The Finite Element Method

Size: px
Start display at page:

Download "The Finite Element Method"

Transcription

1 Th Finit Elmnt Mthod Eulr-Brnoulli and Timoshnko Bams Rad: Chaptr 5 CONTENTS Eulr-Brnoulli bam thory Govrning Equations Finit lmnt modl Numrical ampls Timoshnko bam thory Govrning Equations Finit lmnt modl Shar locking Numrical ampl

2 z, w KINEMTICS OF THE LINERIZED EULER-BERNOULLI BEM THEORY q ( ) Strains, displacmnts, and rotations ar small f( ) u z 9 Undformd Bam Dformd Bam dw d dw d Eulr-Brnoulli Bam Thory (EBT) is basd on th assumptions of ()straightnss, ()intnsibility, and ()normality

3 z z y z Kinmatics of Dformation in th Eulr-Brnoulli Bam Thory (EBT) w u σ y σyy σ zz σ z σ y z σ zy dw d σ z σ y σ z Displacmnt fild (constructd using th hypothsis) u(, z) = u z dw, u =, u = w( ) d Linar strains dw d Notation for strss componnts ε γ σ σ = ε = = z d d z z u du d w, u u dw dw = + = + = d d Constitutiv rlations du = Eε = E Ez d = Gγ = z d w, d.

4 Eulr-Brnoulli Bam Thory z, w q() F M L Bam cross sction q() z y M + M c f V V cw f q ( ) σ z z σ σ + Δσ σ z Δ f( ) cw f + Δσ q ( ) V V + ΔV N N + ΔN M M + ΔM f( ) cw Δ f Dfinition of strss rsultants N = σ d, M = σ z d, V = σ d. z 4

5 Eulr-Brnoulli Bam Thory (Continud) Equilibrium quations dn dm dv + f =, V =, + q cfw = d d d Strss rsultants in trms of dflction du d w du N = σ d = E Ez d = E d d d d =, z d =, z d = I du dw dw M = σ z d = E Ez z d = EI d d d dm d d w V = = EI d d d 5

6 Eulr-Brnoulli Bam Thory (Continud) Govrning quations in trms of th displacmnts d du E f, L d d = < < Bars d d w u EI c, + fw q = < < L d d z, w q() F Bams w M ial dformation of a bar L c f Bnding of a bam ial displacmnt is uncoupld from transvrs displacmnt 6

7 Wak Form of th EB Bam Thory d d w EI c, + fw q = < < L d d Wak form vi é b d æ dw ö ù h = v EI c w q ò i f h d a d ç + - d ê ë çè ø úû é b dv dw dw i d æ ö ù é h d ù æ h ö = EI c v w v q d v EI ò f i h i i a d d ç d d ç d êë è ø úû êë è øúû Govrning quation { } st of wight functions Implis that th primary variabl is w (displacmnt) Scondary variabl (shar forc) é b dv d æ d wö ù = EI c vw vq ò d v( ) Q v( ) Q a d d ç d çè ø êë úû f a b 7 b a

8 é b dv dw ù i h = EI c v w v q ò ( ) ( ) + - d v Q v Q a d d - - êë úû b éæ dv ö d w ù i h + EI - ç d çè ø d êë úû Primary Variabl, θ Slop/rotation Wak Form (Continud) f i h i i a i b a Scondary variabl (Bnding Momnt) é b dv dw ù i h = EI c v w v q ò d v ( ) Q v ( ) Q + - a d d - - êë úû æ dv ö æ dv ö i - - Q - ç- Q ç d è ø è ø a f i h i i a i b i 4 ç d é d æ dw ù é h d dw ù ö æ h ö Q = EI V ( ), Q EI V ( ) h a h b d d =- = - d d = ê ç ç ë è øúû êë è øúû a b æ dw ö æ dw ö Q EI M ( ), Q EI M ( ) h h = =- = - h a 4 = h b ç d è ø çè d ø a b b 8

9 Bam Elmnt Dgrs of Frdom Gnralizd displacmnts Δ=w ( a ) Δ=w ( b ) Δ=θ ( a ) h Δ=θ 4 ( b ) Gnralizd forcs Q = V( a ) Q = V( b ) Q = M( a ) h Q4 = M( b ) 9

10 FINITE ELEMENT PPROXIMTION: Som Rmarks Continuity rquirmnt basd on th wak form, which rquirs that th scond drivativ of w ists and squar-intgrabl. Continuity basd on th primary variabls, which rquirs carrying w and its first drivativ as th nodal variabls, rquirs cubic approimation w. Post-computation of scondary variabls (bnding momnt and shar forc) rquirs th third drivativ of w to ist. Bams

11 FINITE ELEMENT PPROXIMTION Primary variabls (srv as th nodal variabls that must b continuous across lmnts) dw w, θ = d w ( )» c + c+ c + c Hrmit cubic polynomials w, q w φ a a = + w( )» c + c + c + c º Δ a a a a» º Δ b b b b»- - - º Δ a a a»- - - º Δ b b b 4 w ( ) c c c c q( ) c c c q( ) c c c φ = ( a ) h a h h φ a a = h h φ a 4 = ( a ) a h h 4» = ådj j= w ( ) c c c c f ( ) j

12 HERMITE CUBIC INTERPOLTION FUNCTIONS f i ( ) f ( ) slop = f ( ) h slop = slop = h f ( slop = f ( 4 slop = h slop = h

13 FINITE ELEMENT MODEL K ij = b a 4 w ( )» å Δ f ( ) j j j= 4 Kij j Fi = or [K ]{ } = {F } j= K K K K4 K K K K4 K K K K4 K4 K4 K4 K44 EI d φ d φ i j d d + c f φ i φ j 4 = q q q q 4 + Q Q Q Q 4 b d Fi = φ i qd+ Q i a w Δ w Δ Q, q Q, q θ Δ θ Δ 4 θ Δ Q, q Q 4, q 4 h h

14 For lmnt-wis constant valus of E I and q :(and c f = ): [K ]= E I h Postprocssing Finit Elmnt Modl (Continud) 6 h 6 h h h h h 6 h 6 h h h h h {F } = q h 6 h 6 + h Q Q Q Q 4 M() = EI d w 4 d = EI j= V () = dm d = d EI d w d d σ (, z) = M()z I j d φ j d = EI = Ez d w 4 d = Ez j= j 4 j= j d φ j d d φ j () d 4

15 EI h SSEMBLY OF TWO BEM ELEMENTS connctd nd-to-nd 6 h 6 h h h h h 6 h 6+6 h h 6 h h h h h h +h h h 6 h 6 h h h h h Q L Q Q + Q = q L Q 4 + Q Q L Q 4 U U U U 4 U 5 U 6 h= L/ Q + Q =, Q 4 + Q = Q, q Q, q Q 4, q 4 Q, q Q, q Q, q Q, q Q 4, q 4 5

16 E, EI SIMPLE EXMPLE - L P Eact solution (according to th Eulr-Brnoulli bam thory) PL wl ( ) = EI Givn problm E, EI L U U U, U4, Boundary conditions: U = U =, Q = P, Q = 4 P On lmnt discrtization [ K ]{ D } = { q } + { Q } {F } = q h [K ]= E I h 6 h 6 h + h Q Q Q Q 4 = L 6 h 6 h h h h h 6 h 6 h h h h h 6

17 U SIMPLE EXMPLE (continud) P 6EI L éei 6EI ù ê ú ì U ü ìpü ï ï ï ï 4EI Solution using Cramr s rul L L ï ï ï ï L ( 4PEI / L) PL í ý= í ý U = = = 4 6EI 4EI EI 6EI é( EI ) / L ù EI ê ú ïu 4ï ê ë ú ï ï û ë L L ûïî ïþ î þ L L 6EI 4EI EI L L P L 6EI L -( 6PEI / L ) PL = = =- EI 6EI é( EI ) / L ù ê EI ë úû L L 6EI 4EI L L 4 4 E, EI U wl ( ) = U PL EI PL EI =- dw d = L 4 L 7

18 EXMPLE : dtrminat fram structur Givn structur a b F B C P a b F B C P Finit lmnt discrtization P Pb B F F P Pb P C B F 8

19 EXMPLE (continud) Bar lmnt, B E é -ùì u ü ì Q ü ú ï ï= ï ï a ê í ý í ý ë- úï ûïîu Bïþ ïîq Bïþ Pa u =, QB =-P ub =- E Bam lmnt, B é 6 -a -6 -aùìïw üï ì Q ü ú EI úï ï - ú ï ï ï ï a í ý= í ý 6 a 6 a úï Q - ú ê úï ï ë- ûïïî ïþ ï ïþ w = = Q =- F Q = Pb a B Pb ï ï a a a a ïq ï Q B wb B a a a a qb îq B B, q,, F P Displacmnts at C rlativ to point B P Bar lmnt, BC Pb Bam lmnt, BC u F B C C P F Fb = E é 6 -b -6 -bùìïw üï ì Q ü ú EI úï ï - ú ï ï ï ï b í ý= í ý 6 b 6 b úï Q - ú ê úï ï ë- ûïïî ïþ ï ïþ w = = Q =- P Q = B B ï Bï B b b b b ïqb ï Q C wc C b b b b qc îq C C, qb,, 9

20 EXMPLE : Handling of a vrtical spring z, w q k kw(l ) kw(l ) L k U Q Q U = U = kw( L) Q Q 4 = U 4 ¹ = ku Q =- kw( L) =-ku ltrnativly, é ì s ùï ü ì s - ü ï u ï ï Q í ý= í ï s s s k ú ý, u =, u = U Q = ku ê - úï ï s s u Q ë ûïî ïþ ïî ïþ

21 SOLUTION TO THE SPRING-SUPPORTED BEM é 6 -L -6 -LùìïU = w üï ïì 6 ïü ìïq üï ú ï EI L L L L úï U = q ql L Q - ú ï ï ï- ï ï ï L í ý= í ý+ í ý 6 L 6 L úïu w 6 Q - ú = ê ï -L L L L úï ïu4 = q ï ï L ï ïq 4ï ë ûïî ïþ î þ ïî ïþ Boundary conditions w =, q =, Q =- ku, Q = 4 Condnsd quations for th unknown gnralizd nodal displacmnts éei 6EI ù + k ì U ü ì 6 ü L L ú ql úí ï ï ý= ï í ï ý 6EI 4EI ú úï U 4 -L êë L L úû ïî ïþ ïî ïþ -ku Bams

22 HNDLING OF POINT SOURCES INSIDE N ELEMENT h q = ò q () s f () s ds i i h i ò i i q = q( s) f( s) ds = F f( s ), i =,,,4 q h f = ò q () s f () s ds i =- M d, i i i ds s= s æsö æsö æ sö f() s = - ç +, f() s =-s - èhø èç h ø çè h ø æsö æsö éæsö sù f() s = ç -, f4() s =-s - èhø èç h ø êçèhø hú ë û =,,, 4 F F for F placd q = F q = at s =.5h Fh Fh q =- q = s F s h qs () = Fd( s-s) s M s h qs () = Md '( s-s)

23 EXMPLE 4: simply-supportd bam (a) Find th cntr dflction using on Eulr-Brnoulli lmnt in full bam é 6 -L -6 -Lù ì U = w ü ì q ü ì Q ü ú ï 8 EI -L L L L úïu = q q Q ú ï ï = ï ï + ï ï L í ý í ý í ý -6 L 6 L úïu = w q Q ú ê ï -L L L L úï ïu4 = q ï ïq 4ï ïq 4ï EI él L ùìu ü FLì ü ú ï ï = ï ï L ê í ý í ý ë L L úï ûïîu 4ïþ 8 ïî- ïþ U FL FL 6EI 6EI =, U4 =- FL ë ûî þ î þ î þ FL Condnsd quations - 8 F L F F q = q = q FL = 8 q 4 FL = w ( ) = Uf( ) + Uf ( ) + Uf ( ) + Uf ( ) 4 4 = U f ( ) + U f ( ) 4 4 ìé æ ö ù éæ ö æ öù ï FL ü = ï í ï ý 6EI ç L ç L ç L è ø è ø è ø ïîê ë úû êë úû ïþ FL æ L Lö FL w( 5. L) = ç - - =- 6EI çè 8 8 ø 64EI 8

24 EXMPLE 4: simply-supportd bam (b) Find th cntr dflction using on Eulr-Brnoulli lmnt in half bam 6 é L Lù ìïu = w üï ìïq üï ú EI ï -5. L 5. L 5. L 5. L úïu = q Q ú ï ï = ï ï L í ý í ý 6. 5L 6. 5L úïu w Q - ú = ê L. 5L. 5L. 5L úï ï U4 = q - ï ï ïq 4ï ë ûî þ î þ Condnsd quations 6EI L U U é 5. L 5. LùìU ü ì ü ú ï ï = 5. F ï ï ê í ý í ý ë5. L 6 û úï ïîu ïþ ïî- ïþ FL 4. 5L FL, EI L 6EI FL 4. 5L FL EI L 48EI = = = = -.5F U Q = =, F F U Q 4 L =, =-.5F

25 EXERCISE PROBLEM Problm: Dvlop wak form and th finit lmnt modl of th following quation, whr w and P ar unknowns: d d w d w EI P, L + = < < d d d Bams 5

26 F EXERCISE PROBLEM d Problm: Us th minimum numbr of EBT lmnts to find th comprssion in th spring, ractions at th fid support, and spring forc. q Rigid loading fram EI h EI h Linar lastic spring, k Bams 6

27 TIMOSHENKO BEM THEORY and its Finit Elmnt Modl Govrning Equations Finit lmnt modl Shar locking Numrical ampl Bams 7

28 Kinmatics of Timoshnko Bam Thory z, w q ( ) f( ) z, u Undformd Bam Dformd Bams dw d 9 dw d Eulr-Brnoulli Bam Thory (EBT) Straightnss, intnsibility, and normality u φ dw d Timoshnko Bam Thory (TBT) Straightnss and intnsibility 8

29 Timoshnko Bam Thory f g Kinmatic Rlations u (, z) = u( ) + zf ( ), u =, u (, z) = w( ) z u du df z d d = = + u u dw d = + = f +, z z w u dw d zf Constitutiv Equations s ædu df ö = E = E ç + z çèd d ø æ dwö sz = Ggz = Gç f + çè d ø 9

30 Timoshnko Bam Thory (Continud) dn dv dm Equilibrium Equations + f =, q+ cfw =, + V =. d d d Bam Constitutiv Equations ædu df ö du N = s d E ò = ò + z d= E ç èd d ø d ædu dfö df M = sz d E ò = ò ç + z zd= EI çèd d ø d æ dwö æ dwö V = Ks sz d GK s f d GK s f ò = + = + ç è d øò èç d ø Govrning Equations in trms of th displacmnts d é æ dwö ù - GK s f + + cfw = q d ê ç d ú ë çè øû () d æ df ö æ dwö - EI + GK s f + = d ç è d ø èç d ø ()

31 Wak Form of Eq. () WEK FORMS OF TBT ì b d é æ dwöù ü = v ï GK s f cfw qï ò í ýd a d ê ç d ú ï î ë è øû ïþ ì b dv é æ dwöù ü é æ dwöù = ï GK s f cfvw vqïd v GK s f ò í ý - + a d ê ç d ú ê ç d ú ï î ë è øû ïþ ë è øû ì b dv é æ dwö ù ü = GK s ç f + ò í ï ú+ cvw a d çè d f -vq ý ïd ê øú ï î ë û ïþ é æ dwöù é æ dwöù -v( a) - GK s f+ -v( b) GK s f+ ê ç d ú ê ç d ú ë è øû è ø ë û a b ì dv æ dwö ü = ïgk f c v w v qï ò í d -v ( ) Q -v ( ) Q a d çè d ïî ø ïþ s f ý a b b b a

32 Wak Forms of TBT (continud) Wak Form of Eq. () b é d æ df ö æ dwöù = v EI GK s f ò d ê a d ç d ç d ú ë è ø è øû b b édv æ dfö æ dwöù é dfù = EI GKsv f ò + + d - v EI ê a d ç d ç d ú ë è ø è øû êë d úû a b édv æ df ö æ dwöù EI GKsv f æ dfö æ dfö = + + òa d çè d ø çè d ø d -v ( a) -EI -v( b) EI ê ú ç ë d ç d û è ø è ø a b édv æ df ö æ dwöù = EI GKsv f ò + + d -v( a) Q -v( b) Q4 ê a d çè d ø çè d øú ë û Total Potntial Enrgy b EI dφ GKs dw c f Π ( w, φ ) = + φ + + w d a d d b wq d + w( ) Q + w( ) Q + φ( ) Q + φ( ) Q a a b a b 4 b

33 FINITE ELEMENT MODELS OF TIMOSHENKO BEMS Finit Elmnt pproimation w w s s h w h m= n= h w w s s s m= n= h m å w» w y ( ), f» S j ( ) j j j j j= j= { } { } é ù ì ü ék ù ék ù { w} F ê ú ê ú ì ü ë û ë û ï ï í ï ý ï= í ý é { S} K ù ék ù ï ï F êêë úû êë úûúî þ ï ï ë û î þ n å æ dy dy ö ç d K GK c y d, K GK d K a ç çè d d ø a d b b i j i ij = ò ç s + f yy i j ij = s jj = ji ò é b b dj dj ù i j dy j Kij = EI GKsjj ò + i j d, Kij GKs ji d a d d = ò ê ú a d ë û b i = ò yi + yi ( a) + yi ( b) i = ji( a) + ji ( b) Q4 F q d Q Q, F Q a

34 Shar Locking in Timoshnko Bams () Thick bam princs shar dformation, () Shar dformation is ngligibl in thin bams, Linar intrpolation of both w, f : f ¹- w()» w () + w () ()» S () + S () y y, f y y dw d dw f =- d jyj f å jyj j= j= å w» w ( ),» S ( ) w w h S S h Thus, in th thin bam limit it is not possibl for th lmnt to raliz th rquirmnt f =- dw d 4

35 SHER LOCKING - REMEDY In th thin bam limit, φ should bcom constant so that it matchs dw/d. Howvr, if φ is a constant thn th bnding nrgy bcoms zro. If w can mimic th two stats (constant and linar) in th formulation, w can ovrcom th problm. Numrical intgration of th cofficints allows us to valuat both φ and dφ/d as constants. Th trms highlightd should b valuatd using rducd intgration. () () æ b dy dy ö i j () () Kij = GKs cf yi y ò + j d a ç d d çè ø () b dyi () ij = ò s y j = ji K GK d K a d () () é b dy dy ù i j () () Kij = EI GKsyi y ò + j d a d d êë úû 5

36 STIFFNESS MTRICES OF TIMOSHENKO BEM ELEMENT (for constant EI and G) Rducd intgration linar lmnt (RIE) Linar approimation of both w and é 6 h 6 h ùì w ü ì q ü ì Q ü f ú EI h h h hz úï ï f q Q - ú ï ï ï ï ï ï m 6 h 6 h í ý= í ý+ í ý - h úï w q Q ú ï -h hz h h úï ïf q êë úï ûî ïþ ïî 4 ïþ ïîq ï 4ïþ EI = L, z = 5. -6L, L =, m = L GKh s Consistnt intrlmnt lmnt (CIE) Hrmit cubic approimation of w and dpndnt quadratic approimation of f é 6 -h -6 -h ùì w ü ì q ü ì Q ü ú EI h h h h úï ï f q Q - S Q ú ï í ï ý= ï í ï ý+ ï í ï m 6 h 6 h h ý - úï w q Q ú ï -h hq h hs úï ïf q êë úï ûî ïþ ïî 4ïþ ïî Q ï 4ïþ EI S =. + L, Q =. -6L, L =, m = + L GKh s Bams 6

37 E, EI L U U U, U4, F Eact solution (according to th E-B bam thory) wl ( ) = FL EI On lmnt discrtization using th RIE lmnt é 6 -h -6 -h ùì w ü ì q ü ì Q ü EI -h h h hz f q Q ú ï ï ï ï ï ï m 6 h 6 h í ý= í ý+ í ý h úï w q Q - ú ï ê-h hz h h úï ïf ï q 4 Q ë úî û þ ïî ïþ ïî 4þï EI = L, z = 5. -6L, L =, m = L GKh Boundary conditions: N EXMPLE of TBT s U = U =, Q = F, Q = 4 7

38 N EXMPLE (TBT) (continud) EI é 6 LùìïU üï ìïfïü m L FL L FL (. + L) 5 6 ú ï ï= ï ï U = = ml ê í ý í ý L L úïu ï ï 4 ï EI 6L 9L 6EI( L) ë ûïî ïþ ïî ïþ ( - ) Whn EI 5. FL FL L= = U = = GKsL 6EI 4EI ( too stiff ) FL (. 5+ 6L) FL Whn L¹, thn U = = (. 75+ L) 6EI EI L= EI ( + n ) H ( + ) H. H H = = n æ ö æ ö 6. æ ö = = GKL LK 6K ç èl ø 5 çèl ø çèl ø s s s 8

39 N EXMPLE of TBT On lmnt discrtization using th CIE lmnt é 6 -L -6 -Lùì w ü ì Q ü ú EI L L L L úï ï f Q - S Q ú ï ï ï ï ml í ý= í ý 6 L 6 L úïw Q - ú ï ê L L L L úïf Q ë- Q Súï ûî ï ïþ ïî 4 ïþ EI S =. + L, Q =. -6L, L =, m = + L GKL Condnsd quations for th unknown displacmnts s EI é 6 L ù ìu ü ì Fü ml FL S mfl S ú ï ï= ï ï U = = ml ê í ý í ý ël SL úï ûïîu 4ïþ îï þï EI ( LS-9 L ) EI( S-9) 9

40 N EXMPLE (TBT) (continud) mfl S FL Whn L= S= and m = ; thn U = = EI( S-9) EI mfl S FL ( + L )( + L) FL Whn L¹, U = = = ( + L) EI( S- 9) EI ( + L) EI ( n) ( n). EI + H + æh ö æh ö æh ö L= = = 6. = = GK L L K 6K ç èl ø 5 çèl ø èçl ø s s s 4

41 SUMMRY In this lctur w hav covrd th following topics: Drivd th govrning quations of th Eulr-Brnoulli bam thory Drivd th govrning quations of th Timoshnko bam thory Dvlopd Wak forms of EBT and TBT Dvlopd Finit lmnt modls of EBT and TBT Discussd shar locking in Timoshnko bam finit lmnt Discussd assmbly of bam lmnts Discussd ampls 4

Nonlinear Bending of Strait Beams

Nonlinear Bending of Strait Beams Nonlinar Bnding of Strait Bams CONTENTS Th Eulr-Brnoulli bam thory Th Timoshnko bam thory Govrning Equations Wak Forms Finit lmnt modls Computr Implmntation: calculation of lmnt matrics Numrical ampls

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

NONLINEAR ANALYSIS OF PLATE BENDING

NONLINEAR ANALYSIS OF PLATE BENDING NONLINEAR ANALYSIS OF PLATE BENDING CONTENTS Govrning Equations of th First-Ordr Shar Dformation thor (FSDT) Finit lmnt modls of FSDT Shar and mmbran locking Computr implmntation Strss calculation Numrical

More information

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Finite Element Models for Steady Flows of Viscous Incompressible Fluids Finit Elmnt Modls for Stad Flows of Viscous Incomprssibl Fluids Rad: Chaptr 10 JN Rdd CONTENTS Govrning Equations of Flows of Incomprssibl Fluids Mid (Vlocit-Prssur) Finit Elmnt Modl Pnalt Function Mthod

More information

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM) OTHER TPOICS OF INTEREST (Convction BC, Axisymmtric problms, 3D FEM) CONTENTS 2-D Problms with convction BC Typs of Axisymmtric Problms Axisymmtric Problms (2-D) 3-D Hat Transfr 3-D Elasticity Typical

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 4 Introduction to Finit Elmnt Analysis Chaptr 4 Trusss, Bams and Frams Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك FEM FOR HE RNSFER PROBLEMS 1 Fild problms Gnral orm o systm quations o D linar stady stat ild problms: For 1D problms: D D g Q y y (Hlmholtz quation) d D g Q d Fild problms Hat transr in D in h h ( D D

More information

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah) Bnding of Prismatic Bams (Initia nots dsignd by Dr. Nazri Kamsah) St I-bams usd in a roof construction. 5- Gnra Loading Conditions For our anaysis, w wi considr thr typs of oading, as iustratd bow. Not:

More information

MEEN 618: ENERGY AND VARIATIONAL METHODS

MEEN 618: ENERGY AND VARIATIONAL METHODS JN Reddy - 1 MEEN 618: ENERGY AND VARIATIONAL METHODS WORK, ENERGY, AND VARIATIONAL CALCULUS Read: Chapter 4 CONTENTS Work done External and internal work done Strain energy and strain energy density Complementary

More information

Finite Element Analysis

Finite Element Analysis Finit Elmnt Analysis L4 D Shap Functions, an Gauss Quaratur FEA Formulation Dr. Wiong Wu EGR 54 Finit Elmnt Analysis Roamap for Dvlopmnt of FE Strong form: govrning DE an BCs EGR 54 Finit Elmnt Analysis

More information

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling Chaptr 5 wo-dimnsional problms using Constant Strain riangls (CS) Lctur Nots Dr Mohd Andi Univrsiti Malasia Prlis EN7 Finit Elmnt Analsis Introction wo-dimnsional init lmnt ormulation ollows th stps usd

More information

VSMN30 FINITA ELEMENTMETODEN - DUGGA

VSMN30 FINITA ELEMENTMETODEN - DUGGA VSMN3 FINITA ELEMENTMETODEN - DUGGA 1-11-6 kl. 8.-1. Maximum points: 4, Rquird points to pass: Assistanc: CALFEM manual and calculator Problm 1 ( 8p ) 8 7 6 5 y 4 1. m x 1 3 1. m Th isotropic two-dimnsional

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finit Elmnt Analysis for Mchanical and Arospac Dsign Cornll Univrsity, Fall 2009 Nicholas Zabaras Matrials Procss Dsign and Control Laboratory Sibly School of Mchanical and Arospac Enginring

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

MEEN 617 Handout #12 The FEM in Vibrations A brief introduction to the finite element method for modeling of mechanical structures

MEEN 617 Handout #12 The FEM in Vibrations A brief introduction to the finite element method for modeling of mechanical structures MEEN 67 Handout # T FEM in Vibrations A brif introduction to t finit lmnt mtod for modling of mcanical structurs T finit lmnt mtod (FEM) is a picwis application of a variational mtod. Hr I provid you wit

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Derivation of Eigenvalue Matrix Equations

Derivation of Eigenvalue Matrix Equations Drivation of Eignvalu Matrix Equations h scalar wav quations ar φ φ η + ( k + 0ξ η β ) φ 0 x y x pq ε r r whr for E mod E, 1, y pq φ φ x 1 1 ε r nr (4 36) for E mod H,, 1 x η η ξ ξ n [ N ] { } i i i 1

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION by Td Blytschko Northwstrn Univrsity @ Copyright 1997 2.1 Introduction In this chaptr, th quations for on-dimnsional modls of nonlinar

More information

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force Journal of Mchanical Scinc and Tchnology 2 (1) (21) 1957~1961 www.springrlink.com/contnt/1738-9x DOI 1.17/s1226-1-7-x Dynamic rspons of a finit lngth ulr-brnoulli bam on linar and nonlinar viscolastic

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method

Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method Shock and Vibration 4 27) 459 468 459 IOS Prss Dynamic analysis of a Timoshnko bam subjctd to moving concntratd forcs using th finit lmnt mthod Ping Lou, Gong-lian Dai and Qing-yuan Zng School of Civil

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

Chapter 3 Lecture 14 Longitudinal stick free static stability and control 3 Topics

Chapter 3 Lecture 14 Longitudinal stick free static stability and control 3 Topics Chaptr 3 Lctur 14 Longitudinal stick fr static stability and control 3 Topics 3.4.4 Rquirmnt for propr stick forc variation 3.4.5 Fl of th stability lvl by th pilot Exampl 3.3 3.5 Dtrmination of stick-fr

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Direct Approach for Discrete Systems One-Dimensional Elements

Direct Approach for Discrete Systems One-Dimensional Elements CONTINUUM & FINITE ELEMENT METHOD Dirct Approach or Discrt Systms On-Dimnsional Elmnts Pro. Song Jin Par Mchanical Enginring, POSTECH Dirct Approach or Discrt Systms Dirct approach has th ollowing aturs:

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations HAPTER 9 Intrpolation functions for D lmnts Numrical Intgration Modling onsidrations Pascal s triangl Dgr of Numbr of Elmnt with th complt trms in th nods polnomial polnomial Triangular Elmnts (Figur not

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of -D Problems Historical Background Hrenikoff, 94 frame work method Courant, 943 piecewise polynomial interpolation Turner,

More information

Mock Exam 2 Section A

Mock Exam 2 Section A Mock Eam Mock Eam Sction A. Rfrnc: HKDSE Math M Q ( + a) n n n n + C ( a) + C( a) + C ( a) + nn ( ) a nn ( )( n ) a + na + + + 6 na 6... () \ nn ( ) a n( n )( n ) a + 6... () 6 6 From (): a... () n Substituting

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Response Sensitivity for Nonlinear Beam Column Elements

Response Sensitivity for Nonlinear Beam Column Elements Rspons Snsitivity for Nonlinar Bam Column Elmnts Michal H. Scott 1 ; Paolo Franchin 2 ; Grgory. Fnvs 3 ; and Filip C. Filippou 4 Abstract: Rspons snsitivity is ndd for simulation applications such as optimization,

More information

Least Favorable Distributions to Facilitate the Design of Detection Systems with Sensors at Deterministic Locations

Least Favorable Distributions to Facilitate the Design of Detection Systems with Sensors at Deterministic Locations Last Favorabl Distributions to Facilitat th Dsign o Dtction Systms with Snsors at Dtrministic Locations Bndito J. B. Fonsca Jr. Sptmbr 204 2 Motivation Rgion o intrst (city, park, stadium 3 Motivation

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

An Investigation on the Effect of the Coupled and Uncoupled Formulation on Transient Seepage by the Finite Element Method

An Investigation on the Effect of the Coupled and Uncoupled Formulation on Transient Seepage by the Finite Element Method Amrican Journal of Applid Scincs 4 (1): 95-956, 7 ISSN 1546-939 7 Scinc Publications An Invstigation on th Effct of th Coupld and Uncoupld Formulation on Transint Spag by th Finit Elmnt Mthod 1 Ahad Ouria,

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

Non-Linear Analysis of Interlaminar Stresses in Composite Beams with Piezoelectric Layers

Non-Linear Analysis of Interlaminar Stresses in Composite Beams with Piezoelectric Layers 7TH ITERATIOA OFEREE O OMPOSITE SIEE AD TEHOOGY on-inar Analysis of Intrlaminar Strsss in omosit Bams with Piolctric ayrs MASOUD TAHAI 1, AMIR TOOU DOYAMATI 1 Dartmnt of Mchanical Enginring, Faculty of

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

An adaptive Strategy for the Multi-scale Analysis of Plate and Shell Structures with Elasto-plastic Material Behaviour

An adaptive Strategy for the Multi-scale Analysis of Plate and Shell Structures with Elasto-plastic Material Behaviour TECHNISCHE MECHANIK, 36, 1-2, (2016), 142 154 submittd: Sptmbr 7, 2015 An adaptiv Stratgy for th Multi-scal Analysis of Plat and Shll Structurs with Elasto-plastic Matrial Bhaviour W Wagnr, F Gruttmann

More information

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix Platzhaltr für Bild, Bild auf Titlfoli hintr das Logo instzn Numrical mthods for PDEs FEM implmntation: lmnt stiffnss matrix, isoparamtric mapping, assmbling global stiffnss matrix Dr. Nomi Fridman Contnts

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

Keywords- Active vibration control, cantilever composite beam, Newmark-β method

Keywords- Active vibration control, cantilever composite beam, Newmark-β method Pratik K. Gandhi, J. R. Mvada / Intrnational Journal of Enginring Rsarch and Applications (IJERA) ISSN: 8-96 www.ijra.com Vol., Issu, May-Jun, pp.9-95 A Finit Elmnt Modl And Activ Vibration Control Of

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

San José State University Aerospace Engineering AE 138 Vector-Based Dynamics for Aerospace Applications, Fall 2016

San José State University Aerospace Engineering AE 138 Vector-Based Dynamics for Aerospace Applications, Fall 2016 San José Stat Univrsity Arospac Enginring AE 138 Vctor-Basd Dynamics for Arospac Applications, Fall 2016 Instructor: Offic Location: Email: Offic Hours: Class Days/Tim: Classroom: Prof. J.M. Huntr E272F

More information

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS Q J j,. Y j, q.. Q J & j,. & x x. Q x q. ø. 2019 :. q - j Q J & 11 Y j,.. j,, q j q. : 10 x. 3 x - 1..,,. 1-10 ( ). / 2-10. : 02-06.19-12.06.19 23.06.19-03.07.19 30.06.19-10.07.19 07.07.19-17.07.19 14.07.19-24.07.19

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

A class of wavelet-based Rayleigh-Euler beam element for analyzing rotating shafts

A class of wavelet-based Rayleigh-Euler beam element for analyzing rotating shafts Shock and Vibration 18 (11) 447 458 447 DOI 1.333/SAV-1-55 IOS Prss A class of wavlt-basd Rayligh-Eulr bam lmnt for analyzing rotating shafts Jiawi Xiang a,b,, Zhansi Jiang a and Xufng Chn b a School of

More information

. ffflffluary 7, 1855.

. ffflffluary 7, 1855. x B B - Y 8 B > ) - ( vv B ( v v v (B/ x< / Y 8 8 > [ x v 6 ) > ( - ) - x ( < v x { > v v q < 8 - - - 4 B ( v - / v x [ - - B v B --------- v v ( v < v v v q B v B B v?8 Y X $ v x B ( B B B B ) ( - v -

More information

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions)

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions) Spring 01, P67, YK Monday January 30, 01 8 Obsrvabl particl dtction ffcts ar : (most) du to long rang m forcs i.. via atomic collisions or du to short rang nuclar collisions or through dcay ( = wak intractions)

More information

Introduction to Finite Element Method. Dr. Aamer Haque

Introduction to Finite Element Method. Dr. Aamer Haque Introduction to Finite Element Method 4 th Order Beam Equation Dr. Aamer Haque http://math.iit.edu/~ahaque6 ahaque7@iit.edu Illinois Institute of Technology July 1, 009 Outline Euler-Bernoulli Beams Assumptions

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7. Chaptr Binomial Epansion Chaptr 0 Furthr Probability Chaptr Limits and Drivativs Chaptr Discrt Random Variabls Chaptr Diffrntiation Chaptr Discrt Probability Distributions Chaptr Applications of Diffrntiation

More information

Available online at ScienceDirect. IFAC PapersOnLine 51-2 (2018)

Available online at   ScienceDirect. IFAC PapersOnLine 51-2 (2018) Availabl onlin at www.scincdirct.com ScincDirct IFAC PaprsOnLin 51-2 (218) 43 48 Rducd Modls for th Static Simulation of an Elastic Continuum Mchanism Bastian Dutschmann Simon R. Eugstr Christian Ott 218,

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Analysis of Structural Vibration using the Finite Element Method

Analysis of Structural Vibration using the Finite Element Method Sminar: Vibrations and Structur-Born Sound in Civil Enginring Thor and Applications Analsis of Structural Vibration using th Finit Elmnt thod John.A. Shiwua 5 th April, 006 Abstract Structural vibration

More information

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle CHPTER 1 Introductory Concpts Elmnts of Vctor nalysis Nwton s Laws Units Th basis of Nwtonian Mchanics D lmbrt s Principl 1 Scinc of Mchanics: It is concrnd with th motion of matrial bodis. odis hav diffrnt

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

682 CHAPTER 11 Columns. Columns with Other Support Conditions

682 CHAPTER 11 Columns. Columns with Other Support Conditions 68 CHTER 11 Columns Columns with Othr Support Conditions Th problms for Sction 11.4 ar to b solvd using th assumptions of idal, slndr, prismatic, linarly lastic columns (Eulr buckling). uckling occurs

More information

Twist analysis of piezoelectric laminated composite plates

Twist analysis of piezoelectric laminated composite plates wist analysis of pizolctric laminatd composit plats Mchatronics Enginring Dpartmnt, Faculty of Enginring, Intrnational Islamic Univrsity Malaysia, Malaysia raisuddin@iiu.du.my ABSAC cntly scintists ar

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

Massachusetts Institute of Technology Department of Mechanical Engineering

Massachusetts Institute of Technology Department of Mechanical Engineering Massachustts Institut of Tchnolog Dpartmnt of Mchanical Enginring. Introduction to Robotics Mid-Trm Eamination Novmbr, 005 :0 pm 4:0 pm Clos-Book. Two shts of nots ar allowd. Show how ou arrivd at our

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME Introduction to Finit Elmnt Analysis Chaptr 5 Two-Dimnsional Formulation Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

FINITE BEAM ELEMENT WITH PIEZOELECTRIC LAYERS AND FUNCTIONALLY GRADED MATERIAL OF CORE

FINITE BEAM ELEMENT WITH PIEZOELECTRIC LAYERS AND FUNCTIONALLY GRADED MATERIAL OF CORE ECCOMAS Congrss 20 II Europan Congrss on Computational Mthods in Applid Scincs and Enginring M. Papadrakakis,. Papadopoulos, G. Stfanou,. Plvris (ds.) Crt Island, Grc, 5 0 Jun 20 FINITE BEAM ELEMENT WITH

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Theories of Straight Beams

Theories of Straight Beams EVPM3ed02 2016/6/10 7:20 page 71 #25 This is a part of the revised chapter in the new edition of the tetbook Energy Principles and Variational Methods in pplied Mechanics, which will appear in 2017. These

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Liu, X., Zhang, L. "Structural Theory." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

Liu, X., Zhang, L. Structural Theory. Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 Liu, X., Zhang, L. "Structural Thory." Bridg Enginring Handbook. Ed. Wai-Fah Chn and Lian Duan Boca Raton: CRC Prss, 2000 7 Structural Thory Xila Liu Tsinghua Univrsity, China Liming Zhang Tsinghua Univrsity,

More information

4.5 The framework element stiffness matrix

4.5 The framework element stiffness matrix 45 The framework element stiffness matri Consider a 1 degree-of-freedom element that is straight prismatic and symmetric about both principal cross-sectional aes For such a section the shear center coincides

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

ME311 Machine Design

ME311 Machine Design ME311 Machin Dsign Lctur 4: Strss Concntrations; Static Failur W Dornfld 8Sp017 Fairfild Univrsit School of Enginring Strss Concntration W saw that in a curvd bam, th strss was distortd from th uniform

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

International Journal of Solids and Structures

International Journal of Solids and Structures Intrnational Journal of Solids and Structurs 46 (29) 1764 1771 Contnts lists availabl at ScincDirct Intrnational Journal of Solids and Structurs journal hompag: www.lsvir.com/locat/ijsolstr Nonlinar analysis

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Ultimate strength analysis & design of residential slabs on reactive soil

Ultimate strength analysis & design of residential slabs on reactive soil Ultimat strngth analysis & dsign of rsidntial slabs on ractiv soil This documnt prsnts an ovrviw of thory undrlying ultimat strngth analysis and dsign of stiffnd raft and waffl raft slabs, as commonly

More information

Free Vibration of Pre-Tensioned Electromagnetic Nanobeams

Free Vibration of Pre-Tensioned Electromagnetic Nanobeams IOSR Journal of Mathmatics (IOSR-JM) -ISSN: 78-578, p-issn: 39-765X. Volum 3, Issu Vr. I (Jan. - Fb. 07), PP 47-55 www.iosrjournals.org Fr Vibration of Pr-Tnsiond Elctromagntic Nanobams M. Zaaria& Amira

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra Lctur 8 Titl: Diatomic Molcul : Vibrational and otational spctra Pag- In this lctur w will undrstand th molcular vibrational and rotational spctra of diatomic molcul W will start with th Hamiltonian for

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

BUCKLING OF A COLUMN WITH TEMPERATURE DEPENDENT MATERIAL PROPERTIES

BUCKLING OF A COLUMN WITH TEMPERATURE DEPENDENT MATERIAL PROPERTIES AMUKKAE ÜNİ VERSİ ESİ MÜHENDİ Sİ K FAKÜESİ AMUKKAE UNIVERSIY ENGINEERING COEGE MÜHENDİ Sİ K Bİ İ MERİ DERGİ S İ JOURNA OF ENGINEERING SCIENCES YI Cİ SAYI SAYFA : : 7 : : 39-45 BUCKING OF A COUMN WIH EMERAURE

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C) Nm:... Bch:... TOPIC: II. ( + ) d cos ( ) co( ) n( ) ( ) n (D) non of hs. n sc d sc + sc é ësc sc ù û sc sc é ë ù û (D) non of hs. sc cosc d logn log (n ) co (log ) log log (n ) (D) n (log ). cos log(

More information