravity in order to continue the travel. A future interlanetary ission will be ade by ESA and JAXA in 017 and it will be a travel to Mercury lanet, the nae of the ission is BeiColobo [13]. In this aerwork we try the otiization the erforances of a sacecraft, esecially by otiizing the roulsion syste seeing the technological actual liits and the calculation extension of the iroveent ossibilities. 89

2 Otiizing a Sace Mission Using Ion Proulsion. THE RUNNING PRINCIPLE OF THE ELECTRIC PROPULSION SYSTEMS The running rincile of electrical roulsion systes consists of aking the gas olecules or, in general the articles which have to be ejected, sensitive to the action of an electric field and to send the the desired energy using this field. The known ethod for aking a conductor fro a gas it is by ionizing it, in this case the gas becoes sensitive to the action of an electric or agnetic field. If we ionize a gas in a given chaber we obtain negative and ositive charges. In a ionic rocket the charges are searated first, the negatives fro the ositives and the ion obtained are accelerated in a article accelerator. Electrostatic roulsion, regardless of tye, consists of the sae series of basic ingredients, a roellant source, several fors of electric ower, an ionizing chaber, an accelerator region, and the eans of neutralizing the exhaust. While Coulob accelerators require a net charge density of one olarity, the exhaust bea ust be neutralized to avoid a sacecharge build-u outside of the craft which could easily cancel the oeration of the thruster. The neutralization is given by the injection of electrons downstrea as in icture 1, a scheatic diagra of the NASTAR ion thruster, as used on Dee Sace 1 [7]. The neutralization of the ion fascicle as one of the ost difficult robles of this roulsion syste. Fig 1 The scheatic diagra of the NASTAR ion thruster. The evacuation seed at which the articles arrive it is deterined in a article accelerator. We analyzed the direct article accelerator because it is the ost used article accelerator. This article accelerator is described in reference []. According to reference [9] we will resent the calculation ethod for the ionic engine. For starters it will be analyzed the situation of an ion which has the load q and ass located in an electric field E r, deterined by the tension Vacc = V - V1 which alies between A anode and C cathode, as it can be seen in the icture below. Fig The scheatic diagra of the electric field. The ion is accelerated until it gets a seed v e deterined by the next equality: the kinetic energy of the electron it is equal with the kinetic energy variation of the article, conditioned by the electric field action. 1 q V v q V v acc e = acc e = (1) The below exression is valid if the article takes off fro the ion source with the seed 0, during the acceleration interval there is an unifor electric field U E = () d where d is the distance between the two electrodes. In order to calculate the roulsion force roduced by the ionic engine we used the exression below: 90

3 Review of the Air Force Acadey No 3 (30) 015 e I = & (3) The roulsion force is defined as: F = & ve = I V acc (4) e We have to deterine the intensity of the electric current by defining the current density I j =. S Using the Poisson s equation we obtain: d V ρe = (5) d e0 where d is the distance, e 0 is the vacuu ereation and ρe current density. Solving the equation below we obtain the current density: 3 4 e V 0 q j = acc (6) 9 d For atoic or olecular ions we obtain: V j = acc 1 (7) M d And for circular for holes we have: π D I = j S = j (8) 4 where D is the hole diaeter. acc V F = π e0 D 9 d (9) The electric ower is: The erforance of an electrical rocket can be conveniently analyzed in ters of the ower and the relevant asses [4]. Using Țsiolkovski s equation we obtain the forula: v = v ln 0 e (11) f f is the final ass of the rocket, is the roellant ass fro aboard, v is the rocket seed at the tie oent t, 0 is the initial ass of the rocket, is the ass of the rocket at t oent, v e is the evacuation seed of the roellant fro the engine. Before the rocket take off, the initial ass is given by: l + 0 = + (1) u is the ass of the ayload, ass of the ower lant fro aboard, is the α = Pe P e is the electrical ower of the ower source. Between the electrical ower of the source and the ower of the jet we have the relation: Pjet η = (13) Pe η is the syste s erforance. Pjet 1 = & v e (14) Pjet ve Pe = α s = = (15) η t η In order to deterine the rocket s erforances: where t is the tie in which the roellant is used. s, P e = I V acc = 1 & v e η (10) 91

4 Otiizing a Sace Mission Using Ion Proulsion 3. RESULTS OF MISSION OPTIMIZATION The erforances of the ission will be otiized deending on different araeters as it can be seen below: For study of the erforances we know l = 3 about the ission η=0.7, α=500,, 7 = 01. 5, t = 10 s. The following inforation is known about the ionic engine: The working fluid is xenon which olecular weight is kg/kg-ole, the distance between the acceleration grids d=.5, the diaeter of each hole of the grid D=, the nuber holes in the grid No=00. After variation the araeters obtain: Fig. 5 Rocket seed variation deending on the evacuation seed of the articles for the l. Fig. 6 s, and + s variation deending on the evacuation seed of the articles. Fig. 3 Rocket seed variation deending on the evacuation seed of the articles for variation of t. Fig. 7 Rocket seed variation deending on the evacuation seed of the articles for l. 0 Fig. 4 Rocket seed variation deending on the evacuation seed of the articles for variation of α. 9

5 Review of the Air Force Acadey No 3 (30) 015 CONCLUSIONS Fig. 8 Evacuation seed variation deending on the otential acceleration Fig. 9 Electric field variation deending on the otential acceleration As you can see in the figure 3 the variation of the shi s seed is axiu with the evacuation seed for each tie of the ission. Fro the figure 4 it can be seen that for each α there is a axiu for the seed rocket deending on the evacuation seed of the articles for variation of α. Therefore if there would be high values for the α araeters the rocket could achieve higher seeds for the shi. For choosing the roellant quantity aboard figure 5 shows that the axiu seed that can be achieved by the shi for a certain evacuation seed of the articles. Fro the figure 8 it can be seen the variation of seed of articles deending on the otential of acceleration so the higher the otential for acceleration, the higher the exhaust seed. The variation thrust and roellant flow is greater as long as the distance d between the two boards is less, so a higher electric field is resent. For a certain sace ission, a sacecraft that ust reach a certain seed, it can be chosen a certain otial exhaust seed deending on the araeters studied in this article. Fig. 10 Force variation deending on the otential acceleration Fig. 11 Flow rate evacuation deending on the otential acceleration 93

6 Otiizing a Sace Mission Using Ion Proulsion BIBLIOGRAPHY 1. Goebel, D., Ira Katz Fundaentals of Electric Proulsion: Ion and Hall Thrusters, Jet Proulsion Laboratory California Institute of Technology, 008, 3-6. JAHN, R. Physics of electric roulsion, McGRAW-HILL BOOK COMPANY, New York, 1968, ; Kosodeyansky, A. Tsiolkovsky, K. His Life and Work, translated by X. Danko, Univ. Press of the Pacific, Honolulu, Languir D., Low-Thrust Flight: Constant Exhaust Velocity in Field-Free Sace, in H. Seifert (Ed.), Sace Technology, John Wiley & Sons, New York, 1959, Chater Obert, H. Man into Sace, Harer & Row, Publishers, Incororsted, New York, Tikhonravov, M. K., (ed.), Works on Rocket Technology by E. K. Tsiolkovsky, Publishing House of the Defense Ministry, Moscow, 1947; translated fro the 1947 Russian text by NASA as NASA TT F-43, TURNER M., Rocket and Sacecraft Proulsion (Secand Edition), Chichester, UK, Stuhlinger, E. Ion Proulsion for sace Flight, cha. 1, McGraw-Hill Book Coany, New York, SUTTON G. P., BIBLARZ, O. Rocket Proulsion Eleents ( 7th ed.), JOHN WILEY & SONS, New York, 001, ; 10. htt:// 11. htt://global.jaxa.j/rojects/sat/uses_c/ index.htl 1. htt:// ain/index.htl 13. htt://sci.esa.int/beicolobo/ beicolobo-launch-oved-to-017/ 94

INTERIOR BALLISTIC PRINCIPLE OF HIGH/LOW PRESSURE CHAMBERS IN AUTOMATIC GRENADE LAUNCHERS

INTERIOR BALLISTIC PRINCIPLE OF HIGH/LOW PRESSURE CHAMBERS IN AUTOMATIC GRENADE LAUNCHERS XXXX IB08 19th International Syosiu of Ballistics, 7 11 May 001, Interlaken, Switzerland INTERIOR BALLISTIC PRINCIPLE OF HIGH/LOW PRESSURE CHAMBERS IN AUTOMATIC GRENADE LAUNCHERS S. Jaraaz1, D. Micković1,

More information

3 Thermodynamics and Statistical mechanics

3 Thermodynamics and Statistical mechanics Therodynaics and Statistical echanics. Syste and environent The syste is soe ortion of atter that we searate using real walls or only in our ine, fro the other art of the universe. Everything outside the

More information

[95/95] APPROACH FOR DESIGN LIMITS ANALYSIS IN VVER. Shishkov L., Tsyganov S. Russian Research Centre Kurchatov Institute Russian Federation, Moscow

[95/95] APPROACH FOR DESIGN LIMITS ANALYSIS IN VVER. Shishkov L., Tsyganov S. Russian Research Centre Kurchatov Institute Russian Federation, Moscow [95/95] APPROACH FOR DESIGN LIMITS ANALYSIS IN VVER Shishkov L., Tsyganov S. Russian Research Centre Kurchatov Institute Russian Federation, Moscow ABSTRACT The aer discusses a well-known condition [95%/95%],

More information

5. Dimensional Analysis. 5.1 Dimensions and units

5. Dimensional Analysis. 5.1 Dimensions and units 5. Diensional Analysis In engineering the alication of fluid echanics in designs ake uch of the use of eirical results fro a lot of exerients. This data is often difficult to resent in a readable for.

More information

CHAPTER 2 THERMODYNAMICS

CHAPTER 2 THERMODYNAMICS CHAPER 2 HERMODYNAMICS 2.1 INRODUCION herodynaics is the study of the behavior of systes of atter under the action of external fields such as teerature and ressure. It is used in articular to describe

More information

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2)

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2) Lecture.5. Ideal gas law We have already discussed general rinciles of classical therodynaics. Classical therodynaics is a acroscoic science which describes hysical systes by eans of acroscoic variables,

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE Bulletin of the Transilvania University of Braşov Series II: Forestry Wood Industry Agricultural Food Engineering Vol. 5 (54) No. 1-1 THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

More information

AN EXPLICIT METHOD FOR NUMERICAL SIMULATION OF WAVE EQUATIONS

AN EXPLICIT METHOD FOR NUMERICAL SIMULATION OF WAVE EQUATIONS The 4 th World Conference on Earthquake Engineering October -7, 8, Beiing, China AN EXPLICIT ETHOD FOR NUERICAL SIULATION OF WAVE EQUATIONS Liu Heng and Liao Zheneng Doctoral Candidate, Det. of Structural

More information

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the 2. Electric Current The net flow of charges through a etallic wire constitutes an electric current. Do you know who carries current? Current carriers In solid - the electrons in outerost orbit carries

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

VACUUM chambers have wide applications for a variety of

VACUUM chambers have wide applications for a variety of JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 2, No., January March 27 Free Molecular Flows Between Two Plates Equied with Pus Chunei Cai ZONA Technology, Inc., Scottsdale, Arizona 85258 Iain D. Boyd

More information

ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER

ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER IEPC 003-0034 ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER A. Bober, M. Guelan Asher Space Research Institute, Technion-Israel Institute of Technology, 3000 Haifa, Israel

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Lecture 3: October 2, 2017

Lecture 3: October 2, 2017 Inforation and Coding Theory Autun 2017 Lecturer: Madhur Tulsiani Lecture 3: October 2, 2017 1 Shearer s lea and alications In the revious lecture, we saw the following stateent of Shearer s lea. Lea 1.1

More information

MATHEMATICAL MODELS AND OPTICAL INVESTIGATION OF TWO PHASE FLOWS IN WIND TUNNELS

MATHEMATICAL MODELS AND OPTICAL INVESTIGATION OF TWO PHASE FLOWS IN WIND TUNNELS MATHEMATICAL MODELS AND OPTICAL INESTIGATION OF TWO PHASE FLOWS IN WIND TUNNELS *Central Aerohydrodynaic institute Keywords: wind tunnels, icing in suercooled drolets and non-sherical crystals, otical

More information

Motion of Charges in Uniform E

Motion of Charges in Uniform E Motion of Charges in Unifor E and Fields Assue an ionized gas is acted upon by a unifor (but possibly tie-dependent) electric field E, and a unifor, steady agnetic field. These fields are assued to be

More information

CALCULATION of CORONA INCEPTION VOLTAGES in N 2 +SF 6 MIXTURES via GENETIC ALGORITHM

CALCULATION of CORONA INCEPTION VOLTAGES in N 2 +SF 6 MIXTURES via GENETIC ALGORITHM CALCULATION of COONA INCPTION VOLTAGS in N +SF 6 MIXTUS via GNTIC ALGOITHM. Onal G. Kourgoz e-ail: onal@elk.itu.edu.tr e-ail: guven@itu.edu..edu.tr Istanbul Technical University, Faculty of lectric and

More information

Part 4: Exploration 1

Part 4: Exploration 1 Part 4: Exploration 1 Reaction Engine An engine, such as a jet or rocket engine, that ejects gas at high velocity and develops its thrust from the resulting reaction This movement follows Newton s Third

More information

1. Answer the following questions.

1. Answer the following questions. (06) Physics Nationality No. (Please print full nae, underlining faily nae) Marks Nae Before you start, fill in the necessary details (nationality, exaination nuber, nae etc.) in the box at the top of

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

A NEW ELECTROSTATIC FIELD GEOMETRY. Jerry E. Bayles

A NEW ELECTROSTATIC FIELD GEOMETRY. Jerry E. Bayles INTRODUCTION A NEW ELECTROSTATIC FIELD GEOMETRY by Jerry E Bayles The purpose of this paper is to present the electrostatic field in geoetrical ters siilar to that of the electrogravitational equation

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134

Announcement. Grader s name: Qian Qi. Office number: Phys Office hours: Thursday 4:00-5:00pm in Room 134 Lecture 3 1 Announceent Grader s nae: Qian Qi Office nuber: Phys. 134 -ail: qiang@purdue.edu Office hours: Thursday 4:00-5:00p in Roo 134 2 Millikan s oil Drop xperient Consider an air gap capacitor which

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volue 19, 2013 htt://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Physical Acoustics Session 1PAb: Acoustics in Microfluidics and for Particle

More information

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39.

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39. Systes of Masses. Ignoring friction, calculate the acceleration of the syste below and the tension in the rope. Drawing individual free body diagras we get 4.0kg 7.0kg g 9.80 / s a?? g and g (4.0)(9.80)

More information

External Transverse Direct Current Magnetic Field Effect On Optical Emission Of a Non-Thermal Atmospheric Pressure Argon Plasma Jet

External Transverse Direct Current Magnetic Field Effect On Optical Emission Of a Non-Thermal Atmospheric Pressure Argon Plasma Jet International Research Journal of Applied and Basic Sciences 014 Available online at www.irjabs.co ISSN 51-838X / Vol, 8 (7): 944-950 Science Explorer Publications External Transverse Direct Current Magnetic

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field THE OCKET EXPEIENT. «Hoogenous» gravitational field Let s assue, fig., that we have a body of ass Μ and radius. fig. As it is known, the gravitational field of ass Μ (both in ters of geoetry and dynaics)

More information

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet 111 Field Mass Generation and Control Chapter 6 The faous two slit experient proved that a particle can exist as a wave and yet still exhibit particle characteristics when the wavefunction is altered by

More information

I. Understand get a conceptual grasp of the problem

I. Understand get a conceptual grasp of the problem MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent o Physics Physics 81T Fall Ter 4 Class Proble 1: Solution Proble 1 A car is driving at a constant but unknown velocity,, on a straightaway A otorcycle is

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) PYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) MOLE CONCEPT, STOICIOMETRIC CALCULATIONS Learner Note: The ole concept is carried forward to calculations in the acid and base section, as well as in

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

TAP 222-4: Momentum questions

TAP 222-4: Momentum questions TAP -4: Moentu questions These questions change in difficulty and ask you to relate ipulse to change of oentu. 1. Thrust SSC is a supersonic car powered by jet engines giving a total thrust of 180 kn.

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

The Magnetic Mass Spectrometer

The Magnetic Mass Spectrometer Exp-9-Mass-Spectroeter.Doc (TJR) Physics Departent, University of Windsor Introduction 64-3 Laboratory Experient 9 The Magnetic Mass Spectroeter Without question, ass spectroeters have been one of the

More information

Ballistic Pendulum. Introduction

Ballistic Pendulum. Introduction Ballistic Pendulu Introduction The revious two activities in this odule have shown us the iortance of conservation laws. These laws rovide extra tools that allow us to analyze certain asects of hysical

More information

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture

Chapter 8 Deflection. Structural Mechanics 2 Dept of Architecture Chapter 8 Deflection Structural echanics Dept of rchitecture Outline Deflection diagras and the elastic curve Elastic-bea theory The double integration ethod oent-area theores Conjugate-bea ethod 8- Deflection

More information

General Physics General Physics General Physics General Physics. Language of Physics

General Physics General Physics General Physics General Physics. Language of Physics 1 Physics is a science rooted equally firly in theory and experients Physicists observe Nature series of experients easure physical quantities discover how the things easured are connected discover a physical

More information

4. How a psychrometer works

4. How a psychrometer works 1 4. How a sychroeter works Identical theroeters Dry bulb (war Gauze around the wet bulb ool water Wet bulb (cool Saturated air Huidity to be easured T dry at Water being condensated, waring the gauze

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundaental Question: What is atter, and how do we identify it? 1. What is the definition of atter? 2. What do you think the ter ass per unit volue eans? 3. Do you think that a

More information

EXACT BOUNDS FOR JUDICIOUS PARTITIONS OF GRAPHS

EXACT BOUNDS FOR JUDICIOUS PARTITIONS OF GRAPHS EXACT BOUNDS FOR JUDICIOUS PARTITIONS OF GRAPHS B. BOLLOBÁS1,3 AND A.D. SCOTT,3 Abstract. Edwards showed that every grah of size 1 has a biartite subgrah of size at least / + /8 + 1/64 1/8. We show that

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Session 5: Review of Classical Astrodynamics

Session 5: Review of Classical Astrodynamics Session 5: Review of Classical Astrodynamics In revious lectures we described in detail the rocess to find the otimal secific imulse for a articular situation. Among the mission requirements that serve

More information

Rationality Problems of the Principles of Equivalence and General Relativity

Rationality Problems of the Principles of Equivalence and General Relativity Rationality Probles of the Principles of Equivalence and General Relativity Mei Xiaochun (Departent of Physics, Fuzhou University, E-ail: xc1@163.co Tel:86-591-8761414) (N.7-B, South Building, Zhongfu

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

Isothermal Elastohydrodynamic Lubrication. E. Feyzullahoglu

Isothermal Elastohydrodynamic Lubrication. E. Feyzullahoglu Journal of the Balkan Tribological Association Vol. 15, No 3, 438 446 (009) 438 Elastohydrodynaic lubrication Isotheral Elastohydrodynaic Lubrication of Ellitic Contacts E. Feyzullahoglu Faculty of Engineering,

More information

Effect of multiple jet impingement plate configurations on Reynolds Number in a pipe

Effect of multiple jet impingement plate configurations on Reynolds Number in a pipe IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effect of ultiple jet ipingeent plate configurations on Reynolds Nuber in a pipe To cite this article: M S Rali et al 06 IOP Conf.

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 017 Saskatchewan High School Physics Scholarship Copetition Wednesday May 10, 017 Tie allowed: 90 inutes This copetition is based

More information

AiMT Advances in Military Technology

AiMT Advances in Military Technology AiT Advances in ilitary Technology Vol. 14, No. 1 (2019), pp. 47-57 ISSN 1802-2308, eissn 2533-4123 DOI 10.3849/ait.01247 odelling issile Flight Characteristics by Estiating ass and Ballistic Paraeters

More information

Electric Propulsion Research and Development at NASA-MSFC

Electric Propulsion Research and Development at NASA-MSFC Electric Propulsion Research and Development at NASA-MSFC November 2014 Early NEP concept for JIMO mission Dr. Kurt Polzin (kurt.a.polzin@nasa.gov) Propulsion Research and Development Laboratory NASA -

More information

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces Energy Balance, Units & Proble Solving: Mechanical Energy Balance ABET Course Outcoes: 1. solve and docuent the solution of probles involving eleents or configurations not previously encountered (e) (e.g.

More information

On spinors and their transformation

On spinors and their transformation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH, Science Huβ, htt:www.scihub.orgajsir ISSN: 5-69X On sinors and their transforation Anaitra Palit AuthorTeacher, P5 Motijheel Avenue, Flat C,Kolkata

More information

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator Successful Brushless A.C. Power Extraction Fro The Faraday Acyclic Generator July 11, 21 Volt =.2551552 volt 1) If we now consider that the voltage is capable of producing current if the ri of the disk

More information

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators Suppleentary Inforation for Design of Bending Multi-Layer Electroactive Polyer Actuators Bavani Balakrisnan, Alek Nacev, and Elisabeth Sela University of Maryland, College Park, Maryland 074 1 Analytical

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as.

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as. Electrodynaics Chapter Andrew Robertson 32.30 Here we are given a proton oving in a agnetic eld ~ B 0:5^{ T at a speed of v :0 0 7 /s in the directions given in the gures. Part A Here, the velocity is

More information

Computationally Efficient Control System Based on Digital Dynamic Pulse Frequency Modulation for Microprocessor Implementation

Computationally Efficient Control System Based on Digital Dynamic Pulse Frequency Modulation for Microprocessor Implementation IJCSI International Journal of Couter Science Issues, Vol. 0, Issue 3, No 2, May 203 ISSN (Print): 694-084 ISSN (Online): 694-0784 www.ijcsi.org 20 Coutationally Efficient Control Syste Based on Digital

More information

FRESNEL FORMULAE FOR SCATTERING OPERATORS

FRESNEL FORMULAE FOR SCATTERING OPERATORS elecounications and Radio Engineering, 70(9):749-758 (011) MAHEMAICAL MEHODS IN ELECROMAGNEIC HEORY FRESNEL FORMULAE FOR SCAERING OPERAORS I.V. Petrusenko & Yu.K. Sirenko A. Usikov Institute of Radio Physics

More information

The Number of Information Bits Related to the Minimum Quantum and Gravitational Masses in a Vacuum Dominated Universe

The Number of Information Bits Related to the Minimum Quantum and Gravitational Masses in a Vacuum Dominated Universe Wilfrid Laurier University Scholars Coons @ Laurier Physics and Couter Science Faculty Publications Physics and Couter Science 01 The uber of Inforation Bits Related to the Miniu Quantu and Gravitational

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Molecular interactions in beams

Molecular interactions in beams Molecular interactions in beas notable advanceent in the experiental study of interolecular forces has coe fro the developent of olecular beas, which consist of a narrow bea of particles, all having the

More information

Practice Final Exam PY 205 Monday 2004 May 3

Practice Final Exam PY 205 Monday 2004 May 3 Practice Final Exa PY 05 Monday 004 May 3 Nae There are THREE forula pages. Read all probles carefully before attepting to solve the. Your work ust be legible, and the organization ust be clear. Correct

More information

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Stern-Gerlach Experiment

Stern-Gerlach Experiment Stern-Gerlach Experient HOE: The Physics of Bruce Harvey This is the experient that is said to prove that the electron has an intrinsic agnetic oent. Hydrogen like atos are projected in a bea through a

More information

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS PROBLEMS 5. SSM REASONING According to Equation 21.1, the agnitude of the agnetic force on a oving charge is F q 0 vb sinθ. Since the agnetic field points

More information

Electric Propulsion. An short introduction to plasma and ion spacecraft propulsion. S. Barral. Instytut Podstawowych Problemów Techniki - PAN

Electric Propulsion. An short introduction to plasma and ion spacecraft propulsion. S. Barral. Instytut Podstawowych Problemów Techniki - PAN Electric Propulsion An short introduction to plasma and ion spacecraft propulsion S. Barral Instytut Podstawowych Problemów Techniki - PAN sbarral@ippt.gov.pl S. Barral (IPPT-PAN) Electric Propulsion 1

More information

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions )

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions ) 22 - ELECTRON AND PHOTONS Page 1 1 ) A photocell is illuinated by a sall source placed 1 away. When the sae source of light is placed 1 / 2 away, the nuber of electrons eitted by photocathode would ( a

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

HW 6 - Solutions Due November 20, 2017

HW 6 - Solutions Due November 20, 2017 Conteporary Physics I HW 6 HW 6 - Solutions Due Noveber 20, 2017 1. A 4 kg block is attached to a spring with a spring constant k 200N/, and is stretched an aount 0.2 [5 pts each]. (a) Sketch the potential

More information

THE RESEARCH ON NONLINEAR CHARACTERISTIC OF FIXED DISPLACEMENT PUMP VARIABLE MOTOR SYSTEM

THE RESEARCH ON NONLINEAR CHARACTERISTIC OF FIXED DISPLACEMENT PUMP VARIABLE MOTOR SYSTEM Journal of Theoretical and Alied Inforation Technology th January 3. ol. 47 No. 5-3 JATIT & LLS. All rights reserved. ISSN: 99-8645 www.jatit.org E-ISSN: 87-395 THE RESEARCH ON NONLINEAR CHARACTERISTIC

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION

9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Experient 9 HOOKE S LAW AND SIMPLE HARMONIC MOTION Objectives 1. Verify Hoo s law,. Measure the force constant of a spring, and 3. Measure the period of oscillation of a spring-ass syste and copare it

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

Frequency Domain Analysis of Rattle in Gear Pairs and Clutches. Abstract. 1. Introduction

Frequency Domain Analysis of Rattle in Gear Pairs and Clutches. Abstract. 1. Introduction The 00 International Congress and Exosition on Noise Control Engineering Dearborn, MI, USA. August 9-, 00 Frequency Doain Analysis of Rattle in Gear Pairs and Clutches T. C. Ki and R. Singh Acoustics and

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

Comparative Design of Radial and Transverse Flux PM Generators for Direct-Drive Wind Turbines

Comparative Design of Radial and Transverse Flux PM Generators for Direct-Drive Wind Turbines Paer ID 1325 Coarative Design of Radial and Transverse Flux PM Generators for Direct-Drive Wind Turbines Deok-je Bang, Henk Polinder, Ghanshya Shrestha and Jan Abraha Ferreira Electrical Power Processing

More information

3. In the figure below, the coefficient of friction between the center mass and the surface is

3. In the figure below, the coefficient of friction between the center mass and the surface is Physics 04A Exa October 9, 05 Short-answer probles: Do any seven probles in your exa book. Start each proble on a new page and and clearly indicate the proble nuber for each. If you attept ore than seven

More information

Kinematics and dynamics, a computational approach

Kinematics and dynamics, a computational approach Kineatics and dynaics, a coputational approach We begin the discussion of nuerical approaches to echanics with the definition for the velocity r r ( t t) r ( t) v( t) li li or r( t t) r( t) v( t) t for

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

The Characteristic Planet

The Characteristic Planet The Characteristic Planet Brano Zivla, bzivla@gail.co Abstract: I have calculated a relation significant for planets fro a logical starting point that a whole and its parts are ianently depandant on each

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

History of Spaceflight

History of Spaceflight History of Spaceflight Chinese Used Rockets in Battle In 1232 AD the Chinese used rockets against the Mongols An arrow with a tube of gunpowder produced an arrow of flying fire Historical Discoveries Johannes

More information

Name: Partner(s): Date: Angular Momentum

Name: Partner(s): Date: Angular Momentum Nae: Partner(s): Date: Angular Moentu 1. Purpose: In this lab, you will use the principle of conservation of angular oentu to easure the oent of inertia of various objects. Additionally, you develop a

More information

Time-of-flight Identification of Ions in CESR and ERL

Time-of-flight Identification of Ions in CESR and ERL Tie-of-flight Identification of Ions in CESR and ERL Eric Edwards Departent of Physics, University of Alabaa, Tuscaloosa, AL, 35486 (Dated: August 8, 2008) The accuulation of ion densities in the bea pipe

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Cheistry I Lecture 12 Aleksey Kocherzhenko Aril 2, 2015" Last tie " Gibbs free energy" In order to analyze the sontaneity of cheical reactions, we need to calculate the entroy changes

More information

Problem Set 2. Chapter 1 Numerical:

Problem Set 2. Chapter 1 Numerical: Chapter 1 Nuerical: roble Set 16. The atoic radius of xenon is 18 p. Is that consistent with its b paraeter of 5.15 1 - L/ol? Hint: what is the volue of a ole of xenon atos and how does that copare to

More information

Title. Author(s)Izumida, Yuki; Okuda, Koji. CitationPhysical review E, 80(2): Issue Date Doc URL. Rights. Type.

Title. Author(s)Izumida, Yuki; Okuda, Koji. CitationPhysical review E, 80(2): Issue Date Doc URL. Rights. Type. Title Onsager coefficients of a finite-tie Carnot cycle Author(s)Izuida, Yuki; Okuda, Koji CitationPhysical review E, 80(2): 021121 Issue Date 2009-08 Doc URL http://hdl.handle.net/2115/39348 Rights 2009

More information