SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 SUPPLEMENTARY INFORMATION doi:.38/nphys436 Non-adiabatic spin-torques in narrow magnetic domain walls C. Burrowes,2, A. P. Mihai 3,4, D. Ravelosona,2, J.-V. Kim,2, C. Chappert,2, L. Vila 3,4, A. Marty 3,4, Y. Samson 3, F. Garcia-Sanchez 5, L. D. Buda-Prejbeanu 5, I. Tudosa 6, E. E. Fullerton 6 & J.-P. Attané 3,4 Institut d Electronique Fondamentale, CNRS, UMR 8622, 945 Orsay, France 2 Université Paris-Sud, 945 Orsay, France 3 CEA, Inac, SP2M, 3854 Grenoble, France 4 Université Joseph Fourier, 384 Grenoble, France 5 SPINTEC, URA252 CEA/CNRS/UJF/INPG, 3854 Grenoble, France 6 Center for Magnetic Recording Research, University of California at San Diego, La Jolla CA , USA In this document, we present supplementary information concerning the experimental methodology behind the study described in the paper.. Experimental constraints on applied fields and currents The data in Figures 3 and 4 of the article, which show the measured cumulative distribution function for the depinning times and the variation of the associated Arrhenius transition rate τ as a function of applied current, respectively, are representative of the trends observed. However, there are three important experimental constraints that limit the range of fields and currents we can use in the present study. First, problems associated with electrical discharge limit the lifetime of the samples and have important consequences on the range of electrical currents we can apply. We recall that the distribution of depinning times at each value of applied field and current consists of 2-4 measurements. As the narrow wires we used are very sensitive to any electrostatic discharge, we have deliberately limited each measurement of the depinning time to 2 s and to the low current densities used. Despite such precautionary measures, each sample we have studied is eventually destroyed; samples can typically support continuous measurements of up to one month before breaking down. We have made measurements on different samples for each material, which all exhibit the same behaviour as that reported in the paper. The data set presented in the manuscript corresponds to the sample for which the largest data set of depinning times was obtained. Second, the rise time of the electromagnet used limits the strength of the magnetic field we can apply; it takes around.5- s to reach fields in excess of koe. Therefore, it is only possible to obtain a nature physics

2 supplementary information doi:.38/nphys436 good estimate of the depinning time if the propagation time of the domain wall from the nucleation reservoir exceeds this rise time. Third, the applied current densities are limited in magnitude because of Joule heating. As shown in Figure S, the current density is higher at the constrictions in the CoNi system, which leads to more pronounced effects due to Joule heating. In Figure S2a, we present the cumulative probability distribution function for applied current densities up to A/m 2 (ΔT = 2K). In contrast to the behaviour at low current densities, Joule heating progressively masks the asymmetry due to spintransfer effects and the parabolic increase in temperature becomes the dominant contribution to the distribution of the depinning times even for such small temperature rise. As shown in Figure S2b, this is also the case for FePt samples for applied current densities over 7 A/m 2. As such, this makes the extraction of the spin-transfer parameters more difficult with additional uncertainties. a Jx b Jy Figure S. Spatial distribution of current densities (in A/m 2 ) at a constriction showing higher local Joule heating (a) along the direction of the wire and (b) in the direction perpendicular to the wire. The current density flowing in the wire out of the constriction is.6 A/m 2..8 (a) -7. A/m 2-3. A/m 2 3. A/m 2 7. A/m 2 F(t) A/m A/m 2.7 A/m 2. A/m 2 (b) Figure S2. Cumulative probability functions for high current densities for the (a) CoNi and (b) FePt system. The data are consistent with Joule heating: for low negative currents, the mean pinning time decreases due to spin torques, for higher negative currents it increases due to Joule heating. 2 nature physics

3 NPHYS B doi:.38/nphys436 supplementary information 2. Depinning fields As shown in Figure S3, the depinning field at short times for both the FePt and CoNi spin valves can be estimated from hysteresis loop measurements. The plateau corresponds to domain-wall pinning and allows the depinning field Hp to be estimated. This field can be controlled through the constriction shape (CoNi) or the intrinsic pinning defect (FePt). The measured depinning field Hp fluctuates between measurements because the depinning transition is driven by thermal activation. As such, Hp depends also on the rate at which the magnetic field is swept during the hysteresis loop measurement. For the samples considered in the manuscript, at dh/dt Oe/s and after averaging over 2 measurements, we find Hp = 4.5 koe for FePt and Hp =.58 koe for CoNi. A more accurate method to determine Hp is from the field variation of ln(τ) deduced from the cumulative probability function F(t). As usual for films with perpendicular magnetic anisotropy, we find τ=τ exp[e(h)/kt] with E(H)=-2µMSV(H-Hc) where V is the activation volume and Hc corresponds to the depinning field without thermal fluctuations in contrast to the hysteresis loops measurements. We find Hc =.9 koe for CoNi and Hc = 4.7 koe for FePt, which underlines once again the importance of thermal activation (Hc > Hp). V GMR (mv) (a) H p H (Oe) R () (b) H P H (koe) Figure S3. (a) Reversal of the free layer for the (a) CoNi system and (b) FePt system. These loops have been determined by measuring the GMR signal as a function of field with a typical sweep rate of Oe/s. The plateaus correspond to domain wall pinning at a constriction (CoNi) or on a large intrinsic defect (FePt). Arrows indicate the direction of the field sweep. nature physics 3

4 supplementary information doi:.38/nphys Fits to cumulative distribution functions For both systems and all the wires that we have studied, we have used the same fitting procedure. Depending on the shape of the constriction (CoNi) and the role of intrinsic pinning centres (FePt), the results of the fit were always consistent with one of two scenarios: (a) Thermal activation over a single energy barrier; (b) Thermal activation involving two energy barriers, with the barriers either in series, in parallel or involving a Markov process (see below). An example of an exponential fit to the cumulative distribution function is shown in Figure S4, for which we obtain typical error of % for τ. We obtain similar error bars for other fields and currents. As such, this result is consistent with the picture that domain wall depinning from the constrictions considered in the paper is dominated by thermal activation involving a single energy barrier. F(t) F (t)= e t/τ τ = (.2 ±.9) s R 2 = Figure S4. Example of an exponential fit of the cumulative function for H = 55 Oe and J =.7 x A/m 2 for the CoNi system. The circles represent experimental data and the solid line represents a fit based on the equation given in the figure, along with the best-fit parameter and correlation coefficient. In contrast for sharper constrictions (< nm in lateral extension), we find that it is often necessary to use more than one exponential function to fit the cumulative distribution function. Micromagnetics simulations for these constriction sizes show that the depinning transition in such systems takes place through two different domain wall configurations, each with a different characteristic time τ (Markov process). If the values of the two characteristic times are close, it is more difficult to extract a measure of the spin-transfer parameter β from the experimental data, which is why these data sets have been excluded in the present manuscript. For FePt systems, the fits are consistent with a Markov process [] that involved two possible domain wall configurations as shown in Figure S6. The exact micromagnetic configuration corresponding to these states is unknown, however we do know that both states and 2 correspond to a single defect, as they correspond to identical GMR values and the dominant pining defects are well separated from each other. For example, the configuration difference could be linked to small deformations of the wall (depinning in two times, as shown in Figure S6), or to domain wall chirality (presence of a small in-plane component, presence or absence of a vertical Bloch line ). Basically, 4 nature physics

5 doi:.38/nphys436 supplementary information the idea is that it is more difficult to depin from the defect in state than in stage 2. Such a generic hypothesis gives account of our results, and is supported by the fact that in other experiments, the reduction of the width of the wire, reducing the available configurations of the domain wall, transformed experimental results similar to ours in more classical exponential laws. Figure S5. Example of DW depinning for sharper constrictions. The domain wall can be depinned through two different configurations involving different characteristic time. Figure S6. DW depinning process involving two different configurations. To describe this model more precisely, let s consider the initial (state ) and final (state 3) states. The domain wall can be depinned following two different paths: ( 3) or ( 2 and then 2 3). The 2 3 transition revealed to involve a very long characteristic time τ23 > τ3, which explains why the probability distribution curve does not saturate to for long times. The evolution of the system, represented by the vector P(t), whose 3 components are the probabilities to be in the i th state at time t, may be described by the differential equation dp (t) dt = M P (t), where the matrix M is given by (/τ 3 +/τ 2 ) /τ 2 /τ 3 M = /τ 23 /τ 23. This leads to F (t) = P 3 (t) = exp[tm] 3, = ( r)e t(/τ 2+/τ 3 ) re t/τ 23, nature physics 5

6 supplementary information doi:.38/nphys436 where r = /τ 2 /τ 2 +/τ 3 /τ 23. This expression was successfully used to fit the experimental data at room temperatures, as shown in Figure S7. For all fields and currents, τ23 is significantly larger than τ3 and τ2, meaning that the system is indeed frozen when going through the state 2. At room temperature, τ3 is by far smaller than τ2, which means that the system follows mainly the direct path 3. In all cases, τ3 plays the dominant role, and its value is quite accurately derived (±%) and represented in Figure 4b of the manuscript. Conversely, the alternative path through state (2) can be considered as a small correction. Consequently, τ2 and τ23 play a lesser role in the fits, and the given values should be seen as indicative..5 (a) (b).4.8 F(t) Figure S7. Example of a Markov fit (solid line) to the cumulative functions for two different applied fields (FePt), (a) H = 4.27 koe and (b) H = 4.49 koe. Experimental data are shown as circles. 6 nature physics

7 doi:.38/nphys436 supplementary information 4. Critical currents Current-driven wall motion has been observed in our CoNi patterned wires without constrictions. In these systems, the typical propagation field is around Hp = 5 Oe. In this case, we have been able to measure the dc threshold current to move the domain wall at zero field. By ramping the current up rapidly in order to minimize Joule heating, we find a value of about Jc = 8 A/m 2 that compares well with the result of Tanigawa et al. [2]. For patterned wires with constrictions, as those presented in the manuscript, the pinning field (as discussed above) is much higher (Hp = 6 e). While we have not measured zero field current-driven wall motion in these systems, we have extrapolated the magnetic field variation of the threshold current, Jc(H), to zero magnetic field and we find a typical value of Jc 4 2 A/m 2 for CoNi. Using a similar method, we find an efficiency of 3-3 Tm 2 A - for the FePt system, which extrapolates to a critical current of ~2 2 A/m 2. References. Attané, J. P., Ravelosona, D., Marty, A., Samson, Y. & Chappert, C. Thermally Activated Depinning of a Narrow Domain Wall from a Single Defect. Phys. Rev. Lett. 96, 4724 (26). 2. Tanigawa, Hironobu et al. Domain Wall Motion Induced by Electric Current in a Perpendicularly Magnetized Co/Ni Nano-Wire. Appl. Phys. Express 2, 532 (29). nature physics 7

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Spin-orbit torque magnetization switching controlled by geometry C.K.Safeer, Emilie Jué, Alexandre Lopez, Liliana Buda-Prejbeanu, Stéphane Auffret, Stefania Pizzini, Olivier Boulle, Ioan Mihai Miron, Gilles

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered materials for all-optical helicity-dependent magnetic switching S. Mangin 1,2, M. Gottwald 1, C-H. Lambert 1,2, D. Steil 3, V. Uhlíř 1, L. Pang 4, M. Hehn 2, S. Alebrand 3, M. Cinchetti 3, G.

More information

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France SUPPLEMENTARY INFORMATION Vertical-current-induced Supplementary material for : Spindomain-wall transfer induced domain motion wallin MgO-based motion in MgO-based magnetic magnetic tunnel tunneljunctions

More information

Manipulation of the magnetization of Perpendicular magnetized Rare-earth-transition metal alloys using polarized light

Manipulation of the magnetization of Perpendicular magnetized Rare-earth-transition metal alloys using polarized light Manipulation of the magnetization of Perpendicular magnetized Rare-earth-transition metal alloys using polarized light S. Mangin 7th Framework Program for Research IEF : Intra-European Fellowships IOF

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer

Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer nanowire Zhaoliang Meng, 1,2 Manoj Kumar, 1 Jinjun Qiu, 2 Guchang Han, 2,* Kie Leong Teo 1,2 and Duc-The Ngo, 3,1,* 1 Department of

More information

A brief history with Ivan. Happy Birthday Ivan. You are now closer to 70!

A brief history with Ivan. Happy Birthday Ivan. You are now closer to 70! A brief history with Ivan Happy Birthday Ivan You are now closer to 70! My brief history with Ivan 1986: I was a graduate student at UCSD, without a thesis advisor and not sure what I was going to do.

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

Current-induced switching in a magnetic insulator

Current-induced switching in a magnetic insulator In the format provided by the authors and unedited. DOI: 10.1038/NMAT4812 Current-induced switching in a magnetic insulator Can Onur Avci, Andy Quindeau, Chi-Feng Pai 1, Maxwell Mann, Lucas Caretta, Astera

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS147 Supplementary Materials for Bias voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions Se-Chung Oh 1,

More information

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies B. Özyilmaz a, G. Richter, N. Müsgens, M. Fraune, M. Hawraneck, B. Beschoten b, and G. Güntherodt Physikalisches

More information

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state acquired at a given out-ofplane magnetic field. Bright and

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Magnon-drag thermopile

Magnon-drag thermopile Magnon-drag thermopile I. DEVICE FABRICATION AND CHARACTERIZATION Our devices consist of a large number of pairs of permalloy (NiFe) wires (30 nm wide, 20 nm thick and 5 µm long) connected in a zigzag

More information

Torque magnetometry of perpendicular anisotropy exchange spring heterostructures

Torque magnetometry of perpendicular anisotropy exchange spring heterostructures Torque magnetometry of perpendicular anisotropy exchange spring heterostructures P. Vallobra 1, T. Hauet 1, F. Montaigne 1, E.G Shipton 2, E.E. Fullerton 2, S. Mangin 1 1. Institut Jean Lamour, UMR 7198

More information

Simulation of Hysteresis In Permalloy Films

Simulation of Hysteresis In Permalloy Films GQ-02 1 Simulation of Hysteresis In Permalloy Films Andrew Kunz and Chuck Campbell Magnetic Microscopy Center University of Minnesota Minneapolis, MN Introduction 2 Looking for the classical behavior of

More information

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced Supplementary Information Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced Co-Ni multilayers Jiawei Yu, Xuepeng Qiu, Yang Wu, Jungbum Yoon, Praveen Deorani, Jean Mourad Besbas,

More information

Current-induced Domain Wall Dynamics

Current-induced Domain Wall Dynamics Current-induced Domain Wall Dynamics M. Kläui, Fachbereich Physik & Zukunftskolleg Universität Konstanz Konstanz, Germany Starting Independent Researcher Grant Motivation: Physics & Applications Head-to-head

More information

Magnetic dissipation force microscopy studies of magnetic materials invited

Magnetic dissipation force microscopy studies of magnetic materials invited JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Advances in Magnetic Force Microscopy John Moreland, Chairman Magnetic dissipation force microscopy studies of magnetic materials invited Y.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology From Spin Torque Random Access Memory to Spintronic Memristor Xiaobin Wang Seagate Technology Contents Spin Torque Random Access Memory: dynamics characterization, device scale down challenges and opportunities

More information

Spin wave assisted current induced magnetic. domain wall motion

Spin wave assisted current induced magnetic. domain wall motion Spin wave assisted current induced magnetic domain wall motion Mahdi Jamali, 1 Hyunsoo Yang, 1,a) and Kyung-Jin Lee 2 1 Department of Electrical and Computer Engineering, National University of Singapore,

More information

Phase Coherent Precessional Magnetization Reversal in Microscopic Spin Valve Elements

Phase Coherent Precessional Magnetization Reversal in Microscopic Spin Valve Elements Phase Coherent Precessional Magnetization Reversal in Microscopic Spin Valve Elements H.W. Schumacher 1), C. Chappert 1), P. Crozat 1), R.C. Sousa 2), P.P. Freitas 2), J. Miltat 3), J. Fassbender 4), and

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Bloch point formation during skyrmion annihilation. Skyrmion number in layers with different z-coordinate during the annihilation of a skyrmion. As the skyrmion

More information

Universality of Dzyaloshinskii-Moriya interaction effect over domain-wall

Universality of Dzyaloshinskii-Moriya interaction effect over domain-wall Universality of Dzyaloshinskii-Moriya interaction effect over domain-wall creep and flow regimes Duck-Ho Kim, 1 Sang-Cheol Yoo, 1,2 Dae-Yun Kim, 1 Byoung-Chul Min, 2 and Sug-Bong Choe 1 1 Department of

More information

Spin Hall effect clocking of nanomagnetic logic without a magnetic field

Spin Hall effect clocking of nanomagnetic logic without a magnetic field SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2013.241 Spin Hall effect clocking of nanomagnetic logic without a magnetic field (Debanjan Bhowmik *, Long You *, Sayeef Salahuddin) Supplementary Section

More information

Magnetic bubblecade memory based on chiral domain walls

Magnetic bubblecade memory based on chiral domain walls Magnetic bubblecade memory based on chiral domain walls Kyoung-Woong Moon, Duck-Ho Kim, Sang-Cheol Yoo, Soong-Geun Je, Byong Sun Chun, Wondong Kim, Byoung-Chul Min, Chanyong Hwang & Sug-Bong Choe 1. Sample

More information

Fast propagation of weakly pinned domain walls and current-assisted magnetization reversal in He+-irradiated Pt/Co/Pt nanotracks

Fast propagation of weakly pinned domain walls and current-assisted magnetization reversal in He+-irradiated Pt/Co/Pt nanotracks Fast propagation of weakly pinned domain walls and current-assisted magnetization reversal in He+-irradiated Pt/Co/Pt nanotracks M Cormier, A Mougin, J Ferré, J-P Jamet, R Weil, J Fassbender, V Baltz,

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin-current pulse

Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin-current pulse Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin-current pulse O. J. Lee, V. S. Pribiag, P. M. Braganca, P. G. Gowtham, D. C. Ralph and R. A. Buhrman Cornell University,

More information

Current Driven Domain Wall Depinning in Notched Permalloy Nanowires

Current Driven Domain Wall Depinning in Notched Permalloy Nanowires Current Driven Domain Wall Depinning in Notched Permalloy Nanowires Candra Kurniawan 1, a) 2, b) and Dede Djuhana 1 Research Center for Physics, Lembaga Ilmu Pengetahuan Indonesia, Tangerang Selatan, Indonesia

More information

Nucleation in a Fermi liquid at negative pressure

Nucleation in a Fermi liquid at negative pressure Nucleation in a Fermi liquid at negative pressure Frédéric Caupin, Sébastien Balibar and Humphrey J. Maris Laboratoire de Physique Statistique de l Ecole Normale Supérieure associé aux Universités Paris

More information

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS Mat. Res. Soc. Symp. Proc. Vol. 674 001 Materials Research Society MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS M. Hehn, O. Lenoble, D. Lacour and A. Schuhl Laboratoire de Physique

More information

voltage measurement for spin-orbit torques"

voltage measurement for spin-orbit torques SUPPLEMENTARY for article "Accurate analysis for harmonic Hall voltage measurement for spin-orbit torques" Seok Jin Yun, 1 Eun-Sang Park, 2 Kyung-Jin Lee, 1,2 and Sang Ho Lim 1,* 1 Department of Materials

More information

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland SPIE - Spintronics San Diego 28 Aug 1 Sep 2016 Staffa Island, Scotland O. Fruchart 1. Institut NÉEL, Univ. Grenoble Alpes / CNRS, France 2. SPINTEC, Univ. Grenoble Alpes / CNRS / CEA-INAC, France www.spintec.fr

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Wide-Range Probing of Dzyaloshinskii Moriya Interaction

Wide-Range Probing of Dzyaloshinskii Moriya Interaction Wide-Range Probing of Dzyaloshinskii Moriya Interaction Duck-Ho Kim, 1 Sang-Cheol Yoo, 1,2 Dae-Yun Kim, 1 Byoung-Chul Min, 2 and Sug-Bong Choe 1 1 Department of Physics and Institute of Applied Physics,

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Current-induced vortex displacement and annihilation in a single permalloy disk

Current-induced vortex displacement and annihilation in a single permalloy disk Current-induced vortex displacement and annihilation in a single permalloy disk T. Ishida, 1 T. Kimura, 1,2,3, * and Y. Otani 1,2,3 1 Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha,

More information

A simple vision of current induced spin torque in domain walls

A simple vision of current induced spin torque in domain walls A simple vision of current induced spin torque in domain walls A. Vanhaverbeke and M. Viret Service de physique de l état condensé (CNRS URA 464), CEA Saclay F-91191 Gif-sur-Yvette cedex, France (Dated:

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

Switching of magnetic domains reveals spatially inhomogeneous superconductivity

Switching of magnetic domains reveals spatially inhomogeneous superconductivity Switching of magnetic domains reveals spatially inhomogeneous superconductivity Simon Gerber, Marek Bartkowiak, Jorge L. Gavilano, Eric Ressouche, Nikola Egetenmeyer, Christof Niedermayer, Andrea D. Bianchi,

More information

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices Meiyin Yang 1, Kaiming Cai 1, Hailang Ju 2, Kevin William Edmonds 3, Guang Yang 4, Shuai Liu 2, Baohe Li 2, Bao Zhang 1, Yu Sheng 1, ShouguoWang 4, Yang

More information

Spontaneous recovery in dynamical networks

Spontaneous recovery in dynamical networks Spontaneous recovery in dynamical networks A) Model: Additional Technical Details and Discussion Here we provide a more extensive discussion of the technical details of the model. The model is based on

More information

Supplementary Note 1 Description of the sample and thin lamella preparation Supplementary Figure 1 FeRh lamella prepared by FIB and used for in situ

Supplementary Note 1 Description of the sample and thin lamella preparation Supplementary Figure 1 FeRh lamella prepared by FIB and used for in situ Supplementary Note 1 Description of the sample and thin lamella preparation A 5nm FeRh layer was epitaxially grown on a go (1) substrate by DC sputtering using a co-deposition process from two pure Fe

More information

Micromagnetic Modeling

Micromagnetic Modeling Micromagnetic Modeling P. B. Visscher Xuebing Feng, D. M. Apalkov, and Arkajyoti Misra Department of Physics and Astronomy Supported by NSF grants # ECS-008534 and DMR-0213985, and DOE grant # DE-FG02-98ER45714

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NPHYS4186 Stripes Developed at the Strong Limit of Nematicity in FeSe film Wei Li 1,2,3*, Yan Zhang 2,3,4,5, Peng Deng 1, Zhilin Xu 1, S.-K.

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetic domain structure and dynamics in interacting ferromagnetic. stacks with perpendicular anisotropy

Magnetic domain structure and dynamics in interacting ferromagnetic. stacks with perpendicular anisotropy Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy S. Wiebel, J.-P. Jamet, N. Vernier, A. Mougin, J. Ferré Laboratoire de Physique des Solides, UMR

More information

Direct observation of the skyrmion Hall effect

Direct observation of the skyrmion Hall effect SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3883 Direct observation of the skyrmion Hall effect Wanjun Jiang 1,2,3, *,, Xichao Zhang 4,*, Guoqiang Yu 5, Wei Zhang 1, Xiao Wang 6, M. Benjamin Jungfleisch

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magneto-ionic Control of Interfacial Magnetism Uwe Bauer, Lide Yao, Aik Jun Tan, Parnika Agrawal, Satoru Emori, Harry L. Tuller, Sebastiaan van Dijken and Geoffrey S. D. Beach - Supplementary Information

More information

Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3

Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3 Supplementary Material Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3 J. Biscaras, S. Hurand, C. Feuillet-Palma, A. Rastogi 2, R. C. Budhani 2,3, N.

More information

Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy

Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy Weiwei Lin 1 *, Nicolas Vernier 1, Guillaume Agnus 1, Karin Garcia 1, Berthold Ocker 2, Weisheng

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor Bilayer

Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor Bilayer Vol. 106 (2004) ACTA PHYSICA POLONICA A No. 5 Proceedings of the School Superconductivity and Other Phenomena in Perovskites, Warsaw 2004 Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure Yabin Fan, 1,,* Pramey Upadhyaya, 1, Xufeng Kou, 1, Murong Lang, 1 So Takei, 2 Zhenxing

More information

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description: File name: Supplementary Information Description: Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Figure Electron micrographs and ballistic transport

More information

Edge conduction in monolayer WTe 2

Edge conduction in monolayer WTe 2 In the format provided by the authors and unedited. DOI: 1.138/NPHYS491 Edge conduction in monolayer WTe 2 Contents SI-1. Characterizations of monolayer WTe2 devices SI-2. Magnetoresistance and temperature

More information

The expansion coefficient of liquid helium 3 and the shape of its stability limit

The expansion coefficient of liquid helium 3 and the shape of its stability limit The expansion coefficient of liquid helium 3 and the shape of its stability limit Frédéric Caupin, Sébastien Balibar and Humphrey J. Maris Laboratoire de Physique Statistique de l Ecole Normale Supérieure

More information

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Benjamin Krüger 17.11.2006 1 Model The Micromagnetic Model Current Induced Magnetisation Dynamics Phenomenological Description Experimental

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Exchange Coupled Composite Media for Perpendicular Magnetic Recording

Exchange Coupled Composite Media for Perpendicular Magnetic Recording BB-01 1 Exchange Coupled Composite Media for Perpendicular Magnetic Recording R. H. Victora, Fellow, IEEE, X. Shen Abstract Exchange coupled composite (ECC) media has been shown to possess several major

More information

Unidirectional spin-wave heat conveyer

Unidirectional spin-wave heat conveyer Unidirectional spin-wave heat conveyer Figure S1: Calculation of spin-wave modes and their dispersion relations excited in a 0.4 mm-thick and 4 mm-diameter Y 3 Fe 5 O 12 disk. a, Experimentally obtained

More information

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices ConceptGraphene New Electronics Concept: Wafer-Scale Epitaxial Graphene Small or medium-scale focused research project WP4 Spin transport devices Deliverable 4.1 Report on spin transport in graphene on

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 16 Jan 2003

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 16 Jan 2003 Current induced distortion of a magnetic domain wall Xavier Waintal and Michel Viret CEA, Service de physique de l état condensé, Centre d étude de Saclay F-91191 Gif-sur-Yvette cedex, France arxiv:cond-mat/0301293v1

More information

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine in the de Haas van Alphen effect Magnetic domains of non-spin origine related to orbital quantization Jörg Hinderer, Roman Kramer, Walter Joss Grenoble High Magnetic Field laboratory Ferromagnetic domains

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires Marquette University e-publications@marquette Physics Faculty Research and Publications Physics, Department of 8-1-2010 Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Emerging spintronics-based logic technologies

Emerging spintronics-based logic technologies Center for Spintronic Materials, Interfaces, and Novel Architectures Emerging spintronics-based logic technologies Zhaoxin Liang Meghna Mankalale Jian-Ping Wang Sachin S. Sapatnekar University of Minnesota

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NPHYS406 Half-solitons in a polariton quantum fluid behave like magnetic monopoles R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese 3, T. Boulier, D. Andreoli, E. Giacobino,

More information

Nanomagnetism a perspective from the dynamic side

Nanomagnetism a perspective from the dynamic side Nanomagnetism a perspective from the dynamic side Burkard Hillebrands Fachbereich Physik and Research Center OPTIMAS Technische Universität Kaiserslautern Kaiserslautern, Germany TNT 2009 Nanotechnology

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France Supporting information Direct band gap germanium microdisks obtained with silicon nitride stressor layers Moustafa El Kurdi, 1 Mathias Prost, 1 Abdelhamid Ghrib, 1 Sébastien Sauvage, 1 Xavier Checoury,

More information

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun Exchange Bias in [Co/Pd]/IrMn Thin Films Young Byun A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Bachelor of Science

More information

An Overview of Spin-based Integrated Circuits

An Overview of Spin-based Integrated Circuits ASP-DAC 2014 An Overview of Spin-based Integrated Circuits Wang Kang, Weisheng Zhao, Zhaohao Wang, Jacques-Olivier Klein, Yue Zhang, Djaafar Chabi, Youguang Zhang, Dafiné Ravelosona, and Claude Chappert

More information

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J.

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Eckert Magnetisation (emu/g) 3 2 1-1 -2 pulsed field static field 175

More information

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Hans T. Nembach, Justin M. Shaw, Mathias Weiler*, Emilie Jué and Thomas J. Silva Electromagnetics

More information

Spin-torque nano-oscillators trends and challenging

Spin-torque nano-oscillators trends and challenging Domain Microstructure and Dynamics in Magnetic Elements Heraklion, Crete, April 8 11, 2013 Spin-torque nano-oscillators trends and challenging N H ext S Giovanni Finocchio Department of Electronic Engineering,

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

Anomalous Transport Noise in YBCO.

Anomalous Transport Noise in YBCO. Anomalous Transport Noise in YBCO. Prof. Dale Van Harlingen (UIUC) Prof. Michael Weissman (UIUC) Tony Bonetti (took early data) David S. Caplan (kept it going despite odds) Prof. Tom Lemberger and Mike

More information

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012 Spin torque switching in perpendicular films at finite temperature, HP-13 Ru Zhu and P B Visscher arxiv:12111665v1 [cond-matmtrl-sci] 7 Nov 212 MINT Center and Department of Physics and Astronomy University

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Spin Torque and Magnetic Tunnel Junctions

Spin Torque and Magnetic Tunnel Junctions Spin Torque and Magnetic Tunnel Junctions Ed Myers, Frank Albert, Ilya Krivorotov, Sergey Kiselev, Nathan Emley, Patrick Braganca, Greg Fuchs, Andrei Garcia, Ozhan Ozatay, Eric Ryan, Jack Sankey, John

More information

Magnetic Race- Track Memory: Current Induced Domain Wall Motion!

Magnetic Race- Track Memory: Current Induced Domain Wall Motion! Magnetic Race- Track Memory: Current Induced Domain Wall Motion! Stuart Parkin IBM Fellow IBM Almaden Research Center San Jose, California parkin@almaden.ibm.com Digital data storage Two main types of

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses arxiv:1606.05212v1 [cond-mat.mes-hall] 16 Jun 2016 Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses T. Janda, 1 P. E. Roy, 2 R. M. Otxoa, 2 Z. Šobáň, 3 A.

More information

Injection locking at zero field in two free layer spin-valves

Injection locking at zero field in two free layer spin-valves Injection locking at zero field in two free layer spin-valves Mario Carpentieri, 1 Takahiro Moriyama, 2 Bruno Azzerboni, 3 Giovanni Finocchio 3 1 Department of Ingegneria Elettrica e dell Informazione,

More information

Mn 4 N ferrimagnetic thin films for sustainable spintronics

Mn 4 N ferrimagnetic thin films for sustainable spintronics Mn 4 N ferrimagnetic thin films for sustainable spintronics T. Gushi 1,2, M. Jovičević Klug 3,, J. Peña Garcia 3, J. Vogel 3, J.P. Attané 2, T. Suemasu 1, S. Pizzini*,3, L. Vila,2 1. Institute of Applied

More information