Physics 9 Spring 2011 Midterm 1 Solutions

Size: px
Start display at page:

Download "Physics 9 Spring 2011 Midterm 1 Solutions"

Transcription

1 Physics 9 Spring 2011 Midterm 1 s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please don t cheat! If something isn t clear, please ask. You may use calculators. All problems are weighted equally. PLEASE BOX YOUR FINAL ANSWERS! You have the full length of the class. If you attach any additional scratch work, then make sure that your name is on every sheet of your work. Good luck! 1. The electric potential in a region of space is V = 200 x2 + y 2 V, where x and y are in meters. (a Determine the electric field, E, in terms of the unit vectors î and ĵ. (b What are the magnitude and direction of the electric field at (x, y = (2.0 m, 2.0 m? Give the direction as an angle cw or ccw (specify which from the positive x axis. (a For a potential of more than one variable, V (x, y, then ( V E = V = x î + V y ĵ. Now, V = 200x, while V =. Thus, the electric field is x (x 2 +y 2 3/2 y (x 2 +y 2 3/2 200y ( xî + yĵ E (x, y = 200 (x 2 + y 2. 3/2 (b Now, at (x, y = (2, 2, then ( 2î + 2ĵ E (2, 1 = 200 (î ( = ĵ, 3/2 which has a magnitude E = = 25 V/m. The angle, measured counterclockwise from the x axis is θ = tan 1 ( Ey E x = tan 1 (1 = 45. 1

2 2. An infinitely long cylinder of radius R has linear charge density λ. The potential on the surface of the cylinder is V 0, and the electric field outside the cylinder is E r = λ 2πɛ 0 r. Find the potential relative to the surface at a point that is distance r from the axis, assuming r > R. For a given electric field, the change in potential is V = rf r i E d s, where V = V (r f V (r i. With our electric field we have, after taking r f = r, and r i = R, R λ dr V (r V (R = r 2πɛ 0 r = λ ( r ln. 2πɛ 0 R But, V (R is the potential when r = R; in other words, it is the potential on the surface of the sphere, which we ve been told is V 0. So, we find that V (r = V 0 λ ( r ln. 2πɛ 0 R 2

3 3. An early model of the atom, proposed by Rutherford after his discovery of the atomic nucleus, had a positive point charge +Ze (the nucleus at the center of a sphere of radius R with uniformly distributed negative charge Ze. Z is the atomic number, the number of protons in the nucleus and the number of electrons in the negative sphere. (a Show that the electric field inside this atom is E in = Ze 4πɛ 0 ( 1 r 2 r R 3 (b What is E at the surface of the atom? Is this the expected value? Explain. (c A uranium atom has Z = 92 and R = 0.10 nm. What is the electric field strength at r = 1 2 R?. The atom is seen in the figure to the right. It contains a positively charged nucleus of charge +Ze, which is embedded inside a uniform sphere of charge Ze. We are interested in the field inside the sphere, so we take a spherical gaussian surface of radius r. (a Since the electric field is radial, and everywhere constant on the Gaussian surface, Gauss s law gives the usual result that E da = EA = E (4πr 2 = Q encl ɛ 0. Now, what s Q encl? This problem is very similar to the last one, except with the addition of +Ze at the center. So, the total enclosed charge is Q encl = +Ze negative charge. ( The negative charge is just the charge density, times the enclosed volume, 4π 3 r3 = Ze r3. Thus, R 3 Ze 4 3 πr3 Q encl = Ze (1 r3, R 3 which, using Gauss s law as discussed above, gives E in = Ze ( 1 4πɛ 0 r r. 2 R 3 (b On the surface of the atom, r = R, and so the electric field is zero. This is to be expected, since on the surface the enclosed charge is zero (+Ze Ze, and so the electric flux is zero from Gauss s law. The atom looks neutral outside the surface. 3

4 (c When r = R/2, then E ( R = Ze ( 4 2 4πɛ 0 R 1 2 2R 2 = 7 Ze 2 4πɛ 0 R. 2 Plugging in the numbers gives ( R E = 7 Ze 2 2 4πɛ 0 R = ( = N/C. So, E = N/C, which is a very strong electric field! 4

5 4. Consider the circuit in the diagram to the right. (a Determine the change in voltage through each resistor. (b How much power is dissipated by each resistor? First, let s figure out the current in the circuit. Since the two resistors are in series, we can replace them by an equivalent resistance, R eqv = R 1 + R 2 using Kirchhoff s loop law, Vi = E IR 1 IR 2 = 0. This gives for the current, I = E R 1 +R 2 = 12 = 12 = = 0.40 amp. (a The change in voltage through each resistor is V = IR, and so V 1 = IR 1 = = 4.8 V V 2 = IR 2 = = 7.2 V. (b Now, the power dissipated by each resistor, R i, is P i = I V i = I 2 R i. So, we find for each resistor P 1 = I 2 R 1 = ( = 1.92 W P 2 = I 2 R 2 = ( = 2.9 W. 5

6 The potential energy between a pair of neutral atoms or molecules is very well-approximated by the Lennard-Jones Potential, given by the expression [ (σ 12 ( σ ] 6 P E(r = 4ɛ, r r where ɛ and σ are constants, and r is the distance between the molecules. The potential energy is plotted in the figure to the right. The vertical axis is in units of ɛ, while the horizontal axis is in units of σ. Extra Credit Question!! The following is worth 10 extra credit points! Energy Molcular Bond Energy Distance (a Why does the potential energy approach zero as the distance gets bigger? (b At what separation distance, in terms of σ and ɛ, is the potential energy zero? (c At approximately what distance is the system in equilibrium? What is the potential energy at that distance? (Express your answers in terms of σ and ɛ. (d How much energy would you need to add to the system at equilibrium in order to break the molecular bonds holding it together? Why? (e How much energy is released in the breaking of those molecular bonds? Why? Note - no calculation is needed to answer these problems! (a As the two molecules get further apart, the attractive force between them gets weaker and weaker. When the are very far apart, they hardly interact at all - they are basically free molecules. The potential energy of a free particle is zero, since potential energy depends on the interaction between multiple particles. (b We can just read the value off from the graph. We see that the potential energy crosses the x axis when x = 1, which means that r = σ. We can see this from the equation, too: setting r = σ gives P E(σ = 0. 6

7 (c The system is in equilibrium when the net force on it is zero. Since the force is the slope of the potential energy graph, this happens when the slope is zero. The potential energy graph has zero slope when it s at it s minimum point. Checking the graph, we see that this happens right around x 1.15, or r 1.15σ. We could check the exact answer by finding d dr (P E(r = 0, which gives r = 21/6 σ 1.12σ, and so we were close on our guess. The energy at this distance can just be read off the graph, giving y = 3, or P E = 3ɛ. (d In order to break the molecular bonds apart, we d need to raise the energy to zero. At equilibrium the energy is P E = 3ɛ, and so we d need to add +3ɛ units of energy. (e There is no energy released in breaking these molecular bonds - we had to add the energy to break these bonds. Energy is never released in the breaking of bonds! One can obtain energy by breaking a less stable bond, then forming a more stable bond. The more stable bond has a more negative potential energy (a deeper potential well. The difference in energy between the initial and final states is released to the environment. This is where the energy comes from in the ATP reactions, and not by releasing energy from the breaking of bonds! 7

8 Some Useful Constants. Some Possibly Useful Information Coulomb s Law constant k 1 4πɛ 0 = Nm2 C 2. The magnetic permeability constant µ 0 = 4π 10 7 N A 2. Speed of Light c = m/s. 11 Nm2 Newton s Gravitational Constant G = kg 2 The charge on the proton e = C The mass of the electron, m e = kg. The mass of the proton, m p = kg. Boltzmann s constant, k B = J/K. 1 ev = Joules 1 MeV = 10 6 ev. 1 Å = meters. Planck s constant, h = J s = ev s. The reduced Planck s constant, h 2π = J s = ev s. Some Useful Mathematical Ideas. { x n+1 x n n 1, n+1 dx = ln (x n = 1. dx a = ln ( x + a 2 + x x 2 x dx a = a 2 + x x 2 Other Useful Stuff. The force on an object moving in a circle is F = mv2 r. Kinetmatic equations x(t = x 0 + v 0x t a xt 2, y(t = y 0 + v 0y t a yt 2. The binomial expansion, (1 + x n 1 + nx, if x 1. 8

Physics 9 Spring 2012 Midterm 1 Solutions

Physics 9 Spring 2012 Midterm 1 Solutions Physics 9 Spring 22 NAME: TA: Physics 9 Spring 22 Midterm s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please

More information

Physics 9 Summer 2010 Midterm

Physics 9 Summer 2010 Midterm Physics 9 Summer 2010 Midterm For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please don t cheat! If something isn

More information

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why?

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why? Physics 9 Fall 2010 Midterm 2 s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back Please sit every other seat, and please don t cheat! If something isn

More information

Physics 18 Spring 2010 Midterm 1

Physics 18 Spring 2010 Midterm 1 Physics 18 Spring 2010 Midterm 1 For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please don t cheat! If something isn

More information

Physics 8 Spring 2012 Midterm 1

Physics 8 Spring 2012 Midterm 1 Physics 8 Spring 2012 NAME: TA: Physics 8 Spring 2012 Midterm 1 For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please

More information

Phys 2102 Spring 2002 Exam 1

Phys 2102 Spring 2002 Exam 1 Phys 2102 Spring 2002 Exam 1 February 19, 2002 1. When a positively charged conductor touches a neutral conductor, the neutral conductor will: (a) Lose protons (b) Gain electrons (c) Stay neutral (d) Lose

More information

Physics 7B, Speliotopoulos Final Exam, Spring 2014 Berkeley, CA

Physics 7B, Speliotopoulos Final Exam, Spring 2014 Berkeley, CA Physics 7B, Speliotopoulos Final Exam, Spring 4 Berkeley, CA Rules: This final exam is closed book and closed notes. In particular, calculators are not allowed during this exam. Cell phones must be turned

More information

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions PHY2049 Spring 2009 Profs. D. Acosta, A. Rinzler, S. Hershfield Exam 1 Solutions 1. What is the flux through the right side face of the shown cube if the electric field is given by E = 2xî + 3yĵ and the

More information

wire, which carries current (a) Find the flux of B through the loop. is pulled to the right at speed v, instead of away?

wire, which carries current (a) Find the flux of B through the loop. is pulled to the right at speed v, instead of away? (b) What is the magnetic force on the bar? In what direction? (c) If the bar starts out with speed vo at time t = 0, and is left to slide, wh later time t? (d) The initial kinetic energy ofthe bar was,

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Solution. will lead to a positive torque, while the bigger cat will give a negative torque. So,

Solution. will lead to a positive torque, while the bigger cat will give a negative torque. So, Physics 18 Fall 009 Midterm s For midterm, you may use one sheet of notes with whatever you want to put on it, front and back Please sit every or seat, and please don t cheat! If something isn t clear,

More information

Electricity Final Unit Final Assessment

Electricity Final Unit Final Assessment Electricity Final Unit Final Assessment Name k = 1/ (4pe 0 ) = 9.0 10 9 N m 2 C -2 mass of an electron = 9.11 10-31 kg mass of a proton = 1.67 10-27 kg G = 6.67 10-11 N m 2 kg -2 C = 3 x10 8 m/s Show all

More information

Physics 213: General Physics Fall :30 AM Lecture

Physics 213: General Physics Fall :30 AM Lecture Physics 213: General Physics Fall 2004 9:30 AM Lecture Midterm I Solutions Tuesday, September 21, 2004 Chem-Phys 153 Name (print): Signature: Student Number: Your Seat Number (on back of chair): 1. Immediately

More information

PH 102 Exam I N N N N. 3. Which of the following is true for the electric force and not true for the gravitational force?

PH 102 Exam I N N N N. 3. Which of the following is true for the electric force and not true for the gravitational force? Name Date INSTRUCTIONS PH 102 Exam I 1. nswer all questions below. ll problems have equal weight. 2. Clearly mark the answer you choose by filling in the adjacent circle. 3. There will be no partial credit

More information

(D) Blv/R Counterclockwise

(D) Blv/R Counterclockwise 1. There is a counterclockwise current I in a circular loop of wire situated in an external magnetic field directed out of the page as shown above. The effect of the forces that act on this current is

More information

PHYS 212 Final Exam (Old Material) Solutions - Practice Test

PHYS 212 Final Exam (Old Material) Solutions - Practice Test PHYS 212 Final Exam (Old Material) Solutions - Practice Test 1E If the ball is attracted to the rod, it must be made of a conductive material, otherwise it would not have been influenced by the nearby

More information

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C 1. The figure below shows 4 point charges located on a circle centered about the origin. The exact locations of the charges on the circle are not given. What can you say about the electric potential created

More information

Physics 9 Spring 2011 Homework 1 - Solutions Wednesday January 19, 2011

Physics 9 Spring 2011 Homework 1 - Solutions Wednesday January 19, 2011 Physics 9 Spring 011 Homework 1 - s Wednesday January 19, 011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all

More information

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1 CHAPTER 24 GAUSS LAW 659 CHAPTER 24 Answer to Checkpoint Questions 1. (a) +EA; (b) EA; (c) ; (d) 2. (a) 2; (b) 3; (c) 1 3. (a) eual; (b) eual; (c) eual 4. +5e; (b) 15e 5. 3 and 4 tie, then 2, 1 Answer

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lectures & 3 Spring 5 Midterm, C. Bordel Monday, April 6, 5 7pm-9pm Make sure you show all your work and justify your answers in order to get full credit. Problem esistance & current ( pts)

More information

Physics 222, Spring 2010 Quiz 3, Form: A

Physics 222, Spring 2010 Quiz 3, Form: A Physics 222, Spring 2010 Quiz 3, Form: A Name: Date: Instructions You must sketch correct pictures and vectors, you must show all calculations, and you must explain all answers for full credit. Neatness

More information

Physics 18 Spring 2010 Midterm 2 Solutions

Physics 18 Spring 2010 Midterm 2 Solutions Physics 18 Spring 010 Midterm s For midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every or seat, and please don t cheat! If something isn t clear,

More information

Summary: Applications of Gauss Law

Summary: Applications of Gauss Law Physics 2460 Electricity and Magnetism I, Fall 2006, Lecture 15 1 Summary: Applications of Gauss Law 1. Field outside of a uniformly charged sphere of radius a: 2. An infinite, uniformly charged plane

More information

Fall Lee - Midterm 2 solutions

Fall Lee - Midterm 2 solutions Fall 2009 - Lee - Midterm 2 solutions Problem 1 Solutions Part A Because the middle slab is a conductor, the electric field inside of the slab must be 0. Parts B and C Recall that to find the electric

More information

Physics 208 Test 2 Spring 2000

Physics 208 Test 2 Spring 2000 Spring 2000 Problems 1-5. Multiple Choice/Short Answer (5 points each / 25 points total) no explanation required, but no partial credit either. However, a bonus of up to two points may be awarded if an

More information

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA Physics 7B, Speliotopoulos Final Exam, Fall 4 Berkeley, CA Rules: This final exam is closed book and closed notes. In particular, calculators are not allowed during this exam. Cell phones must be turned

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS CHAPTER 18 3. REASONING AND SOLUTION The total charge to be removed is 5.0 µc. The number of electrons corresponding to this charge is N = ( 5.0 10 6 C)/( 1.60 10 19 C) = 3.1 10 13

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a Physics 7B Midterm 2 - Fall 207 Professor R. Birgeneau Total Points: 00 ( Problems) This exam is out of 00 points. Show all your work and take particular care to explain your steps. Partial credit will

More information

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01 Final Exam: Physics2331 - Spring, 2017 May 8, 2017 Version 01 NAME (Please Print) Your exam should have 11 pages. This exam consists of 18 multiple-choice questions (2 points each, worth 36 points), and

More information

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge:

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Practice Exam 1 Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Electric potential due to a point charge: Electric potential energy: Capacitor energy:

More information

Physics 6C Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. July 16, Figure 1: Coulombs Law

Physics 6C Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. July 16, Figure 1: Coulombs Law Physics 6C Review 1 Eric Reichwein Department of Physics University of California, Santa Cruz July 16, 2012 1 Review 1.1 Coulombs Law Figure 1: Coulombs Law The steps for solving any problem of this type

More information

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0 PHY2049 Fall 2010 Profs. S. Hershfield, A. Petkova Exam 1 Solution 1. Four charges are placed at the corners of a rectangle as shown in the figure. If Q 1 = 1µC, Q 2 = 2µC, Q 3 = 1µC, and Q 4 = 2µC, what

More information

Solutions to practice problems for PHYS117B.02 Exam I

Solutions to practice problems for PHYS117B.02 Exam I Solutions to practice problems for PHYS117B.02 Exam I 1. Shown in the figure below are two point charges located along the x axis. Determine all the following: y +4 µ C 2 µ C x 6m 1m (a) Find the magnitude

More information

Physics 208: Electricity and Magnetism Final Exam, Secs May 2003 IMPORTANT. Read these directions carefully:

Physics 208: Electricity and Magnetism Final Exam, Secs May 2003 IMPORTANT. Read these directions carefully: Physics 208: Electricity and Magnetism Final Exam, Secs. 506 510 2 May 2003 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your full name: Sign your name: Please fill in your

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Electric Flux and Gauss s Law

Electric Flux and Gauss s Law Electric Flux and Gauss s Law Electric Flux Figure (1) Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 1. The total number of lines penetrating the surface

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

Physics 2212 GH Quiz #2 Solutions Spring 2015

Physics 2212 GH Quiz #2 Solutions Spring 2015 Physics 2212 GH uiz #2 Solutions Spring 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0 = 8.854 10

More information

Physics Jonathan Dowling. Final Exam Review

Physics Jonathan Dowling. Final Exam Review Physics 2102 Jonathan Dowling Physics 2102 Final Exam Review A few concepts: electric force, field and potential Electric force: What is the force on a charge produced by other charges? What is the force

More information

Phys 0175 Midterm Exam II Solutions Feb 25, m e te rs

Phys 0175 Midterm Exam II Solutions Feb 25, m e te rs Phys 075 Midterm Eam II Solutions Feb 25, 2009. (6 pts) Locations F and G are just outside two uniformly charged large metal plates, which are 3 cm apart. Measured along the path indicated by the dotted

More information

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4 Physics 2212 K Quiz #1 Solutions Summer 2016 I. (18 points A uniform infinite insulating slab of charge has a positive volume charge density ρ, and a thickness 2t, extending from t to +t in the z direction.

More information

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code Your name sticker with exam code Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe SIGNATURE: 1. The exam will last from 4:00 p.m. to 7:00 p.m. Use a #2 pencil to make entries on the

More information

Physics 2080 Extra Credit Due March 15, 2011

Physics 2080 Extra Credit Due March 15, 2011 Physics 2080 Extra Credit Due March 15, 2011 This assignment covers chapters 15-19 and is worth 10 points extra credit on the final exam. Print these pages and do all work here. Complete the questions

More information

Physics 7B Midterm 2 Problem 1 Rubric

Physics 7B Midterm 2 Problem 1 Rubric Physics 7B Midterm Problem Rubric James Reed Watson November 3, 06 a) 7 points) The electric field at point P is a superposition of the electric field generated from the four points, where the field from

More information

The Basic Definition of Flux

The Basic Definition of Flux The Basic Definition of Flux Imagine holding a rectangular wire loop of area A in front of a fan. The volume of air flowing through the loop each second depends on the angle between the loop and the direction

More information

PHY114 S11 Term Exam 1

PHY114 S11 Term Exam 1 PHY114 S11 Term Exam 1 S. G. Rajeev Feb 15 2011 12:30 pm to 1:45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents), Ampere s Law is introduced

More information

Physics 208, Spring 2016 Exam #2

Physics 208, Spring 2016 Exam #2 Physics 208, Spring 2016 Exam #2 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Form #425 Page 1 of 6

Form #425 Page 1 of 6 Version Quiz #4 Form #425 Name: A Physics 2212 G Spring 2018 Recitation Section: Print your name, quiz form number (3 digits at the top of this form), and student number (9 digit Georgia Tech ID number)

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE 2012 Semifinal Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2012 Semifinal Exam DO NOT DISTRIBUTE THIS PAGE Important Instructions for the Exam Supervisor This examination consists of two parts. Part A has

More information

Physics Exam 1 Formulas

Physics Exam 1 Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Andrew Rinzler, Paul Avery, Selman Hershfield PHYSICS DEPARTMENT PHY 2049 Final Exam April 24, 200 Name (print, last first): Signature: On my honor, I have neither given nor received

More information

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False)

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False) PHY 2049C Final Exam. Summer 2015. Name: Remember, you know this stuff Answer each questions to the best of your ability. Show ALL of your work (even for multiple choice questions), you may receive partial

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

2R R R 2R. Phys Test 1

2R R R 2R. Phys Test 1 Group test. You want to calculate the electric field at position (x o, 0, z o ) due to a charged ring. The ring is centered at the origin, and lies on the xy plane. ts radius is and its charge density

More information

Exam 1: Physics 2113 Spring :00 PM, Monday, February 3, Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6

Exam 1: Physics 2113 Spring :00 PM, Monday, February 3, Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6 Exam 1: Physics 2113 Spring 2016 6:00 PM, Monday, February 3, 2016 Last Name First Name Clearly circle your section: MON/WEDS/FRI SECTIONS TUES/THURS SECTIONS Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2016

AAPT UNITED STATES PHYSICS TEAM AIP 2016 2016 USA Physics Olympiad Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2016 USA Physics Olympiad Exam DO NOT DISTRIBUTE THIS PAGE Important Instructions for the Exam Supervisor This examination consists

More information

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction?

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction? General Physics II Exam 2 - Chs. 19 21 - Circuits, Magnetism, EM Induction - Sep. 29, 2016 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

Section 1: Electric Fields

Section 1: Electric Fields PHY 132 Outline of Lecture Notes i Section 1: Electric Fields A property called charge is part of the basic nature of protons and electrons. Large scale objects become charged by gaining or losing electrons.

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

Electric Field Lines. lecture 4.1.1

Electric Field Lines. lecture 4.1.1 Electric Field Lines Two protons, A and B, are in an electric field. Which proton has the larger acceleration? A. Proton A B. Proton B C. Both have the same acceleration. lecture 4.1.1 Electric Field Lines

More information

4 Electric Quantities

4 Electric Quantities 4 Electric Quantities du = ~ F ~ds Force F = q E F F s = du ds U Energy U = qv E = F q V = U q Field E V Potential dv = E s = ~ E ~ds dv ds Equipotentials and Fields Consider the relationship: dv = ~ E

More information

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution PHY2049 Spring 2010 Profs. P. Avery, A. Rinzler, S. Hershfield Final Exam Solution 1. A proton traveling along the x axis (toward increasing x) has a speed of 1.0 10 5 m/s. At time t = 0 it enters a region

More information

Test Review Electricity

Test Review Electricity Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120-volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show

More information

Physics 2220 Fall 2010 George Williams SECOND MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams SECOND MIDTERM - REVIEW PROBLEMS Physics 0 Fall 010 George Williams SECOND MIDTERM - REVIEW PROBLEMS The last four problems are from last years second midterm. Solutions are available on the class web site.. There are no solutions for,

More information

Physics 11b Lecture #3. Electric Flux Gauss s Law

Physics 11b Lecture #3. Electric Flux Gauss s Law Physics 11b Lecture #3 lectric Flux Gauss s Law What We Did Last Time Introduced electric field by Field lines and the rules From a positive charge to a negative charge No splitting, merging, or crossing

More information

b) What is its position when its velocity (magnitude) is largest? When it is at x=0 all the energy is kinetic.

b) What is its position when its velocity (magnitude) is largest? When it is at x=0 all the energy is kinetic. Question 1. The electrostatic force between two charges, Q 1 and F 1 /4 Q 2 a separated by a distance D, is F 1. What is the force between them after they are moved to a distance 2D apart? (Give in terms

More information

Classical Electromagnetism

Classical Electromagnetism Classical Electromagnetism Workbook David Michael Judd Problems for Chapter 33 1.) Determine the number of electrons in a pure sample of copper if the sample has a mass of M Cu = 0.00250 kg. The molecular

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

Physics 1214 Chapter 17: Electric Charge and Electric Field

Physics 1214 Chapter 17: Electric Charge and Electric Field Physics 1214 Chapter 17: Electric Charge and Electric Field Introduction electrostatic interactions interactions between electric charges at rest in our frame of reference modeled by Coulomb s equation

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Andrew Rinzler, Paul Avery, Selman Hershfield PHYSICS DEPARTMENT PHY 049 Exam 3 April 7, 00 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized

More information

Chapter 22: Gauss s Law

Chapter 22: Gauss s Law Chapter 22: Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface. What is meant by electric flux, and how to calculate it. How Gauss

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2 First Name: Last Name: Section: n 1 March 26, 2003 Physics 202 EXAM 2 Print your name and section clearly on all five pages. (If you do not know your section number, write your TA s name.) Show all work

More information

5) Ohm s Law gives the relationship between potential difference and current for a.

5) Ohm s Law gives the relationship between potential difference and current for a. ) During any process, the net charge of a closed system. a) increases b) decreases c) stays constant ) In equilibrium, the electric field in a conductor is. a) always changing b) a constant non-zero value

More information

Physics 9 Monday, March 19, 2012

Physics 9 Monday, March 19, 2012 Physics 9 Monday, March 19, 2012 learningcatalytics.com class session ID: 175557 Electricity: lots of new words & ideas, so ask lots of questions! Today: Gauss s law; electric potential (volts!); capacitance.

More information

Phys 0175 Practice Midterm Exam II Feb 25, 2009

Phys 0175 Practice Midterm Exam II Feb 25, 2009 Phys 0175 Practice Midterm Exam II Feb 25, 2009 Note: THIS IS A REPRESENTATION OF THE ACTUAL TEST. It is a sample and does not include questions on every topic covered since the start of the semester.

More information

Chapter 22 Gauss s Law

Chapter 22 Gauss s Law Chapter 22 Gauss s Law Lecture by Dr. Hebin Li Goals for Chapter 22 To use the electric field at a surface to determine the charge within the surface To learn the meaning of electric flux and how to calculate

More information

Physics (

Physics ( Question 2.12: A charge of 8 mc is located at the origin. Calculate the work done in taking a small charge of 2 10 9 C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).

More information

Worksheet for Exploration 24.1: Flux and Gauss's Law

Worksheet for Exploration 24.1: Flux and Gauss's Law Worksheet for Exploration 24.1: Flux and Gauss's Law In this Exploration, we will calculate the flux, Φ, through three Gaussian surfaces: green, red and blue (position is given in meters and electric field

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

Physics II Fiz Summer 2017

Physics II Fiz Summer 2017 Physics II Fiz138-22 Summer 2017 Instructor: Dr. Mehmet Burak Kaynar Office: H.U. Physics Eng Dept. SNTG Lab. E-mail: bkaynar@hacettepe.edu.tr Office hours: Wednesday 10:00 11:00 Evaluation Attendance:

More information

Gravity and Coulomb s Law

Gravity and Coulomb s Law AP PHYSICS 1 Gravity and Coulomb s Law 016 EDITION Click on the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright 016 National

More information

Candidacy Exam Department of Physics February 6, 2010 Part I

Candidacy Exam Department of Physics February 6, 2010 Part I Candidacy Exam Department of Physics February 6, 2010 Part I Instructions: ˆ The following problems are intended to probe your understanding of basic physical principles. When answering each question,

More information

(a) This cannot be determined since the dimensions of the square are unknown. (b) 10 7 N/C (c) 10 6 N/C (d) 10 5 N/C (e) 10 4 N/C

(a) This cannot be determined since the dimensions of the square are unknown. (b) 10 7 N/C (c) 10 6 N/C (d) 10 5 N/C (e) 10 4 N/C 1. 4 point charges (1 C, 3 C, 4 C and 5 C) are fixed at the vertices of a square. When a charge of 10 C is placed at the center of the square, it experiences a force of 10 7 N. What is the magnitude of

More information

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on: Ch. 22: Gauss s Law Gauss s law is an alternative description of Coulomb s law that allows for an easier method of determining the electric field for situations where the charge distribution contains symmetry.

More information

Physics Midterm #2 Two Hours, Closed Book

Physics Midterm #2 Two Hours, Closed Book Physics 102-1 Midterm #2 Two Hours, Closed Book These are the same instructions as given on the first exam. Instructions for taking the exam in the Science Library: Pick up and return the exam from the

More information

week 3 chapter 28 - Gauss s Law

week 3 chapter 28 - Gauss s Law week 3 chapter 28 - Gauss s Law Here is the central idea: recall field lines... + + q 2q q (a) (b) (c) q + + q q + +q q/2 + q (d) (e) (f) The number of electric field lines emerging from minus the number

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Physics 114 Exam 1 Fall 2015

Physics 114 Exam 1 Fall 2015 Physics 114 Exam 1 Fall 015 Name: For grading purposes (do not write here): Question 1. 1... 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question and

More information

Physics 7B Midterm 2 Solutions - Fall 2017 Professor R. Birgeneau

Physics 7B Midterm 2 Solutions - Fall 2017 Professor R. Birgeneau Problem 1 Physics 7B Midterm 2 Solutions - Fall 217 Professor R. Birgeneau (a) Since the wire is a conductor, the electric field on the inside is simply zero. To find the electric field in the exterior

More information