Physics 114 Exam 1 Fall 2015

Size: px
Start display at page:

Download "Physics 114 Exam 1 Fall 2015"

Transcription

1 Physics 114 Exam 1 Fall 015 Name: For grading purposes (do not write here): Question Problem Answer each of the following questions and each of the problems. Points for each question and problem are indicated in red with the amount being spread equally among parts (a,b,c etc). Be sure to show all your work. Use the back of the pages if necessary.

2 Question 1. (10 points) (a) Which one of the diagrams below is not a possible electric field configuration for a region of space which does not contain any charges? Why? a. b. c. d. e. d. Electric Field lines cannot cross (b) Consider a constant electric field given by E=10i N/C. What is the electric field at the point x = 5m, y = 5 m? It is still E=10i N/C (c) Say you now put a 10 nc charge in the same field E=10i N/C at that point x = 5m, y = 5 m. What is the (vector) force on that charge? 9 7 F = qe = i C = 10 i C (d) Say you now put a -10 nc charge in the same field E=10i N/C at that point x = 5m, y = 5 m instead of the positive charge. What is the (vector) force on that charge. 9 7 F = qe = i C = -10 i C

3 Question. (10 points). (a) Three pith balls supported by insulating threads hang from a support. We know that ball X is positively charged. When ball X is brought near balls Y and Z without touching them, it attracts Y and repels Z. Since pith is an insulating material, what can we conclude (if anything) about the charges of Y and Z? A positive charge attracts a negative one and repels a positive one. A positively charged object can also attract a neutral object by polarizing the object. Here, molecules will be polarized with more negative charge towards the positive one. Thus, Z is positively charged, but Y can be negatively charged or neutral. (b) How do you charge something by induction using a positively charged rod and what charge does the object have after it is charged? Bring the rod close to the object and it will polarize. Ground the object now electrons flow into the object due to attraction to the positive of the object. Remove the ground Now the object has a net negative charge.

4 Question 3. (10 points). Consider the charges and surface shown below where Q1 and Q are within the closed surface and Q3 is outside. (a) Which charges contribute to the total flux through the surface? (b) Which contribute to the electric field? Q1 Q3 Q (a) Q1 and Q contribute to total flux through the surface. (b) All three charges contribute to the electric field. For flux Φ E = E da, but we can also think of it in terms of penetrating field lines. Here the flux from Q3 that enters the surface also exits. E =E1 +E +E3, and these are simply vector additions.

5 Problem 1. (15 points) Two point charges lie along x-axis. The charge q1 = C at x = 0.1 m and the charge q = - 4 C is at x = 0 m (that is, at the origin). (a) Find the resultant electric field at the point P which is at (0, 0.)m. (b) Calculate the force on a nc charge if it were placed at point P. (0,0.) y P q1 q (0,0) (0.1,0) x E q 4 0r. Use SOHCAHTOA. See 1 is 180 degress - arctan(/1) = degrees. = 70 degrees r1 = 0.4 m and r = 0. m 9 (9 10 )() 11 E N/C (9 10 )(4) 11 E 9 10 N/C 0.04 (a) E total = E 1 + E = (E) 1 cos(116.56) + E cos(70))(i ) + (E 1 sin(116.56) + E sin(70))j i (3. 9) 10 j N/C i j (b) F = q test E = 10 9 C( (i ) (j ))N = [ (i ) (j )]N

6 Problem. (15 points) (a)the electric field in the region of space shown is given by E = 3i N/C where y is in m. What is the magnitude of the electric flux through the top face of the cube shown? (b) Now say the field is replaced with a new one given by E = 3j N/C. Now what is the magnitude of the electric flux through the top face of the cube? (c) Now say the field is replaced with a new one given by. Now what is the magnitude of the electric flux through the top face of the cube? (a) E. da EAcos( ). The normal (and A vector) points in the positive y-direction. Thus, is 90 degrees so the flux is zero. (b) Now is 0 degrees so the flux is EA = (3)(9) = 7 Nm /C (c) Φ E =E A =(8i +j ) (9j )=18 Nm /C. You can also figure out what is (the angle of E with the normal). Tan( ) = 4, degrees. The flux is ( 64 4)(9)cos(76) 18 Nm /C

7 Problem 3. (15 points) A metal spherical shell has an inner diameter of 0.8 m (radius 0.4 m) and an outer diameter of 1 m. 10 nc of charge are added to the spherical shell. A 5 nc point charge is located at the center of the sphere. Use Gauss s law to determine the electric field at (a) 0. m, (b) 0.45 m, and (c) m from the center of the spherical shell. (d) How much charge is on the inner surface of the spherical shell? (e) How much charge is on the outer surface of the spherical shell. E. da qenc / 0. We choose spherical Gaussian surfaces for parts a-c. Due to the symmetry we see that the integral will always give EA = (E)(4 r ), where r is the radius of the Gaussian sphere which will be that where we want to find E (a) q enc= C (the point charge) so E = 45 / N/C (b) E = 0 since this point is withn the metal (conducting) shell (c) q enc= C (the point charge and the sphere) so E = 135 / N/C 4 0 (d) Sine E = 0 in the metal, if we draw a spherical Gaussian surface of radius (say) 0.45 m, we need to have q enclosed = 0. Thus, -5 nc has to be on the inner surface. (e) Since charge is conserved, and we started with 10 nc on the shell, there must be 15 nc on the outer surface.

8 Possibly Useful Information 1 q1 q F 885. X 10-1 ( C / N m ) r e = 1.6 X C E F q 0 q E 0 0 E. da q enc 4 0r 1 9 k e 9 10 N m / C 4 r = xi + yj + zk 0

Physics 114 Exam 1 Fall 2016

Physics 114 Exam 1 Fall 2016 Physics 114 Exam 1 Fall 2016 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

Physics 114 Exam 1 Spring 2013

Physics 114 Exam 1 Spring 2013 Physics 114 Exam 1 Spring 2013 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. CH 23 Gauss Law [SHIVOK SP212] January 4, 2016 I. Introduction to Gauss Law A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

More information

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_4 Sunday, February 03, 008 Page 1 Name: Date: 1. A point charged particle is placed at the center of a spherical Gaussian surface. The net electric flux Φ net

More information

Phys222 S11 Quiz 2: Chapters Name: = 80 nc, and q = 24 nc in the figure, what is the magnitude of the total electric force on q?

Phys222 S11 Quiz 2: Chapters Name: = 80 nc, and q = 24 nc in the figure, what is the magnitude of the total electric force on q? Name: 1. Three point charges are positioned on the x axis. If the charges and corresponding positions are +3 µc at x = 0, +0 µc at x = 40 cm, and 60 µc at x = 60 cm, what is the magnitude of the electrostatic

More information

Sample Question: A point in empty space is near 3 charges as shown. The distances from the point to each charge are identical.

Sample Question: A point in empty space is near 3 charges as shown. The distances from the point to each charge are identical. A point in empty space is near 3 charges as shown. The distances from the point to each charge are identical. A. Draw a vector showing the direction the electric field points. y +2Q x B. What is the angle

More information

Phys 2102 Spring 2002 Exam 1

Phys 2102 Spring 2002 Exam 1 Phys 2102 Spring 2002 Exam 1 February 19, 2002 1. When a positively charged conductor touches a neutral conductor, the neutral conductor will: (a) Lose protons (b) Gain electrons (c) Stay neutral (d) Lose

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

Chapter 2 Gauss Law 1

Chapter 2 Gauss Law 1 Chapter 2 Gauss Law 1 . Gauss Law Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface Consider the flux passing through a closed surface

More information

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is:

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is: Conceptual Questions. Circle the best answer. (2 points each) 1. If more electric field lines point into a balloon than come out of it, you can conclude that this balloon must contain more positive charge

More information

PHYS102 - Gauss s Law.

PHYS102 - Gauss s Law. PHYS102 - Gauss s Law. Dr. Suess February 2, 2007 PRS Questions 2 Question #1.............................................................................. 2 Answer to Question #1......................................................................

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 18 Electric Forces and Electric Fields Interactive Lecture Questions 18.1.1. A brass key has a net positive charge of +1.92 10 16 C.

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

Physics 2049 Exam 1 Solutions Fall 2002

Physics 2049 Exam 1 Solutions Fall 2002 Physics 2049 xam 1 Solutions Fall 2002 1. A metal ball is suspended by a string. A positively charged plastic ruler is placed near the ball, which is observed to be attracted to the ruler. What can we

More information

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4

Physics 2212 K Quiz #1 Solutions Summer q in = ρv = ρah = ρa 4 Physics 2212 K Quiz #1 Solutions Summer 2016 I. (18 points A uniform infinite insulating slab of charge has a positive volume charge density ρ, and a thickness 2t, extending from t to +t in the z direction.

More information

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on: Ch. 22: Gauss s Law Gauss s law is an alternative description of Coulomb s law that allows for an easier method of determining the electric field for situations where the charge distribution contains symmetry.

More information

Physics 202: Spring 1999 Solution to Homework Assignment #3

Physics 202: Spring 1999 Solution to Homework Assignment #3 Physics 202: Spring 1999 Solution to Homework Assignment #3 Questions: Q3. (a) The net electric flux through each surface shown is zero, since every electric field line entering from one end exits through

More information

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions.

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions. Gauss Law 1 Name Date Partners 1. The statement of Gauss' Law: (a) in words: GAUSS' LAW Work together as a group on all questions. The electric flux through a closed surface is equal to the total charge

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law Electric Flux Gauss s Law Units of Chapter 22 Applications of Gauss s Law Experimental Basis of Gauss s and Coulomb s Laws 22-1 Electric Flux Electric flux: Electric flux through

More information

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions

Profs. D. Acosta, A. Rinzler, S. Hershfield. Exam 1 Solutions PHY2049 Spring 2009 Profs. D. Acosta, A. Rinzler, S. Hershfield Exam 1 Solutions 1. What is the flux through the right side face of the shown cube if the electric field is given by E = 2xî + 3yĵ and the

More information

Chapter 23. Gauss s Law

Chapter 23. Gauss s Law Chapter 23 Gauss s Law 23.1 What is Physics?: Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers a hypothetical

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Let s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to the magnitude of the electric field. This means that

More information

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 23 Gauss Law Copyright 23-1 Electric Flux Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q. Now the enclosed particle

More information

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 212 Gauss Law Lectures 3-4 Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 23 Gauss Law In this chapter we will introduce the following new concepts:

More information

Chapter 23: Gauss Law. PHY2049: Chapter 23 1

Chapter 23: Gauss Law. PHY2049: Chapter 23 1 Chapter 23: Gauss Law PHY2049: Chapter 23 1 Two Equivalent Laws for Electricity Coulomb s Law equivalent Gauss Law Derivation given in Sec. 23-5 (Read!) Not derived in this book (Requires vector calculus)

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Electric Flux Electric flux is the product of the magnitude of the electric field and the surface area, A, perpendicular to the field Φ E = EA Defining Electric Flux EFM06AN1 Electric

More information

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0

Exam 1 Solution. Solution: Make a table showing the components of each of the forces and then add the components. F on 4 by 3 k(1µc)(2µc)/(4cm) 2 0 PHY2049 Fall 2010 Profs. S. Hershfield, A. Petkova Exam 1 Solution 1. Four charges are placed at the corners of a rectangle as shown in the figure. If Q 1 = 1µC, Q 2 = 2µC, Q 3 = 1µC, and Q 4 = 2µC, what

More information

More Gauss, Less Potential

More Gauss, Less Potential More Gauss, Less Potential Today: Gauss Law examples Monday: Electrical Potential Energy (Guest Lecturer) new SmartPhysics material Wednesday: Electric Potential new SmartPhysics material Thursday: Midterm

More information

Physics Lecture 13

Physics Lecture 13 Physics 113 Jonathan Dowling Physics 113 Lecture 13 EXAM I: REVIEW A few concepts: electric force, field and potential Gravitational Force What is the force on a mass produced by other masses? Kepler s

More information

PHYS1212 Exam#2 Spring 2014

PHYS1212 Exam#2 Spring 2014 PHYS Exam# Spring 4 NAME There are 9 different pages in this quiz. Check now to see that you have all of them. CEDIT PAT A 6% PAT B 4% TOTAL % GADE All work and answers must be given in the spaces provided

More information

Name Date Partners. Lab 2 GAUSS LAW

Name Date Partners. Lab 2 GAUSS LAW L02-1 Name Date Partners Lab 2 GAUSS LAW On all questions, work together as a group. 1. The statement of Gauss Law: (a) in words: The electric flux through a closed surface is equal to the total charge

More information

LECTURE 15 CONDUCTORS, ELECTRIC FLUX & GAUSS S LAW. Instructor: Kazumi Tolich

LECTURE 15 CONDUCTORS, ELECTRIC FLUX & GAUSS S LAW. Instructor: Kazumi Tolich LECTURE 15 CONDUCTORS, ELECTRIC FLUX & GAUSS S LAW Instructor: Kazumi Tolich Lecture 15 2! Reading chapter 19-6 to 19-7.! Properties of conductors! Charge by Induction! Electric flux! Gauss's law! Calculating

More information

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them?

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 92 3.10 Quick Questions 3.10 Quick Questions 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them? 0.89 N 90 N 173 N 15 N 2. The electric field inside an isolated conductor

More information

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group.

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group. 65 Name Date Partners 1. The statement of Gauss' Law: Lab 4 - GAUSS' LAW On all questions, work together as a group. (a) in words: The electric flux through a closed surface is equal to the total charge

More information

Exam 1 Multiple Choice Practice Problems Physics 1251 TA: Clark/Sullivan

Exam 1 Multiple Choice Practice Problems Physics 1251 TA: Clark/Sullivan Exam 1 Multiple Choice Practice Problems Physics 1251 TA: Clark/Sullivan Disclaimer: We have ZERO intel about what will be covered on the midterm. This is a collection of problems that will force you to

More information

Chapter (2) Gauss s Law

Chapter (2) Gauss s Law Chapter (2) Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How

More information

Chapter 22 Gauss s Law

Chapter 22 Gauss s Law Chapter 22 Gauss s Law Lecture by Dr. Hebin Li Goals for Chapter 22 To use the electric field at a surface to determine the charge within the surface To learn the meaning of electric flux and how to calculate

More information

- Like charges repel Induced Charge. or by induction. Electric charge is conserved

- Like charges repel Induced Charge. or by induction. Electric charge is conserved Course website: http://course.physastro.iastate.edu/phys112/ Here you will find the syllabus, lecture notes and other course information Links to the website are also on Blackboard: Phys 112 (Spring 2017)

More information

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2 1. Two parallel-plate capacitors with different plate separation but the same capacitance are connected in series to a battery. Both capacitors are filled with air. The quantity that is NOT the same for

More information

Electric Flux and Gauss Law

Electric Flux and Gauss Law Electric Flux and Gauss Law Gauss Law can be used to find the electric field of complex charge distribution. Easier than treating it as a collection of point charge and using superposition To use Gauss

More information

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS chapter ELECTRIC FORCES AND ELECTRIC FIELDS www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 18.1 The Origin of Electricity Section 18.2 Charged Objects and the

More information

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /.

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /. Practice Questions Exam 1/page1 PES 110 - Physics Practice Exam 1 Questions Name: Score: /. Instructions Time allowed for this is exam is 1 hour 15 minutes 5 multiple choice (5 points) 3 to 5 written problems

More information

PHYSICS 122D, Winter 2009, Version A Exam 2, PAGE 1

PHYSICS 122D, Winter 2009, Version A Exam 2, PAGE 1 NAME: Last, First STUDENT ID NUMBER 1. [6 points] Two small spheres, each with mass m = 5.0 g and charge q, are suspended from a point by threads of length L = 0.30 m. What is the charge on each sphere

More information

Physics 1520, Fall 2011 Quiz 3, Form: A

Physics 1520, Fall 2011 Quiz 3, Form: A Physics 1520, Fall 2011 Quiz 3, Form: A Name: Date: Numeric answers must include units. Sketches must be labeled. All short-answer questions must include your reasoning, for full credit. A correct answer

More information

Chapter 23 Term083 Term082

Chapter 23 Term083 Term082 Chapter 23 Term083 Q6. Consider two large oppositely charged parallel metal plates, placed close to each other. The plates are square with sides L and carry charges Q and Q. The magnitude of the electric

More information

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force Exercises Question.: What is the force between two small charged spheres having charges of 2 0 7 C and 3 0 7 C placed 30 cm apart in air? Answer.: Repulsive force of magnitude 6 0 3 N Charge on the first

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law 22-1 Electric Flux Electric flux: Electric flux through an area is proportional to the total number of field lines crossing the area. 22-1 Electric Flux Example 22-1: Electric flux.

More information

CPS lesson Electric Field ANSWER KEY

CPS lesson Electric Field ANSWER KEY CPS lesson Electric Field ANSWER KEY 1. A positively charged rod is brought near a conducting sphere on an insulated base. The opposite side of the sphere is briefly grounded. If the rod is now withdrawn,

More information

Lecture 13. PHYC 161 Fall 2016

Lecture 13. PHYC 161 Fall 2016 Lecture 13 PHYC 161 Fall 2016 Gauss s law Carl Friedrich Gauss helped develop several branches of mathematics, including differential geometry, real analysis, and number theory. The bell curve of statistics

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS CHAPTER 18 3. REASONING AND SOLUTION The total charge to be removed is 5.0 µc. The number of electrons corresponding to this charge is N = ( 5.0 10 6 C)/( 1.60 10 19 C) = 3.1 10 13

More information

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3.

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3. Physics 102 Conference 3 Gauss s Law Conference 3 Physics 102 General Physics II Monday, February 10th, 2014 3.1 Quiz Problem 3.1 A spherical shell of radius R has charge Q spread uniformly over its surface.

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Gauss's Law 2017-07-08 www.njctl.org Electric Flux Gauss's Law Sphere Table of Contents: Gauss's Law Click on the topic to go to that section. Infinite Rod of Charge Infinite Plane

More information

Ch 16 practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch 16 practice. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch 16 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What happens when a rubber rod is rubbed with a piece of fur, giving it a negative charge?

More information

Measuring the Electric Force

Measuring the Electric Force Measuring the Electric Force Recall Newton s Law of Universal Gravitation: mm 1 2 Fg G r 2 Newton said: Imagine a hollow earth (a thin shell of uniform thickness) and a small object of mass m somewhere

More information

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook.

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. Purpose: Theoretical study of Gauss law. 2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. When drawing field line pattern around charge distributions

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I February 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best or most nearly correct answer For questions 6-9, solutions must

More information

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1 Outline Introduce as an analogy to Gauss Law. Define. Applications of. Objectives Recognise to be analogous to Gauss Law. Recognise similar concepts: (1) draw an imaginary shape enclosing the current carrying

More information

PHYS 2212 (Modern) Review. Electric Force and Fields

PHYS 2212 (Modern) Review. Electric Force and Fields PHYS 2212 (Modern) Review Electric Force and Fields A permanent dipole and a charged particle lie on the x-axis and are separated by a distance d as indicated in the figure. The dipole consists of positive

More information

PHYS 2421 Fields and Waves. Instructor: Jorge A. López Office: PSCI 209 A, Phone: Textbook: University Physics 11e, Young and Freedman

PHYS 2421 Fields and Waves. Instructor: Jorge A. López Office: PSCI 209 A, Phone: Textbook: University Physics 11e, Young and Freedman PHYS 41 Fields and Waves Instructor: Jorge A. López Office: PSCI 9 A, Phone: 747-758 Textbook: University Physics 11e, Young and Freedman Chapter : Gauss law.1 Charge and electric flux. Calculating electric

More information

Exam 1--PHYS 102--S14

Exam 1--PHYS 102--S14 Class: Date: Exam 1--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The magnitude of the charge on an electron is approximately: a. 10-23

More information

Electric Flux and Gauss s Law

Electric Flux and Gauss s Law Electric Flux and Gauss s Law Electric Flux Figure (1) Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 1. The total number of lines penetrating the surface

More information

Look over. Examples 11, 12, 2/3/2008. Read over Chapter 23 sections 1-9 Examples 1, 2, 3, 6. 1) What a Gaussian surface is.

Look over. Examples 11, 12, 2/3/2008. Read over Chapter 23 sections 1-9 Examples 1, 2, 3, 6. 1) What a Gaussian surface is. PHYS 2212 Read over Chapter 23 sections 1-9 Examples 1, 2, 3, 6 PHYS 1112 Look over Chapter 16 Section 10 Examples 11, 12, Good Things To Know 1) What a Gaussian surface is. 2) How to calculate the Electric

More information

Chapter 24 Solutions The uniform field enters the shell on one side and exits on the other so the total flux is zero cm cos 60.

Chapter 24 Solutions The uniform field enters the shell on one side and exits on the other so the total flux is zero cm cos 60. Chapter 24 Solutions 24.1 (a) Φ E EA cos θ (3.50 10 3 )(0.350 0.700) cos 0 858 N m 2 /C θ 90.0 Φ E 0 (c) Φ E (3.50 10 3 )(0.350 0.700) cos 40.0 657 N m 2 /C 24.2 Φ E EA cos θ (2.00 10 4 N/C)(18.0 m 2 )cos

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS CHATER 18 ELECTRIC FORCES AND ELECTRIC FIELDS CONCETUAL QUESTIONS 1. REASONING AND SOLUTION In Figure 18.9, the grounding wire is removed first, followed by the rod, and the sphere is left with a positive

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

13 - ELECTROSTATICS Page 1 ( Answers at the end of all questions )

13 - ELECTROSTATICS Page 1 ( Answers at the end of all questions ) 3 - ELECTROSTATICS Page ) Two point charges 8 and - are located at x = 0 and x = L respectively. The location of a point on the x axis at which the net electric field due to these two point charges is

More information

Fall Lee - Midterm 2 solutions

Fall Lee - Midterm 2 solutions Fall 2009 - Lee - Midterm 2 solutions Problem 1 Solutions Part A Because the middle slab is a conductor, the electric field inside of the slab must be 0. Parts B and C Recall that to find the electric

More information

Physics 1214 Chapter 17: Electric Charge and Electric Field

Physics 1214 Chapter 17: Electric Charge and Electric Field Physics 1214 Chapter 17: Electric Charge and Electric Field Introduction electrostatic interactions interactions between electric charges at rest in our frame of reference modeled by Coulomb s equation

More information

week 3 chapter 28 - Gauss s Law

week 3 chapter 28 - Gauss s Law week 3 chapter 28 - Gauss s Law Here is the central idea: recall field lines... + + q 2q q (a) (b) (c) q + + q q + +q q/2 + q (d) (e) (f) The number of electric field lines emerging from minus the number

More information

Phy207 Exam I (Form1) Professor Zuo Fall Semester Signature: Name:

Phy207 Exam I (Form1) Professor Zuo Fall Semester Signature: Name: Phy207 Exam I (Form1) Professor Zuo Fall Semester 2015 On my honor, I have neither received nor given aid on this examination Signature: Name: ID number: Enter your name and Form 1 (FM1) in the scantron

More information

Chapter 24 Gauss Law

Chapter 24 Gauss Law Chapter 24 Gauss Law A charge inside a box can be probed with a test charge q o to measure E field outside the box. The volume (V) flow rate (dv/dt) of fluid through the wire rectangle (a) is va when the

More information

PHYS208 RECITATIONS PROBLEMS: Week 2. Gauss s Law

PHYS208 RECITATIONS PROBLEMS: Week 2. Gauss s Law Gauss s Law Prob.#1 Prob.#2 Prob.#3 Prob.#4 Prob.#5 Total Your Name: Your UIN: Your section# These are the problems that you and a team of other 2-3 students will be asked to solve during the recitation

More information

Welcome to PHYS2002!

Welcome to PHYS2002! Welcome to PHYS00! Physics I Done! We are now all experts in mechanics. Mechanics Mass M Interaction: mm F = G r 1 G = 6.67 10 Nm/ kg r M 11 1 We never said what mass is, only how it behaves. New Semester

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Gauss Law Gauss Law can be used as an alternative procedure for calculating electric fields. Gauss Law is based on the inverse-square behavior of the electric force between point

More information

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface Electric flux Electric Fields and Gauss s Law Electric flux is a measure of the number of field lines passing through a surface. The flux is the product of the magnitude of the electric field and the surface

More information

PHYS 102 SECOND MAJOR EXAM TERM 011

PHYS 102 SECOND MAJOR EXAM TERM 011 PHYS 102 SECOND MAJOR EXAM TERM 011 * QUESTION NO: 1 An infinite non-conducting sheet has a surface charge density 0.10*10**(-6) C/m**2 on one side. How far apart are equipotential surfaces whose potentials

More information

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS Roll Number SET NO. General Instructions: INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.08 Max. Marks: 70. All questions are compulsory. There are

More information

Electric Flux. To investigate this, we have to understand electric flux.

Electric Flux. To investigate this, we have to understand electric flux. Problem 21.72 A charge q 1 = +5. nc is placed at the origin of an xy-coordinate system, and a charge q 2 = -2. nc is placed on the positive x-axis at x = 4. cm. (a) If a third charge q 3 = +6. nc is now

More information

Council of Student Organizations De La Salle University Manila

Council of Student Organizations De La Salle University Manila Council of Student Organizations De La Salle University Manila PHYENG2 Quiz 1 Problem Solving: 1. (a) Find the magnitude and direction of the force of +Q on q o at (i) P 1 and (ii) P 2 in Fig 1a below.

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin.

Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin. Coordinator: Saleem Rao Monday, May 01, 2017 Page: 1 Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin. A) 1.38

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

CQ 1 What is alike when we say "two like charges?" Do they look, feel, or smell alike?

CQ 1 What is alike when we say two like charges? Do they look, feel, or smell alike? Ch20P Page 1 1P22/1P92 Problems (2011) Chapter 20 Electric Fields and Forces Sunday, January 09, 2011 4:50 PM CQ 1 What is alike when we say "two like charges?" Do they look, feel, or smell alike? CQ 3

More information

Worksheet for Exploration 24.1: Flux and Gauss's Law

Worksheet for Exploration 24.1: Flux and Gauss's Law Worksheet for Exploration 24.1: Flux and Gauss's Law In this Exploration, we will calculate the flux, Φ, through three Gaussian surfaces: green, red and blue (position is given in meters and electric field

More information

Physics 9 WS E3 (rev. 1.0) Page 1

Physics 9 WS E3 (rev. 1.0) Page 1 Physics 9 WS E3 (rev. 1.0) Page 1 E-3. Gauss s Law Questions for discussion 1. Consider a pair of point charges ±Q, fixed in place near one another as shown. a) On the diagram above, sketch the field created

More information

Experiment III Electric Flux

Experiment III Electric Flux Experiment III Electric Flux When a charge distribution is symmetrical, we can use Gauss Law, a special law for electric fields. The Gauss Law method of determining the electric field depends on the idea

More information

Physics 208, Spring 2015 Exam #1

Physics 208, Spring 2015 Exam #1 Physics 208, Spring 2015 Exam #1 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on a separate colored sheet. You may NOT use any other formula sheet.

More information

Problem 1. What is the force between two small charged spheres that have charges of C and C and are placed 30 cm apart in air?

Problem 1. What is the force between two small charged spheres that have charges of C and C and are placed 30 cm apart in air? 5. NAME: Problem 1. What is the force between two small charged spheres that have charges of 2 10 7 C and 3 10 7 C and are placed 30 cm apart in air? 2. What is the value of charge of a body that carries

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapter 21: Gauss s Law Electric field lines Electric field lines provide a convenient and insightful way to represent electric fields. A field line is a curve whose direction at each point is the direction

More information

Chapter 22. Dr. Armen Kocharian. Gauss s Law Lecture 4

Chapter 22. Dr. Armen Kocharian. Gauss s Law Lecture 4 Chapter 22 Dr. Armen Kocharian Gauss s Law Lecture 4 Field Due to a Plane of Charge E must be perpendicular to the plane and must have the same magnitude at all points equidistant from the plane Choose

More information

Physics 2212 K Quiz #1 Solutions Summer 2015

Physics 2212 K Quiz #1 Solutions Summer 2015 Physics 2212 K Quiz #1 Solutions Summer 2015 e Fundamental charge m e Mass of an electron K Coulomb constant = 1/4πϵ 0 g Magnitude of Free Fall Acceleration Unless otherwise directed, drag should be neglected.

More information

Physics 2212 GJ Quiz #1 Solutions Fall 2015

Physics 2212 GJ Quiz #1 Solutions Fall 2015 Physics 2212 GJ Quiz #1 Solutions Fall 2015 I. (14 points) A 2.0 µg dust particle, that has a charge of q = +3.0 nc, leaves the ground with an upward initial speed of v 0 = 1.0 m/s. It encounters a E =

More information

Lecture 14. PHYC 161 Fall 2016

Lecture 14. PHYC 161 Fall 2016 Lecture 14 PHYC 161 Fall 2016 Q22.3 Two point charges, +q (in red) and q (in blue), are arranged as shown. Through which closed surface(s) is/are the net electric flux equal to zero? A. surface A B. surface

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

Electrostatics. Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest.

Electrostatics. Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest. Electrostatics Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest. Examples: BASIC IDEAS: Electricity begins inside the atom itself. An atom

More information