The Implementation of Finite Element Method for Poisson Equation

Size: px
Start display at page:

Download "The Implementation of Finite Element Method for Poisson Equation"

Transcription

1 Th Implmntation of Finit Elmnt Mthod for Poisson Equation Wnqiang Fng Abstract This is my MATH 574 cours projct rport. In this rport, I giv som dtails for implmnting th Finit Elmnt Mthod (FEM) via Matlab and Python with FEniCs. This projct mainly focuss on th Poisson quation with pur homognous and non-homognous Dirichlt boundary, pur Numann boundary condition and Mixd boundary condition on uint squar and unit circl domain. Symmtric and Unsymmtric Nitsch s mthod will b usd to dal with th non-homognous boundary condition. Som of th functions in this projct wr writtn for [4, 5] and som functions ar from Long Chn packag [2][3]. Th Python cod with FEniCs ar larnd from []. Th Modl Problm For simplicity, I considr th following thr typs of boundary conditions:. Pur Dirichlt boundary condition poisson quation: u = f in, u = g D on, 2. Pur Numann boundary condition poisson quation: u = f in, u = g N on, 3. Mixd boundary condition poisson quation: n u = f in, u = g D on Γ D, u = g N on Γ N. n () (2) (3) whr is assumd to b a polygonal domain, f a givn function in L 2 () and g a givn function in H 2 (). Bfor I giv th dtails, I would lik to introduc som usful notations in this rport. Lt T h to b th partition (Figur.) (typically triangulation) of, with picwis constant msh siz h, i.., h K = diam(k), similarly, to b h = diam(), Γ D to b th Dirichlt boundary, Γ N to b th

2 Figur : Th triangulation on unit squar and unit circl domain Numann boundary, and P(K) to b a finit dimnsion smooth function (typically polynomial) on th rgion K. This spac V h ( H0 ()) will b usd to approximat th variabl u. V h := {v L 2 () v K P(K) K T h, v = 0 on Γ D }. (4) 2 Th wak formula and Canonical Galrkin approximation formula for modl problm with 2. Th wak formula and Galrkin approximation for th pur Dirichlt boundary problm Modl Problm. : th wak formula can b writtn as as follows: find u H () with u = g and a(u,φ) := u φdx = f φdx for φ H0, (5) Th Galrkin approximation formula can b rad as follows: find u h V h with u h = g and a(u h,φ h ) := u h φ h dx = f h φ h dx for φ h V h, (6) Modl Problm.2 : th wak formula can b writtn as as follows: find u H () and a(u,φ) := u φdx = f φdx + g N φds for φ V h, (7) Ky words: FEM, Pur Dirichlt boundary condition, Pur Numann boundary condition, Mixd boundary condition, Symmtric and Unsymmtric Nitsch s mthod. Dpartmnt of Mathmatics,Univrsity of Tnnss, Knoxvill, TN, 37909, wfng@math.utk..du 2

3 Th Galrkin approximation formula can b rad as follows: find u h V h with u h = g and a(u h,φ h ) := u h φ h dx = f h φ h dx + (g N ) k φ h ds for φ h V h, (8) Rmark 2.. Th ncssary (and also sufficint in this stting) condition for xistnc of a solution is f dx + g N ds = 0. Th ncssary condition for uniqunss of a solution is udx = 0. W assum f L 2 () and g L 2 ( ) such that f dx + g ds = 0. Thus, thr xists a uniqu solution in th subst of H 2 () consisting of zro-avrag functions. Rmark 2.2. Th systm arising from th pur Numann modl problm is a singular systm. Thr ar thr popular approachs to dal with this singular systm:. Fix on dgr of frdom on th boundary (strongly impos as Dirichlt point); 2. Lagrang multiplir mthod. Changing th non-constrain problm to a constrain systm; 3. Krylov solvrs. AMG for xampl will do a optimal job if you mak sur that th coars solv dosn t mss with th nullspac. Using an itrativ solvr (lik Jacobi) on th coars solv will do th trick. Modl Problm.3 : th wak formula can b writtn as as follows: find u H () and a(u,φ) := u φdx = f φdx + g N φds for φ V h, (9) Γ N Th Galrkin approximation formula can b rad as follows: find u h V h with u h ΓD = g D and a(u h,φ h ) := u h φ h dx = f h φ h dx + (g N ) k φ h ds Γ N for φ h V h, (0) 2.2 Th wak formula for Symmtric and Unsymmtric Nitsch s mthod 2.2. Symmtric Nitsch s mthod. Th wak formula for Modl Problm. can b writtn as as follows: find u H () and a(u,φ) := u φdx u nφds f (φ) = f φdx Γ D Γ D φ nuds + γ h Γ D Γ D φ nuds + γ h Γ D uvds () uvds for φ V h, (2) 3

4 2. Th wak formula for Modl Problm.3 can b writtn as as follows: find u H () and a(u,φ) := u φdx u nφds Γ N Γ D f (φ) = f φdx + g N φds Γ D Γ D φ nuds + γ h Γ D φ nuds + γ h Γ D uvds (3) uvds for φ V h (4), Unsymmtric Nitsch s mthod. Th wak formula for Modl Problm. can b writtn as as follows: find u H () and a(u,φ) := u φdx u nφds + f (φ) = f φdx + Γ D Γ D φ nuds + γ h Γ D Γ D φ nuds + γ h Γ D 2. Th wak formula for Modl Problm.3 can b writtn as as follows: uvds (5) uvds for φ V h, (6) find u H () and a(u,φ) := u φdx u nφds + Γ N Γ D f (φ) = f φdx + g N φds Poisson Solvr 2.3. Data structur Γ D Γ D φ nuds + γ h Γ D φ nuds + γ h Γ D uvds (7) uvds for φ V h (8), Bfor I giv th Poisson solvr, I would lik to introduc th data structur in Matlab. I will us th initial msh (Figur.2) as an xampl to illustrat th concpt of th componnts.. Th basic data structur ( S Tabl ()) is msh which contains msh.nod: Th nod vctor is just th xy-valu of nod. msh.lm: In th lm matrix, th first and th scond column rprsnt th start nodal indics vctor and th nd nodal indics vctor, rspctivly. msh.dirichlt: Th Dirichlt is th Dirichlt boundary condition dgs. msh.numann: Th boundary is th Numann boundary condition dgs. 2. Anothr main data structur is indics (S Tabl (2))which will provid usful indics. indics.nighbor: indics.nighbor(:nt,:3): th indics map of nighbor information of lmnts, whr nighbor(t,i) is th global indx of th lmnt opposit to th i-th vrtx of th t-th lmnt. indics.lm2dg: indics.lm2dg(:nt,:3): th indics map from lmnts to dgs, lm2dg(t,i) is th dg opposit to th i-th vrtx of th t-th lmnt. 4

5 Figur 2: Th initial msh and th uniformly rfinmnt hirarchical msh indics.dg: indics.dg(:ne,:2): all dgs, whr dg(,i) is th global indx of th i-th vrtx of th -th dg, and dg(,) < dg(,2). indics.bdedg: indics.bdedg(:nbd,:2): boundary dgs with positiv oritntation, whr bdedg(,i) is th global indx of th i-th vrtx of th -th dg for i=,2. Th positiv oritntation mans that th intrior of th domain is on th lft moving from bd- Edg(,) to bdedg(,2). Not that this rquirs lm is positiv ordrd, i.., th signd ara of ach triangl is positiv. If not, us lm = fixordr(nod,lm) to fix th ordr. indics.dg2lm: indics.dg2lm(:ne,:4): th indics map from dg to lmnt, whr dg2lm(,:2) ar th global indics of two lmnts sharing th -th dg, and dg2lm(,3:4) ar th local indics of (S Figur. 3 and Tabl. 2). A 3 2 A 3 A 2 Figur 3: Th local indics of vtrics and dgs Poisson solvr Procss Th Canonical Poisson solvr contains thr main stps: Stp Pr-procss stp: In this phas, w should gt th information of th nodal, lmnt and indics. In this projct, I us my own function InitialMsh to gnrat for th squar domain. For th complx domain, you can us Matlab s PDE tool or th packag in [6] to gnrat th 5

6 Tabl : MESH Data structur in two dimnsion Nodal NO. nod(:,) nod(:,2) i Dirichlt(:,) Dirichlt(:,2) Elmnt nighbor lm2dg NO

7 Tabl 2: Indics data structur in two dimnsion dg Edg NO. dg(:,) dg(:,2) Boundary Elmnt dg2lm EdgNO. lm lm 2 local local BdEdg NO. bddg(:,) bddg(:,2)

8 msh. Stp 2 Procss stp: This phas contains four sub-stps as follow: stp 2. Comput th stiffnss matrix and load vctor of th lmnts stp 2.2 Assmbl th global stiffnss matrix and global load vctor stp 2.3 Dal with th boundary condition (Strongly impos th boundary) stp 2.4 Solv th linar systm AU = F Stp 3 post-procss stp: this phas is just to output th solution and giv it visual form. 3 Tmplats 3. Basis functions tmplat Listing : Quadratur points in -D with barycntric coordinats % Basis functions of P 2 phi(:,) = lambda(:,); 3 phi(:,2) = lambda(:,2); 4 phi(:,3) = lambda(:,3); 5 6 % Gradint Basis functions of P 7 Dphip(:,:,) = ; 8 Dphip(:,:,2) = ; 9 Dphip(:,:,3) = ; 0 % Basis functions of P2 2 phi(:,) = lambda(:,). * (2 * lambda(:,) -); 3 phi(:,2) = lambda(:,2). * (2 * lambda(:,2) -); 4 phi(:,3) = lambda(:,3). * (2 * lambda(:,3) -); 5 phi(:,4) = 4 * lambda(:,2). * lambda(:,3); 6 phi(:,5) = 4 * lambda(:,3). * lambda(:,); 7 phi(:,6) = 4 * lambda(:,). * lambda(:,2); 8 9 % Gradint Basis functions of P2 20 Dphip(:,:,) = (4 * lambda(p,) -). * Dlambda(:,:,); 2 Dphip(:,:,2) = (4 * lambda(p,2) -). * Dlambda(:,:,2); 22 Dphip(:,:,3) = (4 * lambda(p,3) -). * Dlambda(:,:,3); 23 Dphip(:,:,4) = 4 * (lambda(p,2) * Dlambda(:,:,3)+lambda(p,3) * Dlambda(:,:,2)); 24 Dphip(:,:,5) = 4 * (lambda(p,3) * Dlambda(:,:,)+lambda(p,) * Dlambda(:,:,3)); 25 Dphip(:,:,6) = 4 * (lambda(p,) * Dlambda(:,:,2)+lambda(p,2) * Dlambda(:,:,)); % Basis functions of P3 29 phi(:,) = 0.5 * (3 * lambda(:,) -). * (3 * lambda(:,) -2). * lambda(:,); 30 phi(:,2) = 0.5 * (3 * lambda(:,2) -). * (3 * lambda(:,2) -2). * lambda(:,2); 3 phi(:,3) = 0.5 * (3 * lambda(:,3) -). * (3 * lambda(:,3) -2). * lambda(:,3); 32 phi(:,4) = 9/2 * lambda(:,3). * lambda(:,2). * (3 * lambda(:,2) -); 33 phi(:,5) = 9/2 * lambda(:,3). * lambda(:,2). * (3 * lambda(:,3) -); 34 phi(:,6) = 9/2 * lambda(:,). * lambda(:,3). * (3 * lambda(:,3) -); 35 phi(:,7) = 9/2 * lambda(:,). * lambda(:,3). * (3 * lambda(:,) -); 36 phi(:,8) = 9/2 * lambda(:,). * lambda(:,2). * (3 * lambda(:,) -); 37 phi(:,9) = 9/2 * lambda(:,). * lambda(:,2). * (3 * lambda(:,2) -); 38 phi(:,0) = 27 * lambda(:,). * lambda(:,2). * lambda(:,3); 8

9 39 40 % Gradint Basis functions of P3 4 Dphip(:,:,) = (27/2 * lambda(p,) * lambda(p,) -9 * lambda(p,)+). * Dlambda (:,:,); 42 Dphip(:,:,2) = (27/2 * lambda(p,2) * lambda(p,2) -9 * lambda(p,2)+). * Dlambda (:,:,2); 43 Dphip(:,:,3) = (27/2 * lambda(p,3) * lambda(p,3) -9 * lambda(p,3)+). * Dlambda (:,:,3); 44 Dphip(:,:,4) = 9/2 * ((3 * lambda(p,2) * lambda(p,2)-lambda(p,2)). * Dlambda(:,:,3) lambda(p,3) * (6 * lambda(p,2) -). * Dlambda(:,:,2)); 46 Dphip(:,:,5) = 9/2 * ((3 * lambda(p,3) * lambda(p,3)-lambda(p,3)). * Dlambda(:,:,2) lambda(p,2) * (6 * lambda(p,3) -). * Dlambda(:,:,3)); 48 Dphip(:,:,6) = 9/2 * ((3 * lambda(p,3) * lambda(p,3)-lambda(p,3)). * Dlambda(:,:,) lambda(p,) * (6 * lambda(p,3) -). * Dlambda(:,:,3)); 50 Dphip(:,:,7) = 9/2 * ((3 * lambda(p,) * lambda(p,)-lambda(p,)). * Dlambda(:,:,3) lambda(p,3) * (6 * lambda(p,) -). * Dlambda(:,:,)); 52 Dphip(:,:,8) = 9/2 * ((3 * lambda(p,) * lambda(p,)-lambda(p,)). * Dlambda(:,:,2) lambda(p,2) * (6 * lambda(p,) -). * Dlambda(:,:,)); 54 Dphip(:,:,9) = 9/2 * ((3 * lambda(p,2) * lambda(p,2)-lambda(p,2)). * Dlambda (:,:,) lambda(p,) * (6 * lambda(p,2) -). * Dlambda(:,:,2)); 56 Dphip(:,:,0) = 27 * (lambda(p,) * lambda(p,2) * Dlambda(:,:,3)+lambda(p,) * lambda(p,3) * Dlambda(:,:,2) lambda(p,3) * lambda(p,2) * Dlambda(:,:,)); 3.2 Quadratur points in -D with barycntric coordinats function [lambda, wight] = quadptsd( numpts) 2 %% QUADPTS quadratur points in -D with Bar. 3 4 if numpts > 8 5 fprintf( No gauss quadratur for this cas ) 6 nd 7 8 switch numpts 9 cas 0 lambda =[ ]; wight = ; 2 3 cas 2 4 lambda =[ ; ]; 6 wight =[ ; ]; 8 9 cas 3 20 lambda =[ ; ; ]; 9

10 23 wight =[ ; ; ]; cas 4 28 lambda =[ ; ; ; ]; 32 wight =[ ; ; ; ]; cas 5 38 lambda =[ ; ; ; ; ]; wight =[ ; ; ; ; ]; cas lambda =[ ; ; ; ; ; ]; wight =[ ; ; ; ; ; ]; cas 7 67 lambda =[ ; ; ; ; ; ; ]; wight =[ ; ; ; ; 0

11 ; ; ]; cas 8 84 lambda =[ ; ; ; ; ; ; ; ]; wight =[ ; ; ; ; ; ; ; ]; 0 nd 3.3 Quadratur points in 2-D with barycntric coordinats Listing 2: Quadratur points in 2-D with barycntric coordinats function [lambda, wight] = quadpts2d( ordr) 2 %% QUADPTS quadratur points in 2-D with barycntric coordinats. 3 % Rfrncs: 4 % 5 % David Dunavant. 6 % High dgr fficint symmtrical Gaussian quadratur ruls for 7 % th triangl. Intrnational journal for numrical mthods in 8 % nginring. 2(6):29--48, if ordr > 6 0 fprintf( No gauss quadratur for this cas ) nd 2 3 switch ordr 4 cas 5 lambda =[ ]; 6 wight = ; 7 8 cas 2 9 lambda =[ ; ; ]; 22 wight =[ ; ; ];

12 25 26 cas 3 27 lambda =[ ; ; ; ]; 3 wight =[ ; ; ; ]; cas 4 37 lambda =[ ; ; ; ; ; ]; 43 wight =[ ; ; ; ; ; ]; cas 5 5 lambda =[ ; ; ; ; ; ; ]; wight =[ ]; cas lambda =[ ; ; ; ; ; ; ; ; ; 2

13 ]; ; ; 8 wight =[ ]; nd 4 Numrical Exprimnts Canonical Finit Elmnt Mthod Tst.. Squar domain In th first tst, w choos th data such that th xact solution of () on th squar domain Ω = [, ] [, ] is givn by u(x, y) = cos(πx) cos(πy) Figur 4: Th canonical FEM approximation on squar domain with pur Dirichlt boundary Th rrors for th FEM approximation (Fig.7) using q =, 2, 3 on unit squar domain and varying h can b found in Tabl (3). 2. Unit circl domain Th rrors for th FEM approximation (Fig.5) using q =, 2, 3 on unit squar domain and varying h can b found in Tabl (4). 3

14 Tabl 3: Errors of th computd solution on squar domain in Tst. q= q=2 q=3 #lm ku uh kl ordr ku uh kh ordr Figur 5: Th canonical FEM approximation on unit circl domain with pur Dirichlt boundary 4

15 Tabl 4: Errors of th computd solution on unit circl domain in Tst. #lm u u h L 2 ordr u u h H ordr q = q = q =

16 4..2 Tst. 2 In th scond tst, w choos th data such that th xact solution of (3) on th squar domain = [,] [,] is givn by whr th mixd boundary condition ar u(x, y) = cos(πx) cos(πy), u(x,y) = g D, x = and x = u(x,y) = g N = 0, y = and y = Th rrors for th FEM approximation using r =,2,3 and varying h can b found in Tabl (5). Tabl 5: Errors of th computd solution on squar domain in Tst 2. #lm u u h L 2 ordr u u h H ordr q = q = q = Symmtric and Unsymmtric Nitsch s mthod 4.2. Tst. In th first tst, w choos th data such that th xact solution of () on th unit domain = [0,] [0,] is givn by u(x) = xy + sin(πx)sin(πy). 6

17 . Symmtric Nitsch s mthod approximation Th rrors for th symmtric Nitsch s mthod approximation (6) using r =,2,3 and varying h can b found in Tabl (6). Figur 6: Th symmtric Nitsch s mthod approximation on squar domain with pur Dirichlt boundary Tabl 6: Errors of th computd solution (symmtric Nitsch s mthod) on squar domain in Tst. #lm u u h L 2 ordr u u h H ordr q = q = Unsymmtric Nitsch s mthod approximation Th rrors for th unsymmtric Nitsch s mthod approximation using r =,2,3 and varying h can b found in Tabl (7) Tst. 2 In th scond tst, w choos th data such that th xact solution of (3) on th unit circl domain is givn by u(x,y) = sin(π(x 2 + y 2 ))cos(π(x y)). 7

18 Figur 7: Th unsymmtric Nitsch s mthod approximation on squar domain with pur Dirichlt boundary Tabl 7: Errors of th computd solution (unsymmtric Nitsch s mthod) on squar domain in Tst. #lm u u h L 2 ordr u u h H ordr q = q = whr u(x,y) = g D, on Γ D, x 0, u(x,y) = g N, on Γ N, x > 0, with g D = xact solution and g N = x (2 pi x cos(pi (x y)) cos(pi (x x + y y)) pi sin(pi (x y)) sin(pi (x x + y y))) + y (2 pi y cos(pi (x y)) cos(pi (x x + y y)) + pi sin(pi (x y)) sin(pi (x x + y y))). Symmtric Nitsch s mthod approximation Th rrors for th symmtric Nitsch s mthod approximation (8) using r =,2,3 and varying h can b found in Tabl (8). 2. Unsymmtric Nitsch s mthod approximation Th rrors for th unsymmtric Nitsch s mthod approximation (Fig.9) using r =,2,3 and varying h can b found in Tabl (9). 8

19 Tabl 8: Errors of th computd solution (symmtric Nitsch s mthod) on unit circl domain in Tst 2. #lm u u h L 2 ordr u u h H ordr q = Tabl 9: Errors of th computd solution (unsymmtric Nitsch s mthod) on unit circl domain in Tst 2. #lm u u h L 2 ordr u u h H ordr q =

20 Figur 8: Th symmtric Nitsch s mthod approximation on squar domain with pur Dirichlt boundary Figur 9: Th unsymmtric Nitsch s mthod approximation on squar domain with pur Dirichlt boundary Listing 3: Python dmo cod 2 # This is MATH 574 cours projct. W try to solv th Poisson 3 # Equation by using Classical FEM and FEM with Nitsch tchniqus 4 # for pur homognous Dirichlt BC. 5 # \ Dlta u + cu= f in \ Omga 6 # u = g_d on \ Gamma_D 7 # u = g_n on \ Gamma_N 8 # 9 0 from collctions import namdtupl 2 from math import log as ln 3 from dolfin import * 4 5 st_log_lvl( ERROR) 6 st_log_lvl( WARNING) 7 20

21 8 Rsult = namdtupl( Rsult, [ fun_nam, NT, h, L2, H0, H ]) 9 f = Exprssion( 2 * pi * pi * sin(pi * x[0]) * sin(pi * x[]) ) 20 u_xact = Exprssion( x[0] * x[] + sin(pi * x[0]) * sin(pi * x[]) ) df classical_poisson(n,p): 24 function_nam= Classical FEM 25 Standard formulation with strongly imposd bcs. 26 msh = UnitSquarMsh(N, N) NT=msh. num_clls() 29 h = msh.hmin() 30 # print hmin, h 3 # print circumradius, Circumradius(msh) #plot(msh) 34 V = FunctionSpac(msh, CG, p) 35 u = TrialFunction(V) 36 v = TstFunction(V) a = innr(grad(u), grad(v)) * dx 39 L = innr(f, v) * dx 40 bc = DirichltBC(V, u_xact, DomainBoundary()) 4 42 uh = Function(V) 43 solv(a == L, uh, bc) #plot(uh, titl= numric ) 46 #plot(u_xact, msh=msh, titl= xact ) 47 # intractiv() # Comput norm of rror 50 E = FunctionSpac(msh, DG, 6) 5 uh = intrpolat(uh, E) 52 u = intrpolat(u_xact, E) 53 = uh - u norm_l2 = assmbl(innr(, ) * dx, msh=msh) 56 norm_h0 = assmbl(innr(grad(), grad()) * dx, msh=msh) 57 norm_h = norm_l2 + norm_h norm_l2 = sqrt( norm_l2) 60 norm_h = sqrt( norm_h) 6 norm_h0 = sqrt( norm_h0) rturn Rsult( fun_nam=function_nam,nt=nt,h=h, L2=norm_L2, H=norm_H, H0=norm_H0) df nitsch_poisson(n,p): 67 Classical ( symmtric) Nitsch formulation. 68 function_nam= Symmtric Nitsch Mthod 69 msh = UnitSquarMsh(N, N) 70 NT=msh. num_clls()

22 73 V = FunctionSpac(msh, CG, p) 74 u = TrialFunction(V) 75 v = TstFunction(V) bta_valu = 2 78 bta = Constant( bta_valu) 79 h_e = MinFactEdgLngth(msh)#msh. ufl_cll(). max_fact_dg_lngth 80 n = FactNormal(msh) 8 82 a = innr(grad(u), grad(v)) * dx - innr(dot(grad(u), n), v) * ds -\ 83 innr(u, dot(grad(v), n)) * ds + bta * h_e ** - * innr(u, v) * ds L = innr(f, v) * dx -\ 86 innr(u_xact, dot(grad(v), n)) * ds + bta * h_e ** - * innr(u_xact, v) * ds uh = Function(V) 89 solv(a == L, uh) 90 9 # Sav solution to fil 92 #fil = Fil(" poisson.pvd") 93 #fil << uh 94 if N==64: 95 viz=plot(uh) 96 viz. writ_png( snitch ) 97 # plot(uh, titl= numric ) 98 # plot(u_xact, msh=msh, titl= xact ) 99 # intractiv() 00 0 # Comput norm of rror 02 E = FunctionSpac(msh, DG, 4) 03 uh = intrpolat(uh, E) 04 u = intrpolat(u_xact, E) 05 = uh - u norm_l2 = assmbl(innr(, ) * dx, msh=msh) 08 norm_h0 = assmbl(innr(grad(), grad()) * dx, msh=msh) 09 norm_dg = assmbl(bta * h_e ** - * innr(, ) * ds) 0 norm_h = norm_l2 + norm_h0 + norm_dg 2 norm_l2 = sqrt( norm_l2) 3 norm_h = sqrt( norm_h) 4 norm_h0 = sqrt( norm_h0) 5 6 rturn Rsult( fun_nam=function_nam,nt=nt,h=msh.hmin(), L2=norm_L2, H=norm_H, H0=norm_H0) df nitsch2_poisson(n,p): 20 Unsymmtric Nitsch formulation. 2 function_nam= Unsymmtric Nitch Mthod 22 msh = UnitSquarMsh(N, N) 23 NT=msh. num_clls() V = FunctionSpac(msh, CG, p) 26 u = TrialFunction(V) 22

23 27 v = TstFunction(V) bta_valu = 2 30 bta = Constant( bta_valu) 3 h_e = MinFactEdgLngth(msh)#msh. ufl_cll(). max_fact_dg_lngth 32 n = FactNormal(msh) a = innr(grad(u), grad(v)) * dx - innr(dot(grad(u), n), v) * ds +\ 35 innr(u, dot(grad(v), n)) * ds + bta * h_e ** - * innr(u, v) * ds L = innr(f, v) * dx +\ 38 innr(u_xact, dot(grad(v), n)) * ds + bta * h_e ** - * innr(u_xact, v) * ds uh = Function(V) 4 solv(a == L, uh) # plot(uh, titl= numric ) 44 # plot(u_xact, msh=msh, titl= xact ) 45 # intractiv() 46 if N==64: 47 viz=plot(uh) 48 viz. writ_png( nnitch ) 49 # Comput norm of rror 50 E = FunctionSpac(msh, DG, 4) 5 uh = intrpolat(uh, E) 52 u = intrpolat(u_xact, E) 53 = uh - u norm_l2 = assmbl(innr(, ) * dx, msh=msh) 56 norm_h0 = assmbl(innr(grad(), grad()) * dx, msh=msh) 57 norm_dg = assmbl(bta * h_e ** - * innr(, ) * ds) 58 norm_h = norm_l2 + norm_h0 + norm_dg norm_l2 = sqrt( norm_l2) 6 norm_h = sqrt( norm_h) 62 norm_h0 = sqrt( norm_h0) rturn Rsult( fun_nam=function_nam,nt=nt,h=msh.hmin(), L2=norm_L2, H=norm_H, H0=norm_H0) # mthods = [ classical_poisson, nitsch_poisson, nitsch2_poisson] # print Th Mthod:{:d}, format( mthod 7 for m in [,2]: #[0,,2]: 72 for p in [,2]: 73 mthod = mthods[m] # print "Th Mthod:{}". format( mthod) # norm_typ = H 78 23

24 79 R = mthod(n=4,p=p) 80 print "Th mthod: {0} with dgr of polynomial {:}". format(r. fun_nam,p) 8 print "{0: >6s} {: >6s} {2: >0s} {3: >7s} {4: >6s} {5: >7s}". format(" Elm", "h", "L^2", "rat", "H^","rat") 82 h_ = R.h 83 _ = gtattr(r, H ) 84 L2_= gtattr(r, L2 ) 85 for N in [8, 6, 32, 64,28,256,52]: 86 R = mthod(n,p=p) 87 h = R.h 88 NT = R.NT 89 = gtattr(r, H ) 90 L2 = gtattr(r, L2 ) 9 rat = ln(/_)/ln(h/h_) 92 ratl2 = ln(l2/l2_)/ln(h/h_) 93 # print h rror rat 94 print {0:6d} {h:.3e} {L2:.5E} {ratl2:.4f} {:.5E} {rat:.4f }. format(nt,h=h,l2=l2, ratl2=ratl2, =, rat=rat) Rfrncs [] M. S. Alnæs, J. Hak, R. C. Kirby, H. P. Langtangn, A. Logg, and G. N. Wlls, Th FEniCS Manual, Octobr, 20. [2] L. Chn, AFEM@MATLAB: a matlab packag of adaptiv finit lmnt mthods, Tchniqu Rport, (2006). [3], ifem: an innovativ finit lmnt mthods packag in MATLAB, Tchniqu Rport, (2009). [4] W. Fng, X. H, Y. Lin, and X. Zhang, Immrsd finit lmnt mthod for intrfac problms with algbraic multigrid solvr, Commun. Comput. Phys., 5 (204), pp [5] W. Fng, X. H, and Y. L. X. Zhang, Immrsd finit lmnt mthod for intrfac problms with algbraic multigrid solvr, Commun.Comput.Phys., (To appar). [6] P. Prsson and G. Strang, A simpl msh gnrator in matlab, SIAM Rviw, 46 (2004), p

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finit Elmnt Analysis for Mchanical and Arospac Dsign Cornll Univrsity, Fall 2009 Nicholas Zabaras Matrials Procss Dsign and Control Laboratory Sibly School of Mchanical and Arospac Enginring

More information

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix Platzhaltr für Bild, Bild auf Titlfoli hintr das Logo instzn Numrical mthods for PDEs FEM implmntation: lmnt stiffnss matrix, isoparamtric mapping, assmbling global stiffnss matrix Dr. Nomi Fridman Contnts

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME Introduction to Finit Elmnt Analysis Chaptr 5 Two-Dimnsional Formulation Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Construction of Mimetic Numerical Methods

Construction of Mimetic Numerical Methods Construction of Mimtic Numrical Mthods Blair Prot Thortical and Computational Fluid Dynamics Laboratory Dltars July 17, 013 Numrical Mthods Th Foundation on which CFD rsts. Rvolution Math: Accuracy Stability

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

Derivation of Eigenvalue Matrix Equations

Derivation of Eigenvalue Matrix Equations Drivation of Eignvalu Matrix Equations h scalar wav quations ar φ φ η + ( k + 0ξ η β ) φ 0 x y x pq ε r r whr for E mod E, 1, y pq φ φ x 1 1 ε r nr (4 36) for E mod H,, 1 x η η ξ ξ n [ N ] { } i i i 1

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS COMPUTTIONL NUCLER THERML HYDRULICS Cho, Hyoung Kyu Dpartmnt of Nuclar Enginring Soul National Univrsity CHPTER4. THE FINITE VOLUME METHOD FOR DIFFUSION PROBLEMS 2 Tabl of Contnts Chaptr 1 Chaptr 2 Chaptr

More information

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling Chaptr 5 wo-dimnsional problms using Constant Strain riangls (CS) Lctur Nots Dr Mohd Andi Univrsiti Malasia Prlis EN7 Finit Elmnt Analsis Introction wo-dimnsional init lmnt ormulation ollows th stps usd

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

VSMN30 FINITA ELEMENTMETODEN - DUGGA

VSMN30 FINITA ELEMENTMETODEN - DUGGA VSMN3 FINITA ELEMENTMETODEN - DUGGA 1-11-6 kl. 8.-1. Maximum points: 4, Rquird points to pass: Assistanc: CALFEM manual and calculator Problm 1 ( 8p ) 8 7 6 5 y 4 1. m x 1 3 1. m Th isotropic two-dimnsional

More information

Numerische Mathematik

Numerische Mathematik Numr. Math. 04 6:3 360 DOI 0.007/s00-03-0563-3 Numrisch Mathmatik Discontinuous Galrkin and mimtic finit diffrnc mthods for coupld Stoks Darcy flows on polygonal and polyhdral grids Konstantin Lipnikov

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM) OTHER TPOICS OF INTEREST (Convction BC, Axisymmtric problms, 3D FEM) CONTENTS 2-D Problms with convction BC Typs of Axisymmtric Problms Axisymmtric Problms (2-D) 3-D Hat Transfr 3-D Elasticity Typical

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

ECE 650 1/8. Homework Set 4 - Solutions

ECE 650 1/8. Homework Set 4 - Solutions ECE 65 /8 Homwork St - Solutions. (Stark & Woods #.) X: zro-man, C X Find G such that Y = GX will b lt. whit. (Will us: G = -/ E T ) Finding -valus for CX: dt = (-) (-) = Finding corrsponding -vctors for

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Problem Set #2 Due: Friday April 20, 2018 at 5 PM. 1 EE102B Spring 2018 Signal Procssing and Linar Systms II Goldsmith Problm St #2 Du: Friday April 20, 2018 at 5 PM. 1. Non-idal sampling and rcovry of idal sampls by discrt-tim filtring 30 pts) Considr

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Finite Element Models for Steady Flows of Viscous Incompressible Fluids Finit Elmnt Modls for Stad Flows of Viscous Incomprssibl Fluids Rad: Chaptr 10 JN Rdd CONTENTS Govrning Equations of Flows of Incomprssibl Fluids Mid (Vlocit-Prssur) Finit Elmnt Modl Pnalt Function Mthod

More information

Direct Approach for Discrete Systems One-Dimensional Elements

Direct Approach for Discrete Systems One-Dimensional Elements CONTINUUM & FINITE ELEMENT METHOD Dirct Approach or Discrt Systms On-Dimnsional Elmnts Pro. Song Jin Par Mchanical Enginring, POSTECH Dirct Approach or Discrt Systms Dirct approach has th ollowing aturs:

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd 1. First you chck th domain of g x. For this function, x cannot qual zro. Thn w find th D domain of f g x D 3; D 3 0; x Q x x 1 3, x 0 2. Any cosin graph is going to b symmtric with th y-axis as long as

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution Larg Scal Topology Optimization Using Prconditiond Krylov Subspac Rcycling and Continuous Approximation of Matrial Distribution Eric d Sturlr*, Chau L**, Shun Wang***, Glaucio Paulino** * Dpartmnt of Mathmatics,

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr is concrnd with rsidual typ a postriori rror stimators

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations DOI 10.1007/s10915-016-0264-z Dirct Discontinuous Galrkin Mthod and Its Variations for Scond Ordr Elliptic Equations Hongying Huang 1,2 Zhng Chn 3 Jin Li 4 Ju Yan 3 Rcivd: 15 Dcmbr 2015 / Rvisd: 10 Jun

More information

4037 ADDITIONAL MATHEMATICS

4037 ADDITIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Lvl MARK SCHEME for th Octobr/Novmbr 0 sris 40 ADDITIONAL MATHEMATICS 40/ Papr, maimum raw mark 80 This mark schm is publishd as an aid to tachrs and candidats,

More information

Developments in Geomathematics 5

Developments in Geomathematics 5 ~~": ~ L " r. :.. ~,.!.-. r,:... I Rprintd from I Dvlopmnts in Gomathmatics 5 Procdings of th Intrnational Symposium on Variational Mthods in ' Goscincs hld at th Univrsity of Oklahoma, Norman, Oklahoma,

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin plat Douglas N. Arnold Franco Brzzi L. Donatlla Marini Sptmbr 28, 2003 Abstract W dvlop a family of locking-fr lmnts for th Rissnr Mindlin

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 16, Numbr 1, Pags 49 62 c 2019 Institut for Scintific Computing and Information RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG

More information

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems Roadmap XML Indxing CPS 296.1 Topics in Databas Systms Indx fabric Coopr t al. A Fast Indx for Smistructurd Data. VLDB, 2001 DataGuid Goldman and Widom. DataGuids: Enabling Qury Formulation and Optimization

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Lie Groups HW7. Wang Shuai. November 2015

Lie Groups HW7. Wang Shuai. November 2015 Li roups HW7 Wang Shuai Novmbr 015 1 Lt (π, V b a complx rprsntation of a compact group, show that V has an invariant non-dgnratd Hrmitian form. For any givn Hrmitian form on V, (for xampl (u, v = i u

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS

A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum -, Numbr -, Pags 22 c - Institut for Scintific Computing and Information A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS Abstract. JUNPING

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: WHAM and Related Methods

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: WHAM and Related Methods Statistical Thrmodynamics Lctur 19: Fr Enrgis in Modrn Computational Statistical Thrmodynamics: WHAM and Rlatd Mthods Dr. Ronald M. Lvy ronlvy@tmpl.du Dfinitions Canonical nsmbl: A N, V,T = k B T ln Q

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued) Introduction to th Fourir transform Computr Vision & Digital Imag Procssing Fourir Transform Lt f(x) b a continuous function of a ral variabl x Th Fourir transform of f(x), dnotd by I {f(x)} is givn by:

More information

Chapter 6 Folding. Folding

Chapter 6 Folding. Folding Chaptr 6 Folding Wintr 1 Mokhtar Abolaz Folding Th folding transformation is usd to systmatically dtrmin th control circuits in DSP architctur whr multipl algorithm oprations ar tim-multiplxd to a singl

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Elctromagntic scattring Graduat Cours Elctrical Enginring (Communications) 1 st Smstr, 1388-1389 Sharif Univrsity of Tchnology Contnts of lctur 8 Contnts of lctur 8: Scattring from small dilctric objcts

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 47 No. 3 pp. 2132 2156 c 2009 Socity for Industrial and Applid Mathmatics RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS ZHIQIANG CAI AND SHUN

More information

Math 102. Rumbos Spring Solutions to Assignment #8. Solution: The matrix, A, corresponding to the system in (1) is

Math 102. Rumbos Spring Solutions to Assignment #8. Solution: The matrix, A, corresponding to the system in (1) is Math 12. Rumbos Spring 218 1 Solutions to Assignmnt #8 1. Construct a fundamntal matrix for th systm { ẋ 2y ẏ x + y. (1 Solution: Th matrix, A, corrsponding to th systm in (1 is 2 A. (2 1 1 Th charactristic

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 4 Introduction to Finit Elmnt Analysis Chaptr 4 Trusss, Bams and Frams Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

EAcos θ, where θ is the angle between the electric field and

EAcos θ, where θ is the angle between the electric field and 8.4. Modl: Th lctric flux flows out of a closd surfac around a rgion of spac containing a nt positiv charg and into a closd surfac surrounding a nt ngativ charg. Visualiz: Plas rfr to Figur EX8.4. Lt A

More information

UNIFIED ERROR ANALYSIS

UNIFIED ERROR ANALYSIS UNIFIED ERROR ANALYSIS LONG CHEN CONTENTS 1. Lax Equivalnc Torm 1 2. Abstract Error Analysis 2 3. Application: Finit Diffrnc Mtods 4 4. Application: Finit Elmnt Mtods 4 5. Application: Conforming Discrtization

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

Image Filtering: Noise Removal, Sharpening, Deblurring. Yao Wang Polytechnic University, Brooklyn, NY11201

Image Filtering: Noise Removal, Sharpening, Deblurring. Yao Wang Polytechnic University, Brooklyn, NY11201 Imag Filtring: Nois Rmoval, Sharpning, Dblurring Yao Wang Polytchnic Univrsity, Brooklyn, NY http://wb.poly.du/~yao Outlin Nois rmoval by avraging iltr Nois rmoval by mdian iltr Sharpning Edg nhancmnt

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 53 Molcular Simulation Lctur 8 Fr-nrgy calculations David A. Kofk Dpartmnt of Chmical Enginring SUNY Buffalo kofk@ng.buffalo.du 2 Fr-Enrgy Calculations Uss of fr nrgy Phas quilibria Raction quilibria

More information

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional Chaptr 13 GMM for Linar Factor Modls in Discount Factor form GMM on th pricing rrors givs a crosssctional rgrssion h cas of xcss rturns Hors rac sting for charactristic sting for pricd factors: lambdas

More information

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr stablishs a postriori rror

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons Symmtric Intrior pnalty discontinuous Galrkin mthods for lliptic problms in polygons F. Müllr and D. Schötzau and Ch. Schwab Rsarch Rport No. 2017-15 March 2017 Sminar für Angwandt Mathmatik Eidgnössisch

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems MCE503: Modling and Simulation o Mchatronic Systms Discussion on Bond Graph Sign Convntions or Elctrical Systms Hanz ichtr, PhD Clvland Stat Univrsity, Dpt o Mchanical Enginring 1 Basic Assumption In a

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems Journal of Scintific Computing, Volums and 3, Jun 005 ( 005) DOI: 0.007/s095-004-447-3 Analysis of a Discontinuous Finit Elmnt Mthod for th Coupld Stoks and Darcy Problms Béatric Rivièr Rcivd July 8, 003;

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 3.4 Forc Analysis of Linkas An undrstandin of forc analysis of linkas is rquird to: Dtrmin th raction forcs on pins, tc. as a consqunc of a spcifid motion (don t undrstimat th sinificanc of dynamic or

More information

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah) Bnding of Prismatic Bams (Initia nots dsignd by Dr. Nazri Kamsah) St I-bams usd in a roof construction. 5- Gnra Loading Conditions For our anaysis, w wi considr thr typs of oading, as iustratd bow. Not:

More information

Unfired pressure vessels- Part 3: Design

Unfired pressure vessels- Part 3: Design Unfird prssur vssls- Part 3: Dsign Analysis prformd by: Analysis prformd by: Analysis vrsion: According to procdur: Calculation cas: Unfird prssur vssls EDMS Rfrnc: EF EN 13445-3 V1 Introduction: This

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Content Skills Assessments Lessons. Identify, classify, and apply properties of negative and positive angles.

Content Skills Assessments Lessons. Identify, classify, and apply properties of negative and positive angles. Tachr: CORE TRIGONOMETRY Yar: 2012-13 Cours: TRIGONOMETRY Month: All Months S p t m b r Angls Essntial Qustions Can I idntify draw ngativ positiv angls in stard position? Do I hav a working knowldg of

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN POROUS MEDIA

MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN POROUS MEDIA INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 2, Numbr 3, Pags 241 282 c 25 Institut for Scintific Computing and Information MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN POROUS MEDIA

More information

Reparameterization and Adaptive Quadrature for the Isogeometric Discontinuous Galerkin Method

Reparameterization and Adaptive Quadrature for the Isogeometric Discontinuous Galerkin Method Rparamtrization and Adaptiv Quadratur for th Isogomtric Discontinuous Galrkin Mthod Agns Silr, Brt Jüttlr 2 Doctoral Program Computational Mathmatics 2 Institut of Applid Gomtry Johanns Kplr Univrsity

More information