Chapter 6. Phillip Hall - Room 537, Huxley

Size: px
Start display at page:

Download "Chapter 6. Phillip Hall - Room 537, Huxley"

Transcription

1 Chater 6 6 Partial Derivatives Higher order artial derivatives Matrix of artial derivatives Chain rule Change of variables Philli Hall - Room 537, Huxle hil.hallimerial.ac.uk

2 Chater 6 Partial Derivatives De nition 5 Let f : R 2 R be a function of two variables, f (x; ) 2 R. The artial derivative of f with resect to x (x-variable) at a oint (x ; ) 2 R 2 is de ned as the limit x (x f (x + h; ) f (x ; ) ; ) := lim h h (6.) rovided this limit exists. Equivalentl, we de ne the artial derivative of f with resect to as the limit (x f (x ; + h) f (x ; ) ; ) := lim (6.2) h h rovided it exists. In other words, we de ne the artial derivatives of f with resect to x (res. ) keeing the other variable xed and aling the standard de nition of derivative as if f was a function of one variable. Alternativel to the notation x, we will also denote the artial derivatives as f x or x f (similarl, = f = f). The artial derivatives x and will be considered as functions x ; : R2 R that, to an oint (x; ) 2 R 2, associate the artial derivatives (6.) and (6.2). Examle 6 Let Then f(x; ) = x sin(x + 2) + : x (x; ) = 2x3 + cos (x + 2) (x; ) = 32 x cos (x + 2) + : 72

3 6. Higher order artial derivatives Higher order artial derivatives The artial derivatives x f and f of f : R 2 R are themselves functions of both variables x and. Therefore, we can di erentiate them and consider their artial derivatives with resect to x and, x x = 2 f x 2 ; x = 2 f x ; x = 2 f x ; = 2 f : One of the most imortant results in artial di erentiation is that, rovided that higher order artial derivatives exist and are continuous functions, the order in which artial derivatives are taken is not imortant. Theorem 7 Let f : R 2 R be a function such that both x f and x f are continuous. Then 2 f x = 2 f x : This means that if, for examle, we want to di erentiate a function f : R 2 R three times with resect to x and ve times with resect to, we will carr out these artial derivatives consecutivel in an order and we will siml write 8 f 5 x 3 : In general, De nition 5 can be extended in a natural wa to functions of more than 2 variables. That is, if f : R n R is a function of (x ; :::; x n ) 2 R n, then, for examle, f (x ; :::; x i + h; :::; x n ) f (x ; :::; x i ; :::; x n ) = lim x i h h rovided this limit exists. Equall, one can consider higher order artial derivatives di erentiating with resect to an variable x ; :::; x n iterativel, 2 f x j x i ; 3 f x j x i x k ; ::: etc. i; j; k 2 f; :::; ng: If f : R n R m is not real-valued but vector-valued, 7 f : R n R m (x ; :::; x n ) (f (x ; ::; x n ) ; :::; f m (x ; ::; x n )) we can artiall di erentiate an of its m comonents (f ; :::; f m ) and consider j x i ; j 2 f; :::; mg i 2 f; :::; ng:

4 6.2 Matrix of artial derivatives Matrix of artial derivatives Partial derivatives of functions are usuall dislaed in a matrix, the so-called matrix of artial derivatives. If f : R n R m is a R m -valued function of n variables, we arrange its artial derivatives as x x 2 x n x x 2 x n T f := B. (6.3).... C A m x m x 2 We will denote this matrix b T f. For examle, if f : R n R is real valued (onl one comonent, f = f ), then the matrix (6.3) reduces to a vector T f = ; ; :::; : x x 2 x n In this articular case, the vector of artial derivatives is called the gradient of f and it is alternativel denoted b rf. Examle 8 If m x n f(x; ) = x sin(x + 2) + is the function of Examle 6. Then its gradient is rf = 2x 3 + cos (x + 2) ; 3 2 x cos (x + 2) + and the matrix of second order artial derivatives is 2 3 sin (x + 2) 6x 2 2 sin (x + 2) 6x 2 2 sin (x + 2) 6x 2 : 4 sin (x + 2) Observe that 6.3 Chain rule 2 f x = 6x2 2 sin (x + 2) = 2 f x : In Chater Section 3, we saw that in order to di erentiate the comosition of two functions of one variable we had to al the chain rule. More exlicitl, if f; g : R R, then (f g) (x) = f (g(x)) g (x) : (6.4) The roblem now is the following. Suose that we have two vector-valued functions G : R n R m and F : R m R r. We want to write the artial derivatives of the comosite function F G in terms of the artial derivatives of F and G. F G : R n G R m F R r :

5 6.3 Chain rule 75 Theorem 9 The matrix of artial derivatives of F G equals the roduct of the matrix of artial derivatives of F comosed with G with the matrix of artial derivatives of G, i.e., T (F G) = (T F G) T G: (6.5) That is, instead of multiling the two derivatives as in the classic version of the chain rule (6.4), in the multidimensional case we multil the matrices of artial derivatives. Examle 2 Let G : R 2 R 2 (x; ) 7 ln ; x 3 : and F : R2 R 2 (x; ) 7 x sin ; x so that (F G) (x; ) = ln() sin x 3 ; qln 2 + x 6 (6.6) Then, T F = sin x x x cos x and T G = 3x 2 : The matrix of artial derivatives of (6.6) is T (F G) = (T F G)T G. Since sin x cos (T F G) (x; ) = = sin x3 ln() cos x 3 ln A x x x (x=ln ;=x 3 ) we have T (F G) = sin x3 ln() cos x 3 ln A 3x 2 = 3x2 ln() cos x 3 3x 5 x 3 ln 2 +x 6 ln 2 +x 6 x 3 ln 2 +x 6 ln 2 +x 6 sin x3 ln ln 2 +x 6 ln 2 +x 6 A : (6.7) Exercise 2 Comute T (F G) directl from (6.6) and verif that it coincides with (6.7). It is not alwas straightforward to al the chain rule (6.5). For examle, if G; F : R 2 R are two function of two variables, we could consider the new function H (x; ) := F (G (x; ) ; ) : However, this function is not the comosition of F with G because, strictl seaking G is real valued and F deends on two variables so F G has no meaning. In order to obtain the artial derivative of H in terms of those of F and G, we need to work a little bit (but not much). Observe that H can be written as H = F e G if we de ne e G from G as eg : R 2 R 2 (x; ) 7 (G (x; ) ; ) :

6 6.3 Chain rule 76 Therefore, b (6.5), T H = T F G e T G: e Since we have Exlicitl, T F e G = T H = F F x (G (x; ) ; ) F G x (G (x; ) ; ) x ; (G (x; ) ; ) and T e G = G x G ; F G x (G (x; ) ; ) + F (G (x; ) ; ) : H x = F G (G (x; ) ; ) x x ; H = F G (G (x; ) ; ) x + F (G (x; ) ; ) : Examle 22 (Total Derivative) Let : R R 3, (t) = (x (t) ; (t) ; z (t)), be the trajector of a article on R 3, where t stands for the time. Let f : R 4 R, f = f (t; x; ; z), be a hsical observable that deends both on time and osition. The function f (t; (t)) = f (t; x (t) ; (t) ; z (t)) is a one-variable function. Its derivative df dt (with resect to time) is called the total derivative of f (with resect to t). Observe that we can write where Consequentl, df dt = (T f e) T e = t (t) f (t; (t)) = (f e) (t) 7 e : R R 4 t (t; x (t) ; (t) ; z (t)) : x ( (t)) ( (t)) z ( (t)) Bx (t) C (t) A z (t) = (t) + t x ( (t)) x (t) + ( (t)) (t) + z ( (t)) z (t): (6.8) Since ~v = (x (t); (t); z (t)) is the velocit of the article, Equation (6.8) is sometimes found in the literature as df dt = 3X t + (t; (t)) v i ; x i where we have rede ned the variables as x = x, x 2 =, and x 3 = z. i=

7 6.4 Change of variables Change of variables In this section, we will learn how the artial derivatives of a function change under a change of variables. Roughl seaking, a change of variables of, let us sa, R n, is a di erentiable ma ' : R n R n and, consequentl, artial derivatives are transformed according to the chain rule (6.5). However, in some situations, we ma need to invert the change of variables and comute the matrix of artial derivatives T ' of the inverse ma ' : R n R n. The comutation of T ' ma be highl non-trivial comared with T ', the matrix of artial derivatives of the direct transformation. We will exemlif this with olar coordinates on R 2 and we will learn how to exress di erential oerators given in Cartesian coordinates in olar coordinates. The next result is a generalisation of the inverse function di erentiation rule (Chater Section 3). Proosition 23 Let ' : R n R n be bijective ma such that all its artial derivatives exist and consider ' : R n R n its inverse ma (i.e., ' ' = ' ' = Id). Let x 2 R n and = ' (x) 2 R n. Then T ' () = (T ') ' () = (T ') (x) : That is, the matrix of artial derivatives of ' evaluated at 2 R n equals the inverse of the matrix T ' evaluated at x. Examle 24 (olar coordinates) Let ' : R 2 R 2 be given b 7 ' : R 2 R 2 (r; ) (r cos ; r sin ) : This change of coordinates is usuall exressed as x = r cos ; = r sin : (6.9) Let f (x; ) be a function de ned on R 2. Regarded as a function of (r; ), B the chain rule, ef (r; ) = f (r cos ; r sin ) : (6.) Using (6.9), f e r = x x r + r ; f e = x x + : f e r = cos + x sin e f = r sin + r cos : x

8 6.4 Change of variables 78 These equations allow us to exress the artial derivatives of f considered as a function of the olar coordinates (r; ) in terms of the artial derivatives of f with resect to x and. In matrix notation, f e r f e A = (T ') x = cos r sin sin r cos x : If we now want to nd ( x f; f) in terms of ( r e f; e f), we have two otions. On the one hand, we can invert ' r = x = tan x and then al the chain rule. On the other hand, we can invert T ', (T ') = r cos sin r r sin cos (6.) so that x = r r cos r sin sin cos f e r f e For examle, x (x; ) = cos f e r (r; ) r sin f e (r; ) where r and are given b (6.). A : (6.2) Di erential oerators such as the Lalacian involving artial derivatives are ver frequent in hsics. Suose now that we want to exress a di erential oerator, for examle the Lalacian = 2 x in olar coordinates, that is, in terms of the artial di erential oerators r and. The advantage of having the Lalacian exressed in both Cartesian and olar coordinates is twofold. On the one hand, f is eas to calculate if f deends on the variables (x; ) but if, on the contrar, f e is a function of the olar coordinates (r; ) we need, rst of all, to rewrite r and in terms of x and and al the chain rule twice. On the other hand, some simle functions of (r; ) have a ver comlicated functional form when exressed in terms of (x; ). In those situations, aling the Lalacian in olar coordinates is easier. To start with, observe that, at the level of di erential oerators, Equation (6.2) reads = r cos sin : r r sin cos x r

9 6.4 Change of variables 79 Carring out the matrix roduct, From (6.3) and with the same notation as in (6.), we have Equivalentl, 2 f x 2 = x x = cos r = cos 2 2 f e r 2 + r 2 cos sin f e x = cos r r sin ; (6.3) = sin r + r cos : (6.4) r sin cos f e r r sin f e r cos sin 2 f e r + r sin2 f e r r sin cos 2 f e r + r 2 sin cos f e + r 2 sin2 2 f e 2 : (6.5) 2 f 2 = = sin r + r cos sin f e r + r cos f e = sin 2 2 f e r 2 r 2 sin cos f e + r sin cos 2 f e r + r cos2 f e r + r cos sin 2 e f r Adding (6.5) and (6.6) and using cos 2 + sin 2 =, we have r 2 cos sin f e + r 2 cos2 2 f e 2 : (6.6) f e = 2 f e r 2 + f e r r + 2 f e r 2 2 :

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017 Name (Last name, First name): MTH 310 Comlex Variables Practice Exam 1 Feb. 10, 017 Exam Instructions: You have 1 hour & 10 minutes to comlete the exam. There are a total of 7 roblems. You must show your

More information

0.1 Practical Guide - Surface Integrals. C (0,0,c) A (0,b,0) A (a,0,0)

0.1 Practical Guide - Surface Integrals. C (0,0,c) A (0,b,0) A (a,0,0) . Practical Guide - urface Integrals urface integral,means to integrate over a surface. We begin with the stud of surfaces. The easiest wa is to give as man familiar eamles as ossible ) a lane surface

More information

CMSC 425: Lecture 7 Geometric Programming: Sample Solutions

CMSC 425: Lecture 7 Geometric Programming: Sample Solutions CMSC 425: Lecture 7 Geometric Programming: Samle Solutions Samles: In the last few lectures, we have been discussing affine and Euclidean geometr, coordinate frames and affine transformations, and rotations.

More information

CHAPTER 5 TANGENT VECTORS

CHAPTER 5 TANGENT VECTORS CHAPTER 5 TANGENT VECTORS In R n tangent vectors can be viewed from two ersectives (1) they cature the infinitesimal movement along a ath, the direction, and () they oerate on functions by directional

More information

Introduction to Group Theory Note 1

Introduction to Group Theory Note 1 Introduction to Grou Theory Note July 7, 009 Contents INTRODUCTION. Examles OF Symmetry Grous in Physics................................. ELEMENT OF GROUP THEORY. De nition of Grou................................................

More information

Solutions to Test #2 (Kawai) MATH 2421

Solutions to Test #2 (Kawai) MATH 2421 Solutions to Test # (Kawai) MATH 4 (#) Each vector eld deicted below is a characterization of F (; ) hm; Ni : The directions of all eld vectors are correct, but the magnitudes are scaled for ease of grahing.

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

Topic 7: Using identity types

Topic 7: Using identity types Toic 7: Using identity tyes June 10, 2014 Now we would like to learn how to use identity tyes and how to do some actual mathematics with them. By now we have essentially introduced all inference rules

More information

Sets of Real Numbers

Sets of Real Numbers Chater 4 Sets of Real Numbers 4. The Integers Z and their Proerties In our revious discussions about sets and functions the set of integers Z served as a key examle. Its ubiquitousness comes from the fact

More information

CALCULUS I. Practice Problems Integrals. Paul Dawkins

CALCULUS I. Practice Problems Integrals. Paul Dawkins CALCULUS I Practice Problems Integrals Paul Dawkins Table of Contents Preface... Integrals... Introduction... Indefinite Integrals... Comuting Indefinite Integrals... Substitution Rule for Indefinite Integrals...

More information

Planar Transformations and Displacements

Planar Transformations and Displacements Chater Planar Transformations and Dislacements Kinematics is concerned with the roerties of the motion of oints. These oints are on objects in the environment or on a robot maniulator. Two features that

More information

1 Properties of Spherical Harmonics

1 Properties of Spherical Harmonics Proerties of Sherical Harmonics. Reetition In the lecture the sherical harmonics Y m were introduced as the eigenfunctions of angular momentum oerators lˆz and lˆ2 in sherical coordinates. We found that

More information

Short Solutions to Practice Material for Test #2 MATH 2421

Short Solutions to Practice Material for Test #2 MATH 2421 Short Solutions to Practice Material for Test # MATH 4 Kawai (#) Describe recisely the D surfaces listed here (a) + y + z z = Shere ( ) + (y ) + (z ) = 4 = The center is located at C (; ; ) and the radius

More information

The Second Law: The Machinery

The Second Law: The Machinery The Second Law: The Machinery Chater 5 of Atkins: The Second Law: The Concets Sections 3.7-3.9 8th Ed, 3.3 9th Ed; 3.4 10 Ed.; 3E 11th Ed. Combining First and Second Laws Proerties of the Internal Energy

More information

Trigonometric Identities

Trigonometric Identities Trigonometric Identities An identity is an equation that is satis ed by all the values of the variable(s) in the equation. We have already introduced the following: (a) tan x (b) sec x (c) csc x (d) cot

More information

Elements of Asymptotic Theory. James L. Powell Department of Economics University of California, Berkeley

Elements of Asymptotic Theory. James L. Powell Department of Economics University of California, Berkeley Elements of Asymtotic Theory James L. Powell Deartment of Economics University of California, Berkeley Objectives of Asymtotic Theory While exact results are available for, say, the distribution of the

More information

CHAPTER 2: SMOOTH MAPS. 1. Introduction In this chapter we introduce smooth maps between manifolds, and some important

CHAPTER 2: SMOOTH MAPS. 1. Introduction In this chapter we introduce smooth maps between manifolds, and some important CHAPTER 2: SMOOTH MAPS DAVID GLICKENSTEIN 1. Introduction In this chater we introduce smooth mas between manifolds, and some imortant concets. De nition 1. A function f : M! R k is a smooth function if

More information

AP Calculus Testbank (Chapter 10) (Mr. Surowski)

AP Calculus Testbank (Chapter 10) (Mr. Surowski) AP Calculus Testbank (Chater 1) (Mr. Surowski) Part I. Multile-Choice Questions 1. The grah in the xy-lane reresented by x = 3 sin t and y = cost is (A) a circle (B) an ellise (C) a hyerbola (D) a arabola

More information

Applications to stochastic PDE

Applications to stochastic PDE 15 Alications to stochastic PE In this final lecture we resent some alications of the theory develoed in this course to stochastic artial differential equations. We concentrate on two secific examles:

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information

CHAPTER 3: TANGENT SPACE

CHAPTER 3: TANGENT SPACE CHAPTER 3: TANGENT SPACE DAVID GLICKENSTEIN 1. Tangent sace We shall de ne the tangent sace in several ways. We rst try gluing them together. We know vectors in a Euclidean sace require a baseoint x 2

More information

ε i (E j )=δj i = 0, if i j, form a basis for V, called the dual basis to (E i ). Therefore, dim V =dim V.

ε i (E j )=δj i = 0, if i j, form a basis for V, called the dual basis to (E i ). Therefore, dim V =dim V. Covectors Definition. Let V be a finite-dimensional vector sace. A covector on V is real-valued linear functional on V, that is, a linear ma ω : V R. The sace of all covectors on V is itself a real vector

More information

Lecture 1.2 Pose in 2D and 3D. Thomas Opsahl

Lecture 1.2 Pose in 2D and 3D. Thomas Opsahl Lecture 1.2 Pose in 2D and 3D Thomas Osahl Motivation For the inhole camera, the corresondence between observed 3D oints in the world and 2D oints in the catured image is given by straight lines through

More information

CMSC 425: Lecture 4 Geometry and Geometric Programming

CMSC 425: Lecture 4 Geometry and Geometric Programming CMSC 425: Lecture 4 Geometry and Geometric Programming Geometry for Game Programming and Grahics: For the next few lectures, we will discuss some of the basic elements of geometry. There are many areas

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6.2 Introduction We extend the concet of a finite series, met in Section 6., to the situation in which the number of terms increase without bound. We define what is meant by an infinite

More information

2 Asymptotic density and Dirichlet density

2 Asymptotic density and Dirichlet density 8.785: Analytic Number Theory, MIT, sring 2007 (K.S. Kedlaya) Primes in arithmetic rogressions In this unit, we first rove Dirichlet s theorem on rimes in arithmetic rogressions. We then rove the rime

More information

2 Asymptotic density and Dirichlet density

2 Asymptotic density and Dirichlet density 8.785: Analytic Number Theory, MIT, sring 2007 (K.S. Kedlaya) Primes in arithmetic rogressions In this unit, we first rove Dirichlet s theorem on rimes in arithmetic rogressions. We then rove the rime

More information

Round-off Errors and Computer Arithmetic - (1.2)

Round-off Errors and Computer Arithmetic - (1.2) Round-off Errors and Comuter Arithmetic - (.). Round-off Errors: Round-off errors is roduced when a calculator or comuter is used to erform real number calculations. That is because the arithmetic erformed

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 Solutions to Problem Set Problem 4.6. f () ( )( 4) For this simle rational function, we see immediately that the function has simle oles at the two indicated oints, and so we use equation (6.) to nd the

More information

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0.

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0. Page 5- Chater 5: Lalace Transforms The Lalace Transform is a useful tool that is used to solve many mathematical and alied roblems. In articular, the Lalace transform is a technique that can be used to

More information

Section 0.10: Complex Numbers from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative

Section 0.10: Complex Numbers from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Section 0.0: Comlex Numbers from Precalculus Prerequisites a.k.a. Chater 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Lecture 25: The Sine and Cosine Functions. tan(x) 1+y

Lecture 25: The Sine and Cosine Functions. tan(x) 1+y Lecture 5: The Sine Cosine Functions 5. Denitions We begin b dening functions s : c : ; i! R ; i! R b Note that 8 >< q tan(x) ; if x s(x) + tan (x) ; >: ; if x 8 >< q ; if x c(x) + tan (x) ; >: 0; if x.

More information

On a Markov Game with Incomplete Information

On a Markov Game with Incomplete Information On a Markov Game with Incomlete Information Johannes Hörner, Dinah Rosenberg y, Eilon Solan z and Nicolas Vieille x{ January 24, 26 Abstract We consider an examle of a Markov game with lack of information

More information

Lilian Markenzon 1, Nair Maria Maia de Abreu 2* and Luciana Lee 3

Lilian Markenzon 1, Nair Maria Maia de Abreu 2* and Luciana Lee 3 Pesquisa Oeracional (2013) 33(1): 123-132 2013 Brazilian Oerations Research Society Printed version ISSN 0101-7438 / Online version ISSN 1678-5142 www.scielo.br/oe SOME RESULTS ABOUT THE CONNECTIVITY OF

More information

Almost 4000 years ago, Babylonians had discovered the following approximation to. x 2 dy 2 =1, (5.0.2)

Almost 4000 years ago, Babylonians had discovered the following approximation to. x 2 dy 2 =1, (5.0.2) Chater 5 Pell s Equation One of the earliest issues graled with in number theory is the fact that geometric quantities are often not rational. For instance, if we take a right triangle with two side lengths

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6. Introduction We extend the concet of a finite series, met in section, to the situation in which the number of terms increase without bound. We define what is meant by an infinite series

More information

Solutions to Homework #05 MATH ln z 2 + x 2 1 = 2x2 z 2 + x 2 + ln z2 + x 2. = x. ln z 2 + x 2 2z z 2 + x 2 = 2xz

Solutions to Homework #05 MATH ln z 2 + x 2 1 = 2x2 z 2 + x 2 + ln z2 + x 2. = x. ln z 2 + x 2 2z z 2 + x 2 = 2xz Solutions to Homeork #05 MATH Kaai Section. (I) Exercise #. g x and g z : Product Rule: g x = x @ ln z + x + ln z + x @ [x] = x x z + x + ln z + x = x z + x + ln z + x x is eld constant. g z = x @ ln z

More information

Availability and Maintainability. Piero Baraldi

Availability and Maintainability. Piero Baraldi Availability and Maintainability 1 Introduction: reliability and availability System tyes Non maintained systems: they cannot be reaired after a failure (a telecommunication satellite, a F1 engine, a vessel

More information

2. Review of Calculus Notation. C(X) all functions continuous on the set X. C[a, b] all functions continuous on the interval [a, b].

2. Review of Calculus Notation. C(X) all functions continuous on the set X. C[a, b] all functions continuous on the interval [a, b]. CHAPTER Mathematical Preliminaries and Error Analysis. Review of Calculus Notation. C(X) all functions continuous on the set X. C[a, b] all functions continuous on the interval [a, b]. C n(x) all functions

More information

DIFFERENTIAL GEOMETRY. LECTURES 9-10,

DIFFERENTIAL GEOMETRY. LECTURES 9-10, DIFFERENTIAL GEOMETRY. LECTURES 9-10, 23-26.06.08 Let us rovide some more details to the definintion of the de Rham differential. Let V, W be two vector bundles and assume we want to define an oerator

More information

= =5 (0:4) 4 10 = = = = = 2:005 32:4 2: :

= =5 (0:4) 4 10 = = = = = 2:005 32:4 2: : MATH LEC SECOND EXAM THU NOV 0 PROBLEM Part (a) ( 5 oints ) Aroximate 5 :4 using a suitable dierential. Show your work carrying at least 6 decimal digits. A mere calculator answer will receive zero credit.

More information

Factorability in the ring Z[ 5]

Factorability in the ring Z[ 5] University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, and Student Research Paers in Mathematics Mathematics, Deartment of 4-2004 Factorability in the ring

More information

General Random Variables

General Random Variables Chater General Random Variables. Law of a Random Variable Thus far we have considered onl random variables whose domain and range are discrete. We now consider a general random variable X! defined on the

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

Chapter 2 Arithmetic Functions and Dirichlet Series.

Chapter 2 Arithmetic Functions and Dirichlet Series. Chater 2 Arithmetic Functions and Dirichlet Series. [4 lectures] Definition 2.1 An arithmetic function is any function f : N C. Examles 1) The divisor function d (n) (often denoted τ (n)) is the number

More information

ATM The thermal wind Fall, 2016 Fovell

ATM The thermal wind Fall, 2016 Fovell ATM 316 - The thermal wind Fall, 2016 Fovell Reca and isobaric coordinates We have seen that for the synotic time and sace scales, the three leading terms in the horizontal equations of motion are du dt

More information

19th Bay Area Mathematical Olympiad. Problems and Solutions. February 28, 2017

19th Bay Area Mathematical Olympiad. Problems and Solutions. February 28, 2017 th Bay Area Mathematical Olymiad February, 07 Problems and Solutions BAMO- and BAMO- are each 5-question essay-roof exams, for middle- and high-school students, resectively. The roblems in each exam are

More information

MAS 4203 Number Theory. M. Yotov

MAS 4203 Number Theory. M. Yotov MAS 4203 Number Theory M. Yotov June 15, 2017 These Notes were comiled by the author with the intent to be used by his students as a main text for the course MAS 4203 Number Theory taught at the Deartment

More information

Chapter 5 Notes. These notes correspond to chapter 5 of Mas-Colell, Whinston, and Green.

Chapter 5 Notes. These notes correspond to chapter 5 of Mas-Colell, Whinston, and Green. Chater 5 Notes These notes corresond to chater 5 of Mas-Colell, Whinston, and Green. 1 Production We now turn from consumer behavior to roducer behavior. For the most art we will examine roducer behavior

More information

Further differentiation and integration

Further differentiation and integration 7 Toic Further differentiation and integration Contents. evision exercise................................... 8. Introduction...................................... 9. Differentiation of sin x and cos x..........................

More information

SECTION 5: FIBRATIONS AND HOMOTOPY FIBERS

SECTION 5: FIBRATIONS AND HOMOTOPY FIBERS SECTION 5: FIBRATIONS AND HOMOTOPY FIBERS In this section we will introduce two imortant classes of mas of saces, namely the Hurewicz fibrations and the more general Serre fibrations, which are both obtained

More information

Elementary theory of L p spaces

Elementary theory of L p spaces CHAPTER 3 Elementary theory of L saces 3.1 Convexity. Jensen, Hölder, Minkowski inequality. We begin with two definitions. A set A R d is said to be convex if, for any x 0, x 1 2 A x = x 0 + (x 1 x 0 )

More information

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999 Worksheet on Derivatives Dave L. Renfro Drake University November, 999 A. Fun With d d (n ) = n n : Find y In case you re interested, the rimary urose of these roblems (Section A) is to review roerties

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts Introduction Math : Calculus - Fall 0/0 Review of Precalculus Concets Welcome to Math - Calculus, Fall 0/0! This roblems in this acket are designed to hel you review the toics from Algebra and Precalculus

More information

Simplifications to Conservation Equations

Simplifications to Conservation Equations Chater 5 Simlifications to Conservation Equations 5.1 Steady Flow If fluid roerties at a oint in a field do not change with time, then they are a function of sace only. They are reresented by: ϕ = ϕq 1,

More information

Elliptic Curves Spring 2015 Problem Set #1 Due: 02/13/2015

Elliptic Curves Spring 2015 Problem Set #1 Due: 02/13/2015 18.783 Ellitic Curves Sring 2015 Problem Set #1 Due: 02/13/2015 Descrition These roblems are related to the material covered in Lectures 1-2. Some of them require the use of Sage, and you will need to

More information

Math 104B: Number Theory II (Winter 2012)

Math 104B: Number Theory II (Winter 2012) Math 104B: Number Theory II (Winter 01) Alina Bucur Contents 1 Review 11 Prime numbers 1 Euclidean algorithm 13 Multilicative functions 14 Linear diohantine equations 3 15 Congruences 3 Primes as sums

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

THE CHARACTER GROUP OF Q

THE CHARACTER GROUP OF Q THE CHARACTER GROUP OF Q KEITH CONRAD 1. Introduction The characters of a finite abelian grou G are the homomorhisms from G to the unit circle S 1 = {z C : z = 1}. Two characters can be multilied ointwise

More information

MATH 248A. THE CHARACTER GROUP OF Q. 1. Introduction

MATH 248A. THE CHARACTER GROUP OF Q. 1. Introduction MATH 248A. THE CHARACTER GROUP OF Q KEITH CONRAD 1. Introduction The characters of a finite abelian grou G are the homomorhisms from G to the unit circle S 1 = {z C : z = 1}. Two characters can be multilied

More information

Quaternionic Projective Space (Lecture 34)

Quaternionic Projective Space (Lecture 34) Quaternionic Projective Sace (Lecture 34) July 11, 2008 The three-shere S 3 can be identified with SU(2), and therefore has the structure of a toological grou. In this lecture, we will address the question

More information

FOCUS ON THEORY. We recall that a function g(x) is differentiable at the point a if the limit

FOCUS ON THEORY. We recall that a function g(x) is differentiable at the point a if the limit FOCUS ON THEORY 653 DIFFERENTIABILITY Notes on Differentiabilit In Section 13.3 we gave an informal introduction to te concet of differentiabilit. We called a function f (; ) differentiable at a oint (a;

More information

Radian Measure and Angles on the Cartesian Plane

Radian Measure and Angles on the Cartesian Plane . Radian Measure and Angles on the Cartesian Plane GOAL Use the Cartesian lane to evaluate the trigonometric ratios for angles between and. LEARN ABOUT the Math Recall that the secial triangles shown can

More information

FOURIER SERIES PART III: APPLICATIONS

FOURIER SERIES PART III: APPLICATIONS FOURIER SERIES PART III: APPLICATIONS We extend the construction of Fourier series to functions with arbitrary eriods, then we associate to functions defined on an interval [, L] Fourier sine and Fourier

More information

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems Int. J. Oen Problems Comt. Math., Vol. 3, No. 2, June 2010 ISSN 1998-6262; Coyright c ICSRS Publication, 2010 www.i-csrs.org Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. NAURAL SCIENCES RIPOS Part IA Wednesday 5 June 2005 9 to 2 MAHEMAICS (2) Before you begin read these instructions carefully: You may submit answers to no more than six questions. All questions carry the

More information

An Overview of Witt Vectors

An Overview of Witt Vectors An Overview of Witt Vectors Daniel Finkel December 7, 2007 Abstract This aer offers a brief overview of the basics of Witt vectors. As an alication, we summarize work of Bartolo and Falcone to rove that

More information

Andrea Mantile. Fractional Integral Equations and Applications to Point Interaction Models in Quantum Mechanics TESI DI DOTTORATO DI RICERCA

Andrea Mantile. Fractional Integral Equations and Applications to Point Interaction Models in Quantum Mechanics TESI DI DOTTORATO DI RICERCA DOTTORATO DI RICERCA in MATEMATICA APPLICATA E INFORMATICA Ciclo XVI Consorzio tra Università di Catania, Università di Naoli Federico II, Seconda Università di Naoli, Università di Palermo, Università

More information

PROFIT MAXIMIZATION. π = p y Σ n i=1 w i x i (2)

PROFIT MAXIMIZATION. π = p y Σ n i=1 w i x i (2) PROFIT MAXIMIZATION DEFINITION OF A NEOCLASSICAL FIRM A neoclassical firm is an organization that controls the transformation of inuts (resources it owns or urchases into oututs or roducts (valued roducts

More information

Real Analysis 1 Fall Homework 3. a n.

Real Analysis 1 Fall Homework 3. a n. eal Analysis Fall 06 Homework 3. Let and consider the measure sace N, P, µ, where µ is counting measure. That is, if N, then µ equals the number of elements in if is finite; µ = otherwise. One usually

More information

Sums of independent random variables

Sums of independent random variables 3 Sums of indeendent random variables This lecture collects a number of estimates for sums of indeendent random variables with values in a Banach sace E. We concentrate on sums of the form N γ nx n, where

More information

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Deartment of Electrical Engineering and Comuter Science Massachuasetts Institute of Technology c Chater Matrix Norms

More information

On the minimax inequality and its application to existence of three solutions for elliptic equations with Dirichlet boundary condition

On the minimax inequality and its application to existence of three solutions for elliptic equations with Dirichlet boundary condition ISSN 1 746-7233 England UK World Journal of Modelling and Simulation Vol. 3 (2007) No. 2. 83-89 On the minimax inequality and its alication to existence of three solutions for ellitic equations with Dirichlet

More information

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding Outline EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Error detection using arity Hamming code for error detection/correction Linear Feedback Shift

More information

Micro I. Lesson 5 : Consumer Equilibrium

Micro I. Lesson 5 : Consumer Equilibrium Microecono mics I. Antonio Zabalza. Universit of Valencia 1 Micro I. Lesson 5 : Consumer Equilibrium 5.1 Otimal Choice If references are well behaved (smooth, conve, continuous and negativel sloed), then

More information

Participation Factors. However, it does not give the influence of each state on the mode.

Participation Factors. However, it does not give the influence of each state on the mode. Particiation Factors he mode shae, as indicated by the right eigenvector, gives the relative hase of each state in a articular mode. However, it does not give the influence of each state on the mode. We

More information

ON MINKOWSKI MEASURABILITY

ON MINKOWSKI MEASURABILITY ON MINKOWSKI MEASURABILITY F. MENDIVIL AND J. C. SAUNDERS DEPARTMENT OF MATHEMATICS AND STATISTICS ACADIA UNIVERSITY WOLFVILLE, NS CANADA B4P 2R6 Abstract. Two athological roerties of Minkowski content

More information

TRACES OF SCHUR AND KRONECKER PRODUCTS FOR BLOCK MATRICES

TRACES OF SCHUR AND KRONECKER PRODUCTS FOR BLOCK MATRICES Khayyam J. Math. DOI:10.22034/kjm.2019.84207 TRACES OF SCHUR AND KRONECKER PRODUCTS FOR BLOCK MATRICES ISMAEL GARCÍA-BAYONA Communicated by A.M. Peralta Abstract. In this aer, we define two new Schur and

More information

MATH 829: Introduction to Data Mining and Analysis Consistency of Linear Regression

MATH 829: Introduction to Data Mining and Analysis Consistency of Linear Regression 1/9 MATH 829: Introduction to Data Mining and Analysis Consistency of Linear Regression Dominique Guillot Deartments of Mathematical Sciences University of Delaware February 15, 2016 Distribution of regression

More information

3 Properties of Dedekind domains

3 Properties of Dedekind domains 18.785 Number theory I Fall 2016 Lecture #3 09/15/2016 3 Proerties of Dedekind domains In the revious lecture we defined a Dedekind domain as a noetherian domain A that satisfies either of the following

More information

John Weatherwax. Analysis of Parallel Depth First Search Algorithms

John Weatherwax. Analysis of Parallel Depth First Search Algorithms Sulementary Discussions and Solutions to Selected Problems in: Introduction to Parallel Comuting by Viin Kumar, Ananth Grama, Anshul Guta, & George Karyis John Weatherwax Chater 8 Analysis of Parallel

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

Generalized Least-Squares Regressions II: Theory and Classication

Generalized Least-Squares Regressions II: Theory and Classication Recent Advances in Intelligent Control, Modelling Comutational Science Generalized Least-Squares Regressions II Theor Classication NATANIEL GREENE Deartment of Mathematics Comuter Science Kingsorough Communit

More information

An Inverse Problem for Two Spectra of Complex Finite Jacobi Matrices

An Inverse Problem for Two Spectra of Complex Finite Jacobi Matrices Coyright 202 Tech Science Press CMES, vol.86, no.4,.30-39, 202 An Inverse Problem for Two Sectra of Comlex Finite Jacobi Matrices Gusein Sh. Guseinov Abstract: This aer deals with the inverse sectral roblem

More information

MODULE 2: DIFFUSION LECTURE NO. 2

MODULE 2: DIFFUSION LECTURE NO. 2 PTEL Chemical Mass Transfer Oeration MODULE : DIFFUSIO LECTURE O.. STEDY STTE MOLECULR DIFFUSIO I FLUIDS UDER STGT D LMIR FLOW CODITIOS.. Steady state diffusion through a constant area Steady state diffusion

More information

NONLINEAR OPTIMIZATION WITH CONVEX CONSTRAINTS. The Goldstein-Levitin-Polyak algorithm

NONLINEAR OPTIMIZATION WITH CONVEX CONSTRAINTS. The Goldstein-Levitin-Polyak algorithm - (23) NLP - NONLINEAR OPTIMIZATION WITH CONVEX CONSTRAINTS The Goldstein-Levitin-Polya algorithm We consider an algorithm for solving the otimization roblem under convex constraints. Although the convexity

More information

Averaging sums of powers of integers and Faulhaber polynomials

Averaging sums of powers of integers and Faulhaber polynomials Annales Mathematicae et Informaticae 42 (20. 0 htt://ami.ektf.hu Averaging sums of owers of integers and Faulhaber olynomials José Luis Cereceda a a Distrito Telefónica Madrid Sain jl.cereceda@movistar.es

More information

A QUATERNIONIC APPROACH to GEOMETRY of CURVES on SPACES of CONSTANT CURVATURE

A QUATERNIONIC APPROACH to GEOMETRY of CURVES on SPACES of CONSTANT CURVATURE INTERNATIONAL JOURNAL OF GEOMETRY Vol. 3 (2014), No. 1, 53-65 A QUATERNIONIC APPROACH to GEOMETRY of CURVES on SPACES of CONSTANT CURVATURE TUNA BAYRAKDAR and A. A. ERG IN Abstract. We construct the Frenet-Serret

More information

ECON Answers Homework #2

ECON Answers Homework #2 ECON 33 - Answers Homework #2 Exercise : Denote by x the number of containers of tye H roduced, y the number of containers of tye T and z the number of containers of tye I. There are 3 inut equations that

More information

The Arm Prime Factors Decomposition

The Arm Prime Factors Decomposition The Arm Prime Factors Decomosition Arm Boris Nima arm.boris@gmail.com Abstract We introduce the Arm rime factors decomosition which is the equivalent of the Taylor formula for decomosition of integers

More information

p-adic Measures and Bernoulli Numbers

p-adic Measures and Bernoulli Numbers -Adic Measures and Bernoulli Numbers Adam Bowers Introduction The constants B k in the Taylor series exansion t e t = t k B k k! k=0 are known as the Bernoulli numbers. The first few are,, 6, 0, 30, 0,

More information

Galois Fields, Linear Feedback Shift Registers and their Applications

Galois Fields, Linear Feedback Shift Registers and their Applications Galois Fields, Linear Feedback Shift Registers and their Alications With 85 illustrations as well as numerous tables, diagrams and examles by Ulrich Jetzek ISBN (Book): 978-3-446-45140-7 ISBN (E-Book):

More information

(IV.D) PELL S EQUATION AND RELATED PROBLEMS

(IV.D) PELL S EQUATION AND RELATED PROBLEMS (IV.D) PELL S EQUATION AND RELATED PROBLEMS Let d Z be non-square, K = Q( d). As usual, we take S := Z[ [ ] d] (for any d) or Z 1+ d (only if d 1). We have roved that (4) S has a least ( fundamental )

More information

ON FREIMAN S 2.4-THEOREM

ON FREIMAN S 2.4-THEOREM ON FREIMAN S 2.4-THEOREM ØYSTEIN J. RØDSETH Abstract. Gregory Freiman s celebrated 2.4-Theorem says that if A is a set of residue classes modulo a rime satisfying 2A 2.4 A 3 and A < /35, then A is contained

More information

Matemáticas I: C (1 point) Given the function f (x; y) = xy p 1 + x2 + y 2

Matemáticas I: C (1 point) Given the function f (x; y) = xy p 1 + x2 + y 2 Matemáticas I: C -. ( oint) Given the function f (x; y) xy + x + y a) Calculate the directional derivative in the oint (; ) and in the direction of the vector v ;. b) In what direction is f increasing

More information

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS CASEY BRUCK 1. Abstract The goal of this aer is to rovide a concise way for undergraduate mathematics students to learn about how rime numbers behave

More information

Lecture 3 January 16

Lecture 3 January 16 Stats 3b: Theory of Statistics Winter 28 Lecture 3 January 6 Lecturer: Yu Bai/John Duchi Scribe: Shuangning Li, Theodor Misiakiewicz Warning: these notes may contain factual errors Reading: VDV Chater

More information