Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

Size: px
Start display at page:

Download "Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix"

Transcription

1 Platzhaltr für Bild, Bild auf Titlfoli hintr das Logo instzn Numrical mthods for PDEs FEM implmntation: lmnt stiffnss matrix, isoparamtric mapping, assmbling global stiffnss matrix Dr. Nomi Fridman

2 Contnts of th cours Fundamntals of functional analysis Abstract formulation FEM Application to conrt formulations Convrgnc, rgularity Variational crims Implmntation Mixd formulations (.g. Stoks) Stabilisation for flow problms Error indicators/stimation Adaptivity Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 2

3 Implmntation Picwis polynomials and th FEM Sparsity of th stiffnss matrix Calculating th stiffns matrix lmntwisly Isoparamtric mapping Condition numbr of th stiffnss matrix Sparsity of th stiffnss matrix Numrical intgration Implmntation Dr. Nomi Fridman PDE2 tutorial Sit

4 D Exampl with linar nodal basis p(x) l l/5 l/5 l/5 l/5 l/5 p x = aa Strong form: u = u l = Discrtisation of th wak form: u x u i ψ i (x) i= Wak form: l EE dψ l = p x ψ x Not fficint to calculat all th lmnts of th stiffnss matrix on by on! u j EE ψ i(x) ψ j (x) dx i= l K ij = p(x)ψ j (x)dx l f j Calculat lmnt stiffnss matrics and assmbl Implmntation Dr. Nomi Fridman PDE2 tutorial Sit

5 D Exampl with linar nodal basis l p(x) l/5 2 l/5 l/5 l/5 5 l/5 6 instad: Comput stiffnss matrix lmntwisly and thn assmbl Global stiffnss matrix K, K,2 K 2, K 2,2 ψ 2 = EE ψ (x) ψ (x) Ω ψ = EE ψ (x) ψ 5 (x) Ω = EE ψ 5(x) ψ (x) Ω = EE ψ 5(x) Ω ψ 5 (x) ψ ψ K 2, K K 2 (,2) (2,2) K, K K K 2 (2,) 2 (2,2) (,2) K (,) K (,2) K (2,) K (2,2) K (2,) K (2,2) K 5 (,) u u 2 u u u 5 = f 2 f f f 5 K = K (,) K (,2) 6 u 6 5 K (2,) K (2,2) K u Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 5 f

6 D Exampl with linar nodal basis l p(x) instad: Comput stiffnss matrix lmntwisly and thn assmbl l/5 2 l/5 l/5 l/5 5 l/ ψ 2 ψ ψ ψ 5 u = f = p(x)ψ (x) Ω 2 K 2, K K 2 (,2) (2,2) u 2 f 2 f 2 f 2 = p(x)ψ 5 (x) Ω K, K 2 (2,) K 2 (2,2) K (,2) u f 2 2 f K (,) K (,2) K (2,) K (2,2) u f 2 f f = f 5 6 K (2,) K (2,2) K 5 (,) u 5 u 6 f 2 f 5 5 f 2 K u Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 6 f

7 Local/global coordinat systm D Ida: coordinat transformation to hav unit lngth lmnts lmnt stiffns matrix is th sam for ach lmnt ξ = [,] = l K k, l = EE ψ (x) ψ 5 (x) x x i, j [,5] Ω k, l [,2] K k, l = EE N k(ξ) N l (ξ) = EE Ω l 2 N k(ξ) l l Ω N l (ξ) K k, l = EE l 2 N k(ξ) N l (ξ) (ξ) = EE l N k(ξ) N l (ξ) l Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 7

8 Local/global coordinat systm D f l = p(x)ψ (x) Ω p(x)ψ 5 (x) Ω = p(ξ)n l (ξ) (ξ) = l p(ξ)n l (ξ) l [,2] Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 8

9 Local/ coordinat systm, isoparamtric mapping D x Shap functions: ξ = [,] coordinat transformation using th ansatzfunctions N ξ = ξ N 2 ξ = ξ Transformation from local to global coordinats: x ξ = x i N ξ + x i+ N 2 ξ = N ξ Stiffnss matrix with isoparamtric lmnts: local coordinat global coordinat x i x isoparamtric mapping 2 N 2 ξ ξ = ξ = x i x i+ K k, l = EE ψ i(x) ψ j (x) = EE N k(ξ) N l (ξ) x x K k, l = EE N k(ξ) functions of lowr ordr: subparamtric functions of highr ordr: suprparamtric Ω Ω k, l [,2] Nl (ξ) (ξ) Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 9 = x dn ξ i = ξ + x i+ 2 ξ 2 ξ x i x i+ i, j [,5]

10 Isoparamtric linar mapping 2D triangular lmnts Basis functions: Transformation from local to global coordinats: x gggg ξ, η y gggg ξ, η Stiffnss matrix: = N ξ, η N 2 ξ, η N ξ, η N ξ, η N 2 ξ, η N ξ, η x y x 2 y 2 x y i, j [,2,] Implmntation Dr. Nomi Fridman PDE2 tutorial Sit

11 Isoparamtric linar mapping 2D triangular lmnts Stiffnss matrix: i, j [,2,] Stiffnss matrix with local coordinats: N j N i η K ii = J T J N T j N i η η whr: J ξξ substitution rul dtrminant should not b ngativ or zro! i, j [,2,] J = N i ξ, η i= N i ξ, η i= x i y i N i ξ, η η i= N i ξ, η η i= x i y i Implmntation Dr. Nomi Fridman PDE2 tutorial Sit

12 Isoparamtric linar mapping 2D triangular lmnts, xampl 5 6 Transformation from local to global coordinats (isoparamtric mapping): x gggg ξ, η y gggg ξ, η x ξ, η y ξ, η = = N ξ, η N 2 ξ, η N ξ, η ξ η ξ ξ η N ξ, η N 2 ξ, η N ξ, η η ξ η Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 2 x y x 2 y 2 x y

13 Local/ coordinat systm, isoparamtric mapping 2D triangular lmnts, xampl Stiffnss matrix with local coordinats: K ii = η J T N j N j η J T N i N i η J ξξ i, j [,2,] Implmntation Dr. Nomi Fridman PDE2 tutorial Sit

14 Local/ coordinat systm, isoparamtric mapping 2D triangular lmnts, xampl J T 5 7 = J = J T = J = 2 K ii = K ii = η J T η N j N j η J T N j N j η N i N i η J ξξ N i N i η ξξ J T = 2 J T 7 5 K K 2 K K 2 K 22 K 2 K K 2 K K 2 = η ξξ == η ξξ K 2 ==.8 η ξξ =.8 2 =.559 Implmntation Dr. Nomi Fridman PDE2 tutorial Sit

15 Local/ coordinat systm, isoparamtric mapping 2D triangular lmnts, xampl K K 2 K K 2 K 22 K 2 K K 2 K u u 2 u = f f 2 f J T = J = f = p(x)n (x, y) Ω p(x)n 2 (x, y) Ω p(x)n (x, y) Ω = η p(ξ)n (ξ, η) η η p(ξ)n 2 (ξ, η) p(ξ)n (ξ, η) J dη J dη J dη Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 5

16 Local/ coordinat systm, isoparamtric mapping 2D triangular lmnts, xampl u = K 22 K 2 K 2 K 2 K K K 2 K K u 2 u u u 5 u 6 f 2 f f local 2 global K K 2 K K 2 K 22 K 2 K K 2 K u u 2 u = f f 2 f 6 Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 6

17 Condition numbr of th stiffnss matrix [Chaptr..] Condition numbr What happns with th roundoff rrors in K = LL = K + δδ K Ku = f K + δk u = f + δf u u u λ mmm λ mmm δf f λ mmm λ mmm = κ(k) Condition numbr of K with nodal bass with 2D triangular msh: For th Poisson quation N c i i= Ψ i (x) Ψ j x dω Ω = f x Ψ j x dω Ω turns il-conditiond for rfind msh!!! K ij Implmntation Dr. Nomi Fridman PDE2 tutorial Sit 7

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Introduction to PDEs and Numerical Methods Tutorial 10. Finite Element Analysis

Introduction to PDEs and Numerical Methods Tutorial 10. Finite Element Analysis Patzhater für Bid, Bid auf Titefoie hinter das Logo einsetzen Introduction to PDEs and Numerica Methods Tutoria. Finite Eement Anaysis Dr. Noemi Friedman, 3..2 FROM STRONG FORM TO WEAK FORM inhomogeneous

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME Introduction to Finit Elmnt Analysis Chaptr 5 Two-Dimnsional Formulation Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك FEM FOR HE RNSFER PROBLEMS 1 Fild problms Gnral orm o systm quations o D linar stady stat ild problms: For 1D problms: D D g Q y y (Hlmholtz quation) d D g Q d Fild problms Hat transr in D in h h ( D D

More information

Derivation of Eigenvalue Matrix Equations

Derivation of Eigenvalue Matrix Equations Drivation of Eignvalu Matrix Equations h scalar wav quations ar φ φ η + ( k + 0ξ η β ) φ 0 x y x pq ε r r whr for E mod E, 1, y pq φ φ x 1 1 ε r nr (4 36) for E mod H,, 1 x η η ξ ξ n [ N ] { } i i i 1

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling Chaptr 5 wo-dimnsional problms using Constant Strain riangls (CS) Lctur Nots Dr Mohd Andi Univrsiti Malasia Prlis EN7 Finit Elmnt Analsis Introction wo-dimnsional init lmnt ormulation ollows th stps usd

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 4 Introduction to Finit Elmnt Analysis Chaptr 4 Trusss, Bams and Frams Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

VSMN30 FINITA ELEMENTMETODEN - DUGGA

VSMN30 FINITA ELEMENTMETODEN - DUGGA VSMN3 FINITA ELEMENTMETODEN - DUGGA 1-11-6 kl. 8.-1. Maximum points: 4, Rquird points to pass: Assistanc: CALFEM manual and calculator Problm 1 ( 8p ) 8 7 6 5 y 4 1. m x 1 3 1. m Th isotropic two-dimnsional

More information

Nonlinear Bending of Strait Beams

Nonlinear Bending of Strait Beams Nonlinar Bnding of Strait Bams CONTENTS Th Eulr-Brnoulli bam thory Th Timoshnko bam thory Govrning Equations Wak Forms Finit lmnt modls Computr Implmntation: calculation of lmnt matrics Numrical ampls

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Finite Element Models for Steady Flows of Viscous Incompressible Fluids Finit Elmnt Modls for Stad Flows of Viscous Incomprssibl Fluids Rad: Chaptr 10 JN Rdd CONTENTS Govrning Equations of Flows of Incomprssibl Fluids Mid (Vlocit-Prssur) Finit Elmnt Modl Pnalt Function Mthod

More information

Constants and Conversions:

Constants and Conversions: EXAM INFORMATION Radial Distribution Function: P 2 ( r) RDF( r) Br R( r ) 2, B is th normalization constant. Ordr of Orbital Enrgis: Homonuclar Diatomic Molculs * * * * g1s u1s g 2s u 2s u 2 p g 2 p g

More information

Finite Element Analysis

Finite Element Analysis Finit Elmnt Analysis L4 D Shap Functions, an Gauss Quaratur FEA Formulation Dr. Wiong Wu EGR 54 Finit Elmnt Analysis Roamap for Dvlopmnt of FE Strong form: govrning DE an BCs EGR 54 Finit Elmnt Analysis

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

Direct Approach for Discrete Systems One-Dimensional Elements

Direct Approach for Discrete Systems One-Dimensional Elements CONTINUUM & FINITE ELEMENT METHOD Dirct Approach or Discrt Systms On-Dimnsional Elmnts Pro. Song Jin Par Mchanical Enginring, POSTECH Dirct Approach or Discrt Systms Dirct approach has th ollowing aturs:

More information

NONLINEAR ANALYSIS OF PLATE BENDING

NONLINEAR ANALYSIS OF PLATE BENDING NONLINEAR ANALYSIS OF PLATE BENDING CONTENTS Govrning Equations of th First-Ordr Shar Dformation thor (FSDT) Finit lmnt modls of FSDT Shar and mmbran locking Computr implmntation Strss calculation Numrical

More information

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations HAPTER 9 Intrpolation functions for D lmnts Numrical Intgration Modling onsidrations Pascal s triangl Dgr of Numbr of Elmnt with th complt trms in th nods polnomial polnomial Triangular Elmnts (Figur not

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Optics and Non-Linear Optics I Non-linear Optics Tutorial Sheet November 2007

Optics and Non-Linear Optics I Non-linear Optics Tutorial Sheet November 2007 Optics and Non-Linar Optics I - 007 Non-linar Optics Tutorial Sht Novmbr 007 1. An altrnativ xponntial notion somtims usd in NLO is to writ Acos (") # 1 ( Ai" + A * $i" ). By using this notation and substituting

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

The Implementation of Finite Element Method for Poisson Equation

The Implementation of Finite Element Method for Poisson Equation Th Implmntation of Finit Elmnt Mthod for Poisson Equation Wnqiang Fng Abstract This is my MATH 574 cours projct rport. In this rport, I giv som dtails for implmnting th Finit Elmnt Mthod (FEM) via Matlab

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM) OTHER TPOICS OF INTEREST (Convction BC, Axisymmtric problms, 3D FEM) CONTENTS 2-D Problms with convction BC Typs of Axisymmtric Problms Axisymmtric Problms (2-D) 3-D Hat Transfr 3-D Elasticity Typical

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Introduction to PDEs and Numerical Methods Tutorial 5. Finite difference methods equilibrium equation and iterative solvers

Introduction to PDEs and Numerical Methods Tutorial 5. Finite difference methods equilibrium equation and iterative solvers Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Introduction to PDEs and Numerical Methods Tutorial 5. Finite difference methods equilibrium equation and iterative solvers Dr. Noemi

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS COMPUTTIONL NUCLER THERML HYDRULICS Cho, Hyoung Kyu Dpartmnt of Nuclar Enginring Soul National Univrsity CHPTER4. THE FINITE VOLUME METHOD FOR DIFFUSION PROBLEMS 2 Tabl of Contnts Chaptr 1 Chaptr 2 Chaptr

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

Math 102. Rumbos Spring Solutions to Assignment #8. Solution: The matrix, A, corresponding to the system in (1) is

Math 102. Rumbos Spring Solutions to Assignment #8. Solution: The matrix, A, corresponding to the system in (1) is Math 12. Rumbos Spring 218 1 Solutions to Assignmnt #8 1. Construct a fundamntal matrix for th systm { ẋ 2y ẏ x + y. (1 Solution: Th matrix, A, corrsponding to th systm in (1 is 2 A. (2 1 1 Th charactristic

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finit Elmnt Analysis for Mchanical and Arospac Dsign Cornll Univrsity, Fall 2009 Nicholas Zabaras Matrials Procss Dsign and Control Laboratory Sibly School of Mchanical and Arospac Enginring

More information

Error estimation Adaptive remeshing Remapping. Lionel Fourment Mines ParisTech CEMEF Sophia Antipolis, France

Error estimation Adaptive remeshing Remapping. Lionel Fourment Mines ParisTech CEMEF Sophia Antipolis, France Error stimation Adaptiv rmsing Rmapping Lionl Fourmnt Mins ParisTc CEMEF Sopia Antipolis, Franc Error stimation Wic masur? L 2 H Enrgy 2 = u 2 u dω Ω Error stimation / Adaptiv rmsing / Rmapping 2 i i (

More information

A ROBUST NONCONFORMING H 2 -ELEMENT

A ROBUST NONCONFORMING H 2 -ELEMENT MAHEMAICS OF COMPUAION Volum 70, Numbr 234, Pags 489 505 S 0025-5718(00)01230-8 Articl lctronically publishd on Fbruary 23, 2000 A ROBUS NONCONFORMING H 2 -ELEMEN RYGVE K. NILSSEN, XUE-CHENG AI, AND RAGNAR

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Construction of Mimetic Numerical Methods

Construction of Mimetic Numerical Methods Construction of Mimtic Numrical Mthods Blair Prot Thortical and Computational Fluid Dynamics Laboratory Dltars July 17, 013 Numrical Mthods Th Foundation on which CFD rsts. Rvolution Math: Accuracy Stability

More information

GENERAL INTERPOLATION

GENERAL INTERPOLATION Chaptr 9 GENERAL INTERPOLATION 9. Introduction Th prvious sctions hav illustratd th havy dpndnc of finit lmnt mthods on both spatial intrpolation and fficint intgrations. In a on-dimnsional problm it dos

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

Selective Mass Scaling (SMS)

Selective Mass Scaling (SMS) Slctiv Mass Scaling (SMS) Thory and Practic Thomas Borrvall Dynamor Nordic AB Octobr 20 LS DYNA information Contnt Background Is SMS nwsworthy? Thory and Implmntation Diffrnc btwn CMS and SMS Undr th hood

More information

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont.

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont. Lctr 8; ntrodctor 2-dimnsional lastostatics; cont. (modifid 23--3) ntrodctor 2-dimnsional lastostatics; cont. W will now contin or std of 2-dim. lastostatics, and focs on a somwhat mor adancd lmnt thn

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

Calculus concepts derivatives

Calculus concepts derivatives All rasonabl fforts hav bn mad to mak sur th nots ar accurat. Th author cannot b hld rsponsibl for any damags arising from th us of ths nots in any fashion. Calculus concpts drivativs Concpts involving

More information

Prod.C [A] t. rate = = =

Prod.C [A] t. rate = = = Concntration Concntration Practic Problms: Kintics KEY CHEM 1B 1. Basd on th data and graph blow: Ract. A Prod. B Prod.C..25.. 5..149.11.5 1..16.144.72 15..83.167.84 2..68.182.91 25..57.193.96 3..5.2.1

More information

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer DSP-First, / TLH MODIFIED LECTURE # CH-3 Complx Exponntials & Complx Numbrs Aug 016 1 READING ASSIGNMENTS This Lctur: Chaptr, Scts. -3 to -5 Appndix A: Complx Numbrs Complx Exponntials Aug 016 LECTURE

More information

Announce. ECE 2026 Summer LECTURE OBJECTIVES READING. LECTURE #3 Complex View of Sinusoids May 21, Complex Number Review

Announce. ECE 2026 Summer LECTURE OBJECTIVES READING. LECTURE #3 Complex View of Sinusoids May 21, Complex Number Review ECE 06 Summr 018 Announc HW1 du at bginning of your rcitation tomorrow Look at HW bfor rcitation Lab 1 is Thursday: Com prpard! Offic hours hav bn postd: LECTURE #3 Complx Viw of Sinusoids May 1, 018 READIG

More information

ACCURACY OF DIRECT TREFFTZ FE FORMULATIONS

ACCURACY OF DIRECT TREFFTZ FE FORMULATIONS COMPUTATIONAL MECHANICS Nw Trnds and Applications S. Idlsohn, E. Oñat and E. Dvorkin (Eds.) c CIMNE, Barclona, Spain 1998 ACCURACY OF DIRECT TREFFTZ FE FORMULATIONS Vladimír Kompiš,L ubor Fraštia, Michal

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 3.4 Forc Analysis of Linkas An undrstandin of forc analysis of linkas is rquird to: Dtrmin th raction forcs on pins, tc. as a consqunc of a spcifid motion (don t undrstimat th sinificanc of dynamic or

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution Larg Scal Topology Optimization Using Prconditiond Krylov Subspac Rcycling and Continuous Approximation of Matrial Distribution Eric d Sturlr*, Chau L**, Shun Wang***, Glaucio Paulino** * Dpartmnt of Mathmatics,

More information

Chapter 6 Folding. Folding

Chapter 6 Folding. Folding Chaptr 6 Folding Wintr 1 Mokhtar Abolaz Folding Th folding transformation is usd to systmatically dtrmin th control circuits in DSP architctur whr multipl algorithm oprations ar tim-multiplxd to a singl

More information

Nusselt number correlations for simultaneously developing laminar duct flows of liquids with temperature dependent properties

Nusselt number correlations for simultaneously developing laminar duct flows of liquids with temperature dependent properties Journal of Physics: Confrnc Sris OPEN ACCESS Nusslt numbr corrlations for simultanously dvloping laminar duct flows of liquids with tmpratur dpndnt proprtis To cit this articl: Stfano Dl Giudic t al 2014

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

3-D SQCE Model and Its Application in Fracture Mechanics *

3-D SQCE Model and Its Application in Fracture Mechanics * 3-D SQCE Modl and Its Application in Fractur Mchanics * Zhichao Wang Sr. ad Enginr Applid Mchanics Dpt., Emrson Climat Tchnology, USA Tribikram Kundu - Profssor Enginring Mchanics Dpt.,Th Univrsity of

More information

JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH 241) Final Review Fall 2016

JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH 241) Final Review Fall 2016 JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH ) Final Rviw Fall 06 Th Final Rviw is a starting point as you study for th final am. You should also study your ams and homwork. All topics listd in th

More information

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems MCE503: Modling and Simulation o Mchatronic Systms Discussion on Bond Graph Sign Convntions or Elctrical Systms Hanz ichtr, PhD Clvland Stat Univrsity, Dpt o Mchanical Enginring 1 Basic Assumption In a

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr ot St #18 Introduction to DFT (via th DTFT) Rading Assignmnt: Sct. 7.1 of Proakis & Manolakis 1/24 Discrt Fourir Transform (DFT) W v sn that th DTFT is

More information

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations DOI 10.1007/s10915-016-0264-z Dirct Discontinuous Galrkin Mthod and Its Variations for Scond Ordr Elliptic Equations Hongying Huang 1,2 Zhng Chn 3 Jin Li 4 Ju Yan 3 Rcivd: 15 Dcmbr 2015 / Rvisd: 10 Jun

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

BSc Engineering Sciences A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 August 30, x n, ) n 2

BSc Engineering Sciences A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 August 30, x n, ) n 2 BSc Enginring Scincs A. Y. 27/8 Writtn xam of th cours Mathmatical Analysis 2 August, 28. Givn th powr sris + n + n 2 x n, n n dtrmin its radius of convrgnc r, and study th convrgnc for x ±r. By th root

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

What are molecular simulations? Introduction. Numerical Tools : Fluid Mechanics

What are molecular simulations? Introduction. Numerical Tools : Fluid Mechanics What ar molcular simulations? Introduction MSE 60 Computational Matrials Scinc / CME 599-001 Molcular Simulations S.E. Rankin Dpartmnt of Chmical and Matrials Enginring Univrsity of Kntucky, Lxington KY

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

A. T. Sornborger a a Department of Mathematics and Faculty of Engineering,

A. T. Sornborger a a Department of Mathematics and Faculty of Engineering, This articl was downloadd by: [Univrsity of California Davis] On: 29 May 2013, At: 13:57 Publishr: Taylor & Francis Informa Ltd Rgistrd in England and Wals Rgistrd Numbr: 1072954 Rgistrd offic: Mortimr

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Chapter 8: Electron Configurations and Periodicity

Chapter 8: Electron Configurations and Periodicity Elctron Spin & th Pauli Exclusion Principl Chaptr 8: Elctron Configurations and Priodicity 3 quantum numbrs (n, l, ml) dfin th nrgy, siz, shap, and spatial orintation of ach atomic orbital. To xplain how

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

Developments in Geomathematics 5

Developments in Geomathematics 5 ~~": ~ L " r. :.. ~,.!.-. r,:... I Rprintd from I Dvlopmnts in Gomathmatics 5 Procdings of th Intrnational Symposium on Variational Mthods in ' Goscincs hld at th Univrsity of Oklahoma, Norman, Oklahoma,

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION by Td Blytschko Northwstrn Univrsity @ Copyright 1997 2.1 Introduction In this chaptr, th quations for on-dimnsional modls of nonlinar

More information

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr is concrnd with rsidual typ a postriori rror stimators

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Elctromagntic scattring Graduat Cours Elctrical Enginring (Communications) 1 st Smstr, 1388-1389 Sharif Univrsity of Tchnology Contnts of lctur 8 Contnts of lctur 8: Scattring from small dilctric objcts

More information

A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS

A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum -, Numbr -, Pags 22 c - Institut for Scintific Computing and Information A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS Abstract. JUNPING

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

A NYSTRÖM-BASED FINITE ELEMENT METHOD ON POLYGONAL ELEMENTS AKASH ANAND, JEFFREY S. OVALL, AND STEFFEN WEISSER

A NYSTRÖM-BASED FINITE ELEMENT METHOD ON POLYGONAL ELEMENTS AKASH ANAND, JEFFREY S. OVALL, AND STEFFEN WEISSER A NYSTRÖM-BASED FINITE ELEMENT METHOD ON POLYGONAL ELEMENTS AASH ANAND, JEFFREY S. OVALL, AND STEFFEN WEISSER Abstract. W considr familis of finit lmnts on polygonal mshs, that ar dfind implicitly on ach

More information