Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Size: px
Start display at page:

Download "Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)"

Transcription

1 Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Course web site available at click on classes and find Physics or at Lecture #26 November 28, 2017

2 Energy Elsewhere

3 Putting things in low Earth orbit (LEO) The object must be going fast enough that as it falls it follows the (circular) surface of the Earth. Virtually all of the energy must be put into making the object move SIDEWAYS. Almost no energy goes into overcoming the gravity well of the Earth. The necessary speed is roughly 7.9 x 103 m/s (17,672 mph)

4 Putting things in low Earth orbit (LEO) The object must be going fast enough that as it falls it follows the (circular) surface of the Earth. Virtually all of the energy must be put into making the object move SIDEWAYS. Almost no energy goes into overcoming the gravity well of the Earth. The necessary speed is roughly 7.9 x 103 m/s (17,672 mph)

5 So how much energy per kg? Energy = ½mv 2 Energy per unit mass = ½mv 2 /m E/kg = ½v 2 = ½(7.9 x 10 3 m/s) 2 E/kg = 31.2 x 10 6 J/kg This is for an orbit essentially skimming the Earth s surface.

6 The rocket equation (one way of quantifying the problem) V m mass = m(t) V(t) e (ΔV/Vm) = ~9.2 for low Earth orbit, and 21.4 for geosynchronous orbit.

7 That is why rockets are so huge!

8 That is why rockets are so huge!

9 To move to higher orbits, in addition to speed, you also need to overcome the potential energy trap GMm r The object at left has enough velocity to climb out of the Earth s gravitational well, but NOT enough to stay in orbit. For high orbits, you need kinetic energy equal to the depth of the potential well PLUS kinetic energy for orbital velocity.

10 To move to higher orbits, in addition to speed, you also need to overcome the potential energy trap GMm r The object at left has enough velocity to climb out of the Earth s gravitational well, but NOT enough to stay in orbit. For high orbits, you need kinetic energy equal to the depth of the potential well PLUS kinetic energy for orbital velocity.

11 Energies to move around the earth/moon system Plot includes both required speed and climbing out of a gravity well. One somewhat subtle point, it takes energy to move down as well as to move up.

12 The energy Budget to reach different places These include both the energy needed to climb the potential well as well as accounting for the right orbital speed.

13 Energy to go to GEO from earth This one is easy, its just 57.8 MJ/kg. It includes both: - the energy needed to climb out of the gravitational well - the energy needed to stay up there, in other words, the kinetic energy necessary to stay in orbit. What it does NOT include is wasted energy. It imagines that we just magically put our payload where we want it with perfect efficiency!

14 Energy that is necessarily wasted when using rockets V m mass = m(t) V(t) When a rocket fires exhaust out its back end, chemical energy is released in order to provide kinetic energy to the exhaust. The rocket thus acquires kinetic energy and moves forward. But the exhaust ALSO has kinetic energy. That energy also needed to come from the exhaust. Finally, the engine is not perfectly efficient. Some energy does not go into nice ORGANIZED movement of the exhaust traveling backwards. Some goes into random thermal energy (i.e. the exhaust is HOT). Also, some of the exhaust does not go straight backward. So... Energy needed to get to GEO = 57.8 MJ/kg x 2.17 x 2 = 251 MJ/kg Accounts for KE of exhaust. Accounts for efficiency of rocket engine.

15 O Neill s Answer for developing space more efficiently Build stuff in space. Don t launch using rockets!!

16 What is the minimum difference in energy getting to GEO from the moon instead of from Earth?

17 What is the minimum difference in energy getting to GEO from the moon instead of from Earth? 57.8 MJ/kg

18 What is the minimum difference in energy getting to GEO from the moon instead of from Earth? 2.9 MJ/kg 57.8 MJ/kg

19 What is the minimum difference in energy getting to GEO from the moon instead of from Earth? 62.0 MJ/kg MJ/kg = 4.2 MJ/kg 2.9 MJ/kg 57.8 MJ/kg

20 What is the minimum difference in energy getting to GEO from the moon instead of from Earth? 62.0 MJ/kg MJ/kg = 4.2 MJ/kg 2.9 MJ/kg 57.8 MJ/kg From this you would conclude that it is 57.2/( ) = 57.2/7.1 = 8.1 times easier to go from the moon.

21 What is the energy needed to go to GEO from Earth s surface when we include rocket inefficiencies The rocket s exhaust will have kinetic energy V m mass = m(t) V(t) The rocket s exhaust will also have heat energy Energy needed to get to GEO = 57.8 MJ/kg x 2.17 x 2 = 251 MJ/kg Accounts for KE of exhaust. Accounts for efficiency of rocket engine. So practically speaking, it doesn t take 57.8 MJ/kg, it takes more like 251 MJ/kg So really, it is 252/7.1 = 35.5 times easier to go from the moon.

22 Rockets can be avoided when launching from the surface of the moon by using mass drivers

23 Energy to go to GEO from the moon 2.9 MJ/kg to climb out of the moon s gravity well MJ/kg MJ/kg = 4.2 MJ/kg to move from the moon s orbit to GEO. You can assume almost perfect efficiency using the mass drivers on the moon. Result: energy needed (moon to GEO) = 2.9MJ/kg + 4.2MJ/kg = 7.1 MJ/kg So really, it is 252/7.1 = 35.5 times easier to go from the moon.

24 Demonstration of a small mass driver

25 Demonstration of a small mass driver

26 Okay, from an energy perspective, it is clearly easier to move stuff to GEO from the moon But is energy really what is driving costs?

27 Costs for going to GEO from Earth energy = 251 MJ/kg 1 gallon gasoline = 1.2 x 10 8 J Cost of 1 kg going to GEO = 251 x 106 J 1.19 x 10 8 J = 2.1 gallons of gas Can this possibly be right?

28 Costs for going to GEO from Earth Market cost to put 1 kg in GEO = ~$60,000 Market cost of 2.1 Gallons of gas = ~$6.00 Just a small discrepancy of a factor of 10,000!!! What s going on? That fact is that the cost is not in the energy, the cost is in the ROCKET.

29 Reusable rockets could drive cost way down!!! Eventually, the energy costs could end up dominating, and living and manufacturing in space could be the way to go, but at present, that is not the case.

30 Short/Medium-term reasons to develop human space flight Exploration, the search for extraterrestrial life, basic science. Space tourism Orbiting solar power stations Mining Asteroids (at least two companies already exist) Valuable metals such as gold, platinum, silver, iridium and others. Other elements that are in limited supply such as rare earth s Water, that could be converted into rocket fuel (hydrogen and oxygen) to enable refueling without launching fuel from the Earth. Space manufacturing where zero-gravity is an advantage. Eventually make satellites in space? Colonization

31 Video from the company Planetary Resources

32 Video from the company Planetary Resources

33

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Some Questions We ll Address Today

Some Questions We ll Address Today Some Questions We ll Address Today What makes a rocket go? How can a rocket work in outer space? How do things get into orbit? What s s special about geo-synchronous orbit? How does the force of gravity

More information

General Physics I. Lecture 7: The Law of Gravity. Prof. WAN, Xin 万歆.

General Physics I. Lecture 7: The Law of Gravity. Prof. WAN, Xin 万歆. General Physics I Lecture 7: The Law of Gravity Prof. WAN, Xin 万歆 xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Newton's law of universal gravitation Motion of the planets; Kepler's laws Measuring

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth.

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth. The path of an Earth satellite follows the curvature of the Earth. A stone thrown fast enough to go a horizontal distance of 8 kilometers during the time (1 second) it takes to fall 5 meters, will orbit

More information

Chapter 6 Gravitation and Newton s Synthesis

Chapter 6 Gravitation and Newton s Synthesis Chapter 6 Gravitation and Newton s Synthesis If the force of gravity is being exerted on objects on Earth, what is the origin of that force? Newton s realization was that the force must come from the Earth.

More information

Chapter 14 Satellite Motion

Chapter 14 Satellite Motion 1 Academic Physics Mechanics Chapter 14 Satellite Motion The Mechanical Universe Kepler's Three Laws (Episode 21) The Kepler Problem (Episode 22) Energy and Eccentricity (Episode 23) Navigating in Space

More information

PHYSICS 12 NAME: Gravitation

PHYSICS 12 NAME: Gravitation NAME: Gravitation 1. The gravitational force of attraction between the Sun and an asteroid travelling in an orbit of radius 4.14x10 11 m is 4.62 x 10 17 N. What is the mass of the asteroid? 2. A certain

More information

Learning Lab Seeing the World through Satellites Eyes

Learning Lab Seeing the World through Satellites Eyes Learning Lab Seeing the World through Satellites Eyes ESSENTIAL QUESTION What is a satellite? Lesson Overview: Engage students will share their prior knowledge about satellites and explore what satellites

More information

Lesson 36: Satellites

Lesson 36: Satellites Lesson 36: Satellites In our modern world the world satellite almost always means a human made object launched into orbit around the Earth for TV or phone communications. This definition of satellites

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Toward the Final Frontier of Manned Space Flight

Toward the Final Frontier of Manned Space Flight Toward the Final Frontier of Manned Space Flight Image: Milky Way NASA Ryann Fame Luke Bruneaux Emily Russell Toward the Final Frontier of Manned Space Flight Part I: How we got here: Background and challenges

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

PHYSICS CLASS XI CHAPTER 8 GRAVITATION

PHYSICS CLASS XI CHAPTER 8 GRAVITATION PHYSICS CLASS XI CHAPTER 8 GRAVITATION Q.1. Can we determine the mass of a satellite by measuring its time period? Ans. No, we cannot determine the mass of a satellite by measuring its time period. Q.2.

More information

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Chapter 13 Gravity Slide 13-1 The plan Lab this week: there will be time for exam problems Final exam: sections posted today; some left out Final format: all multiple choice, almost all short problems,

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity Gravity and Orbits Objectives Clarify a number of basic concepts Speed vs. velocity Acceleration, and its relation to force Momentum and angular momentum Gravity Understand its basic workings Understand

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: More rolling without slipping Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2018 Lecture 13-1 1 Rolling without slipping

More information

Midterm 2 PRS Questions

Midterm 2 PRS Questions Midterm 2 PRS Questions PRS questions from the lectures after Midterm 1 but before Midterm 2 PRS Question. You want to launch a rocket into space, and you want to maximize its kinetic energy. Suppose that

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Multistage Rockets. Chapter Notation

Multistage Rockets. Chapter Notation Chapter 8 Multistage Rockets 8.1 Notation With current technology and fuels, and without greatly increasing the e ective I sp by air-breathing, a single stage rocket to Earth orbit is still not possible.

More information

Chapter 7 Rocket Propulsion Physics

Chapter 7 Rocket Propulsion Physics Chapter 7 Rocket Propulsion Physics To move any spacecraft off the Earth, or indeed forward at all, there must be a system of propulsion. All rocket propulsion relies on Newton s Third Law of Motion: in

More information

Energy. on this world and elsewhere. Visiting today: Prof. Paschke

Energy. on this world and elsewhere. Visiting today: Prof. Paschke Energy on this world and elsewhere Visiting today: Prof. Paschke Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu,

More information

Physics 115 Future Physics Midterm Review Exam will be closed book; no calculators; no computers.

Physics 115 Future Physics Midterm Review Exam will be closed book; no calculators; no computers. Physics 115 Future Physics Midterm Review 2016 Exam will be closed book; no calculators; no computers. You can bring a 3 x 5 index card with whatever notes and equations you want written on ONE SIDE ONLY.

More information

problems 2.notebook February 03, 2016

problems 2.notebook February 03, 2016 What's my weight? Use Universal Gravitation formula 1 What's my weight? r e Centripetal force needed to keep me on earth? 2 Centripetal force needed to keep me on earth? Centripetal force needed to keep

More information

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand:

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand: Conceptual Physics 11 th Edition Projectile motion is a combination of a horizontal component, and Chapter 10: PROJECTILE AND SATELLITE MOTION a vertical component. This lecture will help you understand:

More information

Course Overview/Orbital Mechanics

Course Overview/Orbital Mechanics Course Overview/Orbital Mechanics Course Overview Challenges of launch and entry Course goals Web-based Content Syllabus Policies Project Content An overview of orbital mechanics at point five past lightspeed

More information

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Lecture Outline Chapter 13 Gravity Slide 13-1 The plan Lab this week: exam problems will put problems on mastering for chapters without HW; will also go over exam 2 Final coverage: now posted; some sections/chapters

More information

Kinetic energy. Objectives. Equations. Energy of motion 6/3/14. Kinetic energy is energy due to motion. kinetic energy kinetic en

Kinetic energy. Objectives. Equations. Energy of motion 6/3/14. Kinetic energy is energy due to motion. kinetic energy kinetic en Objectives Investigate examples of kinetic energy. Calculate the kinetic energy, mass, or velocity of an object using the kinetic energy equation. Employ proportional reasoning to predict the effect of

More information

Episode 403: Orbital motion

Episode 403: Orbital motion Episode 40: Orbital motion In this episode, students will learn how to combine concepts learned in the study of circular motion with Newton s Law of Universal Gravitation to understand the (circular) motion

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 10: PROJECTILE AND SATELLITE MOTION This lecture will help you understand: Projectile Motion Fast-Moving Projectiles Satellites Circular Satellite Orbits Elliptical

More information

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will.

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will. Ch. 4 Newton s Second Law of Motion p.65 Review Questions 3. How great is the force of friction compared with your push on a crate that doesn t move on a level floor? Ans. They are equal in magnitude and

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

Physics Mechanics Lecture 30 Gravitational Energy

Physics Mechanics Lecture 30 Gravitational Energy Physics 170 - Mechanics Lecture 30 Gravitational Energy Gravitational Potential Energy Gravitational potential energy of an object of mass m a distance r from the Earth s center: Gravitational Potential

More information

Gravitational Fields

Gravitational Fields Gravitational Fields Examples 00 Currently, the space probe, Cassini, is between Jupiter and Saturn. Cassini s mission is to deliver a probe to one of Saturn s moons, Titan, and then orbit Saturn collecting

More information

Basic Physics. What We Covered Last Class. Remaining Topics. Center of Gravity and Mass. Sun Earth System. PHYS 1411 Introduction to Astronomy

Basic Physics. What We Covered Last Class. Remaining Topics. Center of Gravity and Mass. Sun Earth System. PHYS 1411 Introduction to Astronomy PHYS 1411 Introduction to Astronomy Basic Physics Chapter 5 What We Covered Last Class Recap of Newton s Laws Mass and Weight Work, Energy and Conservation of Energy Rotation, Angular velocity and acceleration

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant.

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Universal Law of Gravitation in words (b) A satellite of mass (m) moves in orbit of a planet with mass (M).

More information

Gravitational Potential Energy and Total Energy *

Gravitational Potential Energy and Total Energy * OpenStax-CNX module: m58347 Gravitational Potential Energy and Total Energy * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of

More information

Physics Energy On This World and Elsewhere - Fall 2013 Problem Set #2 with solutions

Physics Energy On This World and Elsewhere - Fall 2013 Problem Set #2 with solutions Problem Set #2 with solutions When doing unit conversions, for full credit, you must explicitly show how units cancel. Also, you may need to look up certain equivalence relations on the internet. Show

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

4.8 The Normal Force. Apparent Weight

4.8 The Normal Force. Apparent Weight 4.8 The Normal Force Apparent Weight Definition: The apparent weight of an object is the reading of the scale. It is equal to the normal force the man exerts on the scale. For a man standing on a scale

More information

10/21/2003 PHY Lecture 14 1

10/21/2003 PHY Lecture 14 1 Announcements. Second exam scheduled for Oct. 8 th -- practice exams now available -- http://www.wfu.edu/~natalie/f03phy3/extrapractice/. Thursday review of Chapters 9-4 3. Today s lecture Universal law

More information

PHYSICS 107. Lecture 8 Conservation Laws. For every action there is an equal and opposite reaction.

PHYSICS 107. Lecture 8 Conservation Laws. For every action there is an equal and opposite reaction. PHYSICS 107 Lecture 8 Conservation Laws Newton s Third Law This is usually stated as: For every action there is an equal and opposite reaction. However in this form it's a little vague. I prefer the form:

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Introduction Earlier we defined acceleration as being the change in velocity with time: = Until now we have only talked about changes in the magnitude of the acceleration: the speeding

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity Welcome back to Physics 211 Today s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 211 Spring 2014 Lecture 14-1 1 Gravity Before 1687, large amount of data collected

More information

Orbital Mechanics MARYLAND

Orbital Mechanics MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit Interplanetary trajectories Planetary launch and

More information

ENAE 791 Course Overview

ENAE 791 Course Overview ENAE 791 Challenges of launch and entry Course goals Web-based Content Syllabus Policies Project Content 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Space Transportation System

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

The force of gravity holds us on Earth and helps objects in space stay

The force of gravity holds us on Earth and helps objects in space stay 96 R E A D I N G The force of gravity holds us on Earth and helps objects in space stay in orbit. The planets in the Solar System could not continue to orbit the Sun without the force of gravity. Astronauts

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Earth, Moon, and Sun - Earth in Space. Earth moves through space in two major ways: rotation & revolution.

Earth, Moon, and Sun - Earth in Space. Earth moves through space in two major ways: rotation & revolution. Earth, Moon, and Sun - Earth in Space How Earth Moves Earth moves through space in two major ways: rotation & revolution. Earth, Moon, and Sun - Earth in Space Sunlight Striking Earth s Surface Near equator,

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

A rock is released from rest, in deep space, far from the earth. At a certain point, as it falls towards us, it crosses the moon's orbit.

A rock is released from rest, in deep space, far from the earth. At a certain point, as it falls towards us, it crosses the moon's orbit. Sir Issac Newton... We went into the garden, & drank tea under the shade of some appletrees, only he, & myself. amidst other discourse, he told me, he was just in the same situation, as when formerly,

More information

Conceptual Understanding

Conceptual Understanding Name Period Conceptual Understanding 1. Define work in scientific terms, and give the formula. What is it measured in? Work is a force applied over a distance to move and object. Force applied and object

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

CLASS NOTES: BUSINESS CALCULUS

CLASS NOTES: BUSINESS CALCULUS CLASS NOTES: BUSINESS CALCULUS These notes can be thought of as the logical skeleton of my lectures, although they will generally contain a fuller exposition of concepts but fewer examples than my lectures.

More information

A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a [1 mark] horizontal plane.

A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a [1 mark] horizontal plane. T6 [200 marks] 1. A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a horizontal plane. The resultant force acting on the mass is A. zero.

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

4.8 Space Research and Exploration. Getting Into Space

4.8 Space Research and Exploration. Getting Into Space 4.8 Space Research and Exploration Getting Into Space Astronauts are pioneers venturing into uncharted territory. The vehicles used to get them into space are complex and use powerful rockets. Space vehicles

More information

Lecture 2- Linear Motion Chapter 10

Lecture 2- Linear Motion Chapter 10 1 / 37 Lecture 2- Linear Motion Chapter 10 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 12 th, 2018 Contact Already read the syllabus

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition 1 2 1 Conceptual Physical Science 6 th Edition Chapter 4: GRAVITY, PROJECTILES, AND SATELLITES Sections 4.1, 4.5-4.9 only 3 2017 Pearson Education, Inc. This lecture will help you understand: The Universal

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

More information

Physics 2211 ABC Quiz #4 Solutions Spring 2017

Physics 2211 ABC Quiz #4 Solutions Spring 2017 Physics 22 ABC Quiz #4 Solutions Spring 207 I. (6 points) Corentine is driving her car of mass m around a curve when suddenly, all systems fail! The engine quits, she can t brake, she can t steer, and

More information

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Chapter 13 Gravity Slide 13-1 12.12 The system shown below consists of two balls A and B connected by a thin rod of negligible mass. Ball A has five times the inertia of ball B and the distance between

More information

The water exerts a force on the ship. In which direction does this force act?... (1)

The water exerts a force on the ship. In which direction does this force act?... (1) 1. The diagram below shows an empty cargo ship. It is not moving. (a) The water exerts a force on the ship. In which direction does this force act?... (b) The diagram below shows the same cargo ship. This

More information

Describe the lifecycle of a star in chronological order and explain the main stages, relating the stellar evolution to initial mass

Describe the lifecycle of a star in chronological order and explain the main stages, relating the stellar evolution to initial mass Learning Objectives At the end of this unit you should be able to; Explain the major events in the evolution of the universe according to the Big Bang Theory, in chronological order, backing up your arguments

More information

Newton s Gravitational Law

Newton s Gravitational Law 1 Newton s Gravitational Law Gravity exists because bodies have masses. Newton s Gravitational Law states that the force of attraction between two point masses is directly proportional to the product of

More information

Orbital Mechanics MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design

Orbital Mechanics MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design Planetary launch and entry overview Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit Interplanetary trajectories

More information

In the previous lecture, we discussed the basics of circular orbits. Mastering even circular orbits

In the previous lecture, we discussed the basics of circular orbits. Mastering even circular orbits In the previous lecture, we discussed the basics of circular orbits. Mastering even circular orbits provides quite a bit of intuitive behavior about the motion of spacecraft about planets. We learned that

More information

Name. Satellite Motion Lab

Name. Satellite Motion Lab Name Satellite Motion Lab Purpose To experiment with satellite motion using an interactive simulation in order to gain an understanding of Kepler s Laws of Planetary Motion and Newton s Law of Universal

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

FORCE. The 4 Fundamental Forces of Nature

FORCE. The 4 Fundamental Forces of Nature FORCE - Force a push or pull. Results only from interaction with another object. Without interaction, forces cannot be present. - Measured in Newtons (N) 1 Newton is the amount of force required to give

More information

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Unit 5 Gravitation Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Into to Gravity Phet Simulation Today: Make sure to collect all data. Finished lab due tomorrow!! Universal Law

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy PHYS 1411 Introduction to Astronomy Basic Physics Chapter 5 Topics Newton s Laws Mass and Weight Work, Energy and Conservation of Energy Rotation, Angular velocity and acceleration Centripetal Force Angular

More information

42nd ANNUAL ALABAMA HIGH SCHOOL PHYSICS CONTEST Version A The University of Alabama, Friday Feb. 16, 2018

42nd ANNUAL ALABAMA HIGH SCHOOL PHYSICS CONTEST Version A The University of Alabama, Friday Feb. 16, 2018 42nd ANNUAL ALABAMA HIGH SCHOOL PHYSICS CONTEST Version A The University of Alabama, Friday Feb. 16, 2018 This is an examination covering the basic principles of Physics. It is designed to test both your

More information

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car.

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car. Q1.The diagram shows the forces acting on a car. The car is being driven along a straight, level road at a constant speed of 12 m/s. (a) The driver then accelerates the car to 23 m/s in 4 seconds. Use

More information

A. What is Energy? B. Kinetic Energy. 6.1: Energy of all shapes and sizes. 1 Define: (a) Watt (b) Joule (c) Erg

A. What is Energy? B. Kinetic Energy. 6.1: Energy of all shapes and sizes. 1 Define: (a) Watt (b) Joule (c) Erg 6.1: Energy of all shapes and sizes A. What is Energy? (a) Watt (b) Joule (c) Erg 2 Why does an electric bill have W-hrs listed on it? 3 What is the speed of light in centimeter-gram-second units? 4 Organize

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

More information

The beginnings of physics

The beginnings of physics The beginnings of physics Astronomy 101 Syracuse University, Fall 2018 Walter Freeman October 9, 2018 Astronomy 101 The beginnings of physics October 9, 2018 1 / 28 Announcements No office hours this week

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Outline General Relativity Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Black Holes as a consequence of GR Waste Disposal It is decided that Earth will get rid of

More information

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW: Assignment - Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,

More information

Thursday March 2. Topics for this Lecture: Energy & Momentum

Thursday March 2. Topics for this Lecture: Energy & Momentum Thursday March 2 Topics for this Lecture: Energy & Momentum Assignment 8 due Friday after spring break Pre-class due 15min before class Help Room: Here, 6-9pm Wed/Thurs SI: Morton 326, M&W 7:15-8:45pm

More information

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings!

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings! Thanks Connect Thank you for downloading my product. I truly appreciate your support and look forward to hearing your feedback. You can connect with me and find many free activities and strategies over

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Background If you are driving your car at a constant speed when you put it in neutral and turn off the engine, it does not maintain a constant speed. If you stop pushing an object

More information

Midterm 3 Thursday April 13th

Midterm 3 Thursday April 13th Welcome back to Physics 215 Today s agenda: rolling friction & review Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2017 Lecture 13-1 1 Midterm 3 Thursday April 13th

More information

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE DOING PHYSICS WITH MATLAB A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE Download Directory: Matlab mscripts mec_satellite_gui.m The [2D] motion of a satellite around the Earth is computed from

More information