300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass

Size: px
Start display at page:

Download "300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass"

Transcription

1 6-6- Air flows steadily a ie at a secified state. The diameter of the ie, the rate of flow energy, and the rate of energy transort by mass are to be determed. Also, the error oled the determation of energy transort by mass is to be determed. Proerties The roerties of air are R 0.87 kj.k and c.008 kj.k (at 50 K from Table A-b) Analysis (a) The diameter is determed as follows RT P m A D 4A π 0.87 kj.k)(77 7 K) 0.49 m (00 kpa) ( (8 / 60 kg/s)(0.49 m 5 m/s 4( m π ) m ) m (b) The rate of flow energy is determed from W flow mp (8/ 60 kg/s)(00 kpa)(0.49 m ) 0.4 kw (c) The rate of energy transort by mass is mass ( h ke) ct 00 kpa 77 C kj (8/60 kg/s) (.008 kj.k)(77 7 K) (5 m/s) 000 m /s kw (d) If we neglect ketic energy the calculation of energy transort by mass mass mh mc T (8/60 kg/s)(.005 kj.k)(77 7 K) kw Therefore, the error oled if neglect the ketic energy is only 0.09%. Air 5 m/s 8 kg/m PROPRIETARY MATERIAL. 008 The McGraw-Hill Comanies, Inc. Limited distribution ermitted only to teachers and educators for course rearation. If you are a student usg this Manual, you are usg it with ermission.

2 6-6-7 Air is decelerated a diffuser from 0 m/s to 0 m/s. The exit temerature of air and the exit area of the diffuser are to be determed. Assumtions This is a steady-flow rocess sce there is no change with time. Air is an ideal gas with ariable secific heats. Potential energy changes are negligible. 4 The deice is adiabatic and thus heat transfer is negligible. 5 There are no work teractions. Proerties The gas constant of air is 0.87 kpa.m.k (Table A-). The enthaly of air at the let temerature of 400 K is h kj (Table A-). Analysis (a) There is only one let and one exit, and thus. We take diffuser as the system, which is a control olume sce mass crosses the boundary. The energy balance for this steady-flow system can be exressed the rate form as or, E 44 E ΔEsystem 0 h ( h From Table A-, Rate of change ternal, ketic, otential, etc.energies 4444 / ) ( h /) (sce W Δe, 0 h h ( 0 m/s) ( 0 m/s) kj 000 m /s h kj T 45.6 K (b) The secific olume of air at the diffuser exit is RT ( kpa m K)( 45.6 K) ( 00 kpa) m P From conseration of mass, AIR kj A A ( kg/s)(. m 0 m/s ) m PROPRIETARY MATERIAL. 008 The McGraw-Hill Comanies, Inc. Limited distribution ermitted only to teachers and educators for course rearation. If you are a student usg this Manual, you are usg it with ermission.

3 Steam exands a turbe. The change ketic energy, the ower ut, and the turbe let area are to be determed. Assumtions This is a steady-flow rocess sce there is no change with time. Potential energy changes are negligible. The deice is adiabatic and thus heat transfer is negligible. Proerties From the steam tables (Tables A-4 through 6) and P 0 MPa m T 450 C h 4.4 kj P 0 MPa T 450 C 80 m/s P 0 kpa h x 0.9 h x f h fg kj Analysis (a) The change ketic energy is determed from Δke ( 50 m/s) (80 m/s) kj 000 m /s.95 kj (b) There is only one let and one exit, and thus. We take the turbe as the system, which is a control olume sce mass crosses the boundary. The energy balance for this steady-flow system can be exressed the rate form as E 44 E ΔEsystem 0 ( h / ) W Rate of change ternal, ketic, otential, etc.energies W h 4444 ( h h /) (sce Δe Then the ower ut of the turbe is determed by substitution to be W ( kg/s)( ) kj 0. MW (c) The let area of the turbe is determed from the mass flow rate relation, STEAM m kg/s P 0 kpa x m/s W A A ( kg/s)( m 80 m/s ) m PROPRIETARY MATERIAL. 008 The McGraw-Hill Comanies, Inc. Limited distribution ermitted only to teachers and educators for course rearation. If you are a student usg this Manual, you are usg it with ermission.

4 Air is comressed an adiabatic comressor. The mass flow rate of the air and the ower ut are to be determed. Assumtions This is a steady-flow rocess sce there is no change with time. The comressor is adiabatic. Air is an ideal gas with constant secific heats. Proerties The constant ressure secific heat of air at the aerage temerature of (0400)/0 C48 K is c.06 kj K (Table A-b). The gas constant of air is R 0.87 kpa m K (Table A-). Analysis (a) There is only one let and one exit, and thus m. We take the comressor as the system, which is a control olume sce mass crosses the boundary. The energy balance for this steadyflow system can be exressed the rate form as E 44 E ΔEsystem 0 h W W Rate of change ternal, ketic, otential, etc. energies h h h c ( T T ) The secific olume of air at the let and the mass flow rate are RT ( 0.87 kpa m K)(0 7 K) m P 00 kpa.8 MPa 400 C Comressor 00 kpa 0 C 0 m/s A (0.5 m )(0 m/s) 5.5kg/s m Similarly at the let, RT ( 0.87 kpa m K)(400 7 K) 0.07 m P 800 kpa m (5.5 kg/s)(0.07 m ) A 0.08 m (b) Substitutg to the energy balance equation gies 7.77 m/s W c ( T T ) (7.77 m/s) (0 m/s) (5.5 kg/s) (.06 kj K)(400 0)K 084 kw kj 000 m /s PROPRIETARY MATERIAL. 008 The McGraw-Hill Comanies, Inc. Limited distribution ermitted only to teachers and educators for course rearation. If you are a student usg this Manual, you are usg it with ermission.

5 A hot water stream is mixed with a cold water stream. For a secified mixture temerature, the mass flow rate of cold water is to be determed. Assumtions Steady oeratg conditions exist. The mixg chamber is well-sulated so that heat loss to the surroundgs is negligible. Changes the ketic and otential energies of fluid streams are negligible. 4 Fluid roerties are constant. 5 There are no work teractions. Proerties Notg that T < T 50 kpa 7.4 C, the water all three streams exists as a comressed liquid, which can be aroximated as a saturated liquid at the gien temerature. Thus, h h 80 C 5.0 kj h h 0 C 8.95 kj h h 4 C kj Analysis We take the mixg chamber as the system, which is a control olume. The mass and energy balances for this steady-flow system can be exressed the rate form as Mass balance: Energy balance: Δ system 0 m E E 44 h h Rate of change ternal, ketic, otential, etc. energies h 0 ΔEsystem (sce W Δke Δe Combg the two relations and solg for m gies ( ) m h m h h h h h h m Substitutg, the mass flow rate of cold water stream is determed to be ( ) kj ( 0.5 kg/s) kg/s kj ( ) T 80 C m 0.5 kg/s T 0 C m H O (P 50 kpa) T 4 C PROPRIETARY MATERIAL. 008 The McGraw-Hill Comanies, Inc. Limited distribution ermitted only to teachers and educators for course rearation. If you are a student usg this Manual, you are usg it with ermission.

6 Oil is to be cooled by water a th-walled heat exchanger. The rate of heat transfer the heat exchanger and the exit temerature of water is to be determed. Assumtions Steady oeratg conditions exist. The heat exchanger is well-sulated so that heat loss to the surroundgs is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. Changes the ketic and otential energies of fluid streams are negligible. 4 Fluid roerties are constant. Proerties The secific heats of water and oil are gien to be 4.8 and.0 kj. C, resectiely. Analysis We take the oil tubes as the system, which is a control olume. The energy balance for this steady-flow system can be exressed the rate form as E E 44 mh 0 ΔEsystem 4444 Rate of change ternal, ketic, otential, etc.energies 0 mh (sce Δke Δe mc ( T T ) Then the rate of heat transfer from the oil becomes [ mc ( T T )] oil ( kg/s)(. kj. C)(50 C 40 C) 484 kw Notg that the heat lost by the oil is gaed by the water, the let temerature of the water is determed from 484 kj/s [ mc ( T T )] water T T C 99. C c (.5 kg/s)(4.8 kj. C) water Cold water C.5 kg/s 40 C Hot oil 50 C kg/s PROPRIETARY MATERIAL. 008 The McGraw-Hill Comanies, Inc. Limited distribution ermitted only to teachers and educators for course rearation. If you are a student usg this Manual, you are usg it with ermission.

7 The mass flow rate of a comressed air le is diided to two equal streams by a T-fittg the le. The elocity of the air at the lets and the rate of change of flow energy (flow ower) across the T- fittg are to be determed. Assumtions Air is an ideal gas with constant secific heats. The flow is steady. Sce the lets are identical, it is resumed that the flow diides eenly between the two. Proerties The gas constant of air is R 0.87 kpa m K (Table A-). Analysis The secific olumes of air at the let and lets are RT ( 0.87 kpa m K)(40 7 K) m P 600 kpa RT ( 0.87 kpa m K)(6 7 K) m P 400 kpa Assumg an een diision of the let flow rate, the mass balance can be written as A A A m/s A The mass flow rate at the let is A πd π (0.05 m) 50 m/s m 0.47 kg/s.6 MPa 40 C 50 m/s while that at the lets is 0.47 kg/s 0.86 kg/s Substitutg the aboe results to the flow ower exression roduces W flow P P (0.86 kg/s)(400 kpa)(0.065 m ) (0.47 kg/s)(600 kpa)( m ) kw.4 MPa 6 C.4 MPa 6 C PROPRIETARY MATERIAL. 008 The McGraw-Hill Comanies, Inc. Limited distribution ermitted only to teachers and educators for course rearation. If you are a student usg this Manual, you are usg it with ermission.

The average velocity of water in the tube and the Reynolds number are Hot R-134a

The average velocity of water in the tube and the Reynolds number are Hot R-134a hater 0:, 8, 4, 47, 50, 5, 55, 7, 75, 77, 8 and 85. 0- Refrigerant-4a is cooled by water a double-ie heat exchanger. he overall heat transfer coefficient is to be determed. Assumtions he thermal resistance

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES 5- Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL OLUMES Conseration of Mass 5-C Mass, energy, momentum, and electric charge are consered, and olume and entropy are not consered durg a process. 5-C Mass

More information

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada Department f Ciil ngeerg Applied Mechanics McGill Uniersity, Mntreal, Quebec Canada CI 90 THRMODYNAMICS HAT TRANSFR Assignment #4 SOLUTIONS. A 68-kg man whse aerage bdy temperature is 9 C drks L f cld

More information

Engineering Thermodynamics. Chapter 4. The First Law of Thermodynamics

Engineering Thermodynamics. Chapter 4. The First Law of Thermodynamics Chater 4 The First Law of Thermodynamics It is the law that relates the arious forms of energies for system of different tyes. It is simly the exression of the conseration of energy rcile The first law

More information

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is 8-7 8-9 A reverible eat um wit eciied reervoir temerature i conidered. e entroy cange o two reervoir i to be calculated and it i to be determed i ti eat um atiie te creae entroy rcile. Aumtion e eat um

More information

Then the amount of water that flows through the pipe during a differential time interval dt is (1) 4

Then the amount of water that flows through the pipe during a differential time interval dt is (1) 4 5-98 Review Problems 5-45 A tank oen to te atmosere is itially filled wit. e tank discarges to te atmosere troug a long ie connected to a valve. e itial discarge velocity from te tank and te time required

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q & 8-4 8-4 Air i compreed teadily by a compreor. e air temperature i mataed contant by eat rejection to te urroundg. e rate o entropy cange o air i to be determed. Aumption i i a teady-low proce ce tere i

More information

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa,

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa, - -58E The systolic and diastolic pressures of a healthy person are given in mmhg. These pressures are to be expressed in kpa, psi, and meter water column. Assumptions Both mercury and water are incompressible

More information

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics COMPENDIUM OF EQUAIONS Unified Engineering hermodynamics Note: It is with some reseration that I suly this comendium of equations. One of the common itfalls for engineering students is that they sole roblems

More information

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances Canges f ure Substances 6-0C Yes, because an ternally reversible, adiabatic prcess vlves n irreversibilities r eat transfer. 6- e radiatr f a steam eatg system is itially filled wit supereated steam. e

More information

CHEE 221: Chemical Processes and Systems

CHEE 221: Chemical Processes and Systems CH 221: Chemical Processes and Systems Module 4. nergy Balances without Reaction Part a: Introduction to nergy Balances (Felder & Rousseau Ch 7.0 7.4 nergy and nergy Balances: very chemical rocess volves

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

C H A P T E R ,1752'8&7,21

C H A P T E R ,1752'8&7,21 CHAPTER The first law of thermodynamics is a secial case of the fundamental and general law of conseration of energy, which is alied to thermal henomena in thermodynamic system. The basic law of energy

More information

AE301 Aerodynamics I UNIT A: Fundamental Concepts

AE301 Aerodynamics I UNIT A: Fundamental Concepts AE301 Aerodynamics I UNIT A: Fundamental Concets ROAD MAP... A-1: Engineering Fundamentals Reiew A-: Standard Atmoshere A-3: Goerning Equations of Aerodynamics A-4: Airseed Measurements A-5: Aerodynamic

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

SPC 407 Sheet 6 - Solution Compressible Flow Fanno Flow

SPC 407 Sheet 6 - Solution Compressible Flow Fanno Flow SPC 407 Sheet 6 - Solution Comressible Flow Fanno Flow 1. What is the effect of friction on flow velocity in subsonic and suersonic Fanno flow? Friction increases the flow velocity in subsonic Fanno flow,

More information

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING Delft University of Technology DEPRTMENT OF EROSPCE ENGINEERING Course: Physics I (E-04) Course year: Date: 7-0-0 Time: 4:00-7:00 Student name and itials (capital letters): Student number:. You have attended

More information

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 1 - THERMODYNAMIC SYSTEMS TUTORIAL 2

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 1 - THERMODYNAMIC SYSTEMS TUTORIAL 2 Unit 43: Plant and Process Princiles Unit code: H/60 44 QCF level: 5 Credit value: 5 OUCOME - HERMODYNAMIC SYSEMS UORIAL Understand thermodynamic systems as alied to lant engineering rocesses hermodynamic

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law Kelv Planck Statement of te Second aw It is imossible to construct an enge wic, oeratg a cycle, will roduce no oter effect tan te extraction of eat from a sgle reservoir and te erformance of an equivalent

More information

Chapter 9 Practical cycles

Chapter 9 Practical cycles Prof.. undararajan Chater 9 Practical cycles 9. Introduction In Chaters 7 and 8, it was shown that a reversible engine based on the Carnot cycle (two reversible isothermal heat transfers and two reversible

More information

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft SIMPLE RANKINE CYCLE um boiler exander condener Steady Flow, Oen Sytem - region ace Steady Flow Energy Equation for Procee m (u Pum Proce,, Boiler Proce,, V ρg) 0, 0, Exanion Proce,, 0, Condener Proce,,

More information

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK Turbomachinery Lecture Notes 1 7-9-1 Efficiencies Damian Vogt Course MJ49 Nomenclature Subscrits Symbol Denotation Unit c Flow seed m/s c Secific heat at constant J/kgK ressure c v Secific heat at constant

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook.

4. Energy balances Partly based on Chapter 4 of the De Nevers textbook. Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 4 Energy balances Partly based on Chater 4 of the De Nevers textbook Energy fluid mechanics As for any quantity, we can set u an energy balance for a secific

More information

Thermodynamic Properties are Measurements p,t,v, u,h,s - measure directly -measure by change

Thermodynamic Properties are Measurements p,t,v, u,h,s - measure directly -measure by change Thermodynamic Proerties are Measurements,T,, u,h,s - measure directly -measure by change s Tables T T Proerty Data Cure its Tables Correlation's, Boyles Law Tables c@tc limited hand calculations Equations

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

MAE 320 Thermodynamics HW 5 Assignment

MAE 320 Thermodynamics HW 5 Assignment MAE 0 Therodynaics HW 5 Assignent The hoework is due Wednesday, October 9, 06. Each proble is worth the pots dicated. Copyg o the solution ro another is not acceptable.. Multiple choices questions. There

More information

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k. PROBLEM 6.25 Three m 3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kpa. The air receives 1546 kj of work from the paddle wheel. Assuming the ideal gas model,

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples Outline Property ealuation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids s A piston-cylinder deice initially contains 0.5m of saturated water apor at 00kPa.

More information

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + =

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + = ME Fall 8 HW olution Problem he turbe i an open ytem. We identiy the team contaed the turbe a the control volume. Ma conervation: t law o thermodynamic: Aumption: dm m m m dt + + de V V V m h + + gz +

More information

Chapter 2 Solutions. 2.1 (D) Pressure and temperature are dependent during phase change and independent when in a single phase.

Chapter 2 Solutions. 2.1 (D) Pressure and temperature are dependent during phase change and independent when in a single phase. Chater Solutions.1 (D) Pressure and temerature are deendent during hase change and indeendent when in a single hase.. (B) Sublimation is the direct conversion of a solid to a gas. To observe this rocess,

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

CHAPTER INTRODUCTION AND BASIC PRINCIPLES. (Tutorial). Determine if the following properties of the system are intensive or extensive properties: Property Intensive Extensive Volume Density Conductivity

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Today lecture. 1. Entropy change in an isolated system 2. Exergy

Today lecture. 1. Entropy change in an isolated system 2. Exergy Today lecture 1. Entropy change in an isolated system. Exergy - What is exergy? - Reversible Work & Irreversibility - Second-Law Efficiency - Exergy change of a system For a fixed mass For a flow stream

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and

More information

= 0, no work has been added

= 0, no work has been added hater Practice Problems (P1) Enery Balance: Eqn 7 d u z u z u z m U m m Q + + + + + + & + + & lets lets E + S (P) closed system, no mass flow m & m& 0, valve stuck revent any steam from o m& 0, no chane

More information

ME 200 Thermodynamics 1 Spring Exam 2

ME 200 Thermodynamics 1 Spring Exam 2 Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Sprg 2017 - Exam 2 Circle your structor s last name Ardekani Fisher Hess Naik Sojka (onle and on campus) INSTRUCTIONS This is a closed book and

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

& out. R-134a 34 C

& out. R-134a 34 C 5-9 5-76 Saturated refrigerant-4a vapor at a saturation temperature of T sat 4 C condenses side a tube. Te rate of eat transfer from te refrigerant for te condensate exit temperatures of 4 C and 0 C are

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

ME 200 Thermodynamics 1 Fall 2017 Exam 3

ME 200 Thermodynamics 1 Fall 2017 Exam 3 ME 200 hermodynamics 1 Fall 2017 Exam Circle your structor s last name Division 1: Naik Division : Wassgren Division 6: Braun Division 2: Sojka Division 4: Goldenste Division 7: Buckius Division 8: Meyer

More information

Number of extra papers used if any

Number of extra papers used if any Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Fall 2018 Exam Circle your structor s last name Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division 2 (9:0): Choi

More information

(b) The heat transfer can be determined from an energy balance on the system

(b) The heat transfer can be determined from an energy balance on the system 8-5 Heat is transferred to a iston-cylinder device wit a set of stos. e work done, te eat transfer, te exergy destroyed, and te second-law efficiency are to be deterined. Assutions e device is stationary

More information

ESO 201A Thermodynamics

ESO 201A Thermodynamics ESO 201A Thermodynamics Instructor: Sameer Khandekar Tutorial 9 [7-27] A completely reversible heat pump produces heat at arate of 300 kw to warm a house maintained at 24 C. Theexterior air, which is at

More information

Liquid water static energy page 1/8

Liquid water static energy page 1/8 Liquid water static energy age 1/8 1) Thermodynamics It s a good idea to work with thermodynamic variables that are conserved under a known set of conditions, since they can act as assive tracers and rovide

More information

Thermodynamics I Chapter 6 Entropy

Thermodynamics I Chapter 6 Entropy hermodynamics I hater 6 Entroy Mohsin Mohd ies Fakulti Keuruteraan Mekanikal, Uniersiti eknologi Malaysia Entroy (Motiation) he referred direction imlied by the nd Law can be better understood and quantified

More information

Basics in Process Design. Frej Bjondahl 2006

Basics in Process Design. Frej Bjondahl 2006 Basics Process Design Frej Bjondahl 006 Contents Basics Process Design... Contents.... Introduction...3. Design/analysis of rocess systems usg mass and energy balances...3. Balance boundary, ut, ut, recirculation...4.

More information

Chapter 1. Introduction. Introduction to Heat Transfer

Chapter 1. Introduction. Introduction to Heat Transfer Chapter 1 Introduction to Heat Transfer Islamic Azad University Karaj Branch Dr. M. Khosravy 1 Introduction Thermodynamics: Energy can be transferred between a system and its surroundgs. A system teracts

More information

NEWCOMEN ATMOSPHERIC ENGINE

NEWCOMEN ATMOSPHERIC ENGINE NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m F 7 stroke 5 sia steam 8 50 F water NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m 5 sia steam 8 F 50 F water 7

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

Chapter 4 Practice Problems

Chapter 4 Practice Problems Chater 4 ractice roblems (4.) (a) the number of microstates is N (b) 3 articles total 3! {, } 3 number microstates of secific arrangement (macrostate)!*! robability = (# microstates of secific arrangement)/(total

More information

Chapter 7 Energy Principle

Chapter 7 Energy Principle Chater 7: Energy Princile By Dr Ali Jawarneh Hashemite University Outline In this chater we will: Derive and analyse the Energy equation. Analyse the flow and shaft work. Derive the equation for steady

More information

Chapter 1: Basic Definitions, Terminologies and Concepts

Chapter 1: Basic Definitions, Terminologies and Concepts Chapter : Basic Definitions, Terminologies and Concepts ---------------------------------------. UThermodynamics:U It is a basic science that deals with: -. Energy transformation from one form to another..

More information

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19.

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19. HERMODYNAMICS ES Answer Key. (a) 9. (a) 7. (c) 5. (a). (d). (b) 0. (d) 8. (d) 6. (c) 4. (b). (d). (c) 9. (b) 7. (c) 5. (c) 4. (d). (a) 0. (b) 8. (b) 6. (b) 5. (b). (d). (a) 9. (a) 7. (b) 6. (a) 4. (d).

More information

CHAPTER. The First Law of Thermodynamics: Closed Systems

CHAPTER. The First Law of Thermodynamics: Closed Systems CHAPTER 3 The First Law of Thermodynamics: Closed Systems Closed system Energy can cross the boundary of a closed system in two forms: Heat and work FIGURE 3-1 Specifying the directions of heat and work.

More information

Chapter 7: The Second Law of Thermodynamics

Chapter 7: The Second Law of Thermodynamics Chapter 7: he Second Law of hermodynamics he second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity he first law places no

More information

Dr Ali Jawarneh. Hashemite University

Dr Ali Jawarneh. Hashemite University Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Examine the moving boundary work or P d work commonly encountered in reciprocating devices such as automotive engines and compressors.

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

ME 200 Exam 2 October 22, :30 p.m. to 7:30 p.m.

ME 200 Exam 2 October 22, :30 p.m. to 7:30 p.m. CIRCLE YOUR LECTURE BELOW: First Name Solution Last Name 7:0 a.m. 8:0 a.m. 10:0 a.m. 11:0 a.m. Boregowda Boregowda Braun Bae :0 p.m. :0 p.m. 4:0 p.m. Meyer Naik Hess ME 00 Exam October, 015 6:0 p.m. to

More information

First Name Last Name CIRCLE YOUR LECTURE BELOW: Div. 1 10:30 am Div. 2 2:30 pm Div. 3 4:30 pm Prof. Gore Prof. Udupa Prof. Chen

First Name Last Name CIRCLE YOUR LECTURE BELOW: Div. 1 10:30 am Div. 2 2:30 pm Div. 3 4:30 pm Prof. Gore Prof. Udupa Prof. Chen CIRCLE YOUR LECURE BELOW: Div. 1 10:30 am Div. :30 m Div. 3 4:30 m Prof. Gore Prof. Udua Prof. Chen EXAM # 3 INSRUCIONS 1. his is a closed book examination. All needed roerty tables are rovided.. Do not

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Internal Energy in terms of Properties

Internal Energy in terms of Properties Lecture #3 Internal Energy in terms of roerties Internal energy is a state function. A change in the state of the system causes a change in its roerties. So, we exress the change in internal energy in

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Termodynamics Lecture Series Ideal Ranke Cycle Te Practical Cycle Applied Sciences Education Researc Group (ASERG) Faculty of Applied Sciences Universiti Teknologi MARA email: drjjlanita@otmail.com ttp://www5.uitm.edu.my/faculties/fsg/drjj1.tml

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory

Week 8. Steady Flow Engineering Devices. GENESYS Laboratory Week 8. Steady Flow Engineering Devices Objectives 1. Solve energy balance problems for common steady-flow devices such as nozzles, compressors, turbines, throttling valves, mixers, heaters, and heat exchangers

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers?

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers? Lecture 7 03 CM30 /0/03 CM30 Transort I Part II: Heat Transfer Alied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Deartment of Chemical Engineering Michigan Technological

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are . A team poer plant operate on a imple ideal Ranke cycle beteen te peciied preure limit. e termal eiciency o te cycle, te ma lo rate o te team, and te temperature rie o te coolg ater are to be determed.

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

EXAM # 1 CIRCLE YOUR LECTURE BELOW: 8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht INSTRUCTIONS

EXAM # 1 CIRCLE YOUR LECTURE BELOW: 8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht INSTRUCTIONS Last Name First Name CIRCLE YOUR LECTURE BELOW: 8: am : am : pm Prof. Memon Prof. Naik Prof. Lucht EXAM # INSTRUCTIONS. This is a closed book examination. An equation sheet and all needed property tables

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Chemical Engineering Thermodynamics Spring 2002

Chemical Engineering Thermodynamics Spring 2002 10.213 Chemical Engineering Thermodynamics Spring 2002 Test 2 Solution Problem 1 (35 points) High pressure steam (stream 1) at a rate of 1000 kg/h initially at 3.5 MPa and 350 ºC is expanded in a turbine

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity. Problem 44 A closed system of mass of 10 kg undergoes a process during which there is energy transfer by work from the system of 0147 kj per kg, an elevation decrease of 50 m, and an increase in velocity

More information

Lecture 7: Thermodynamic Potentials

Lecture 7: Thermodynamic Potentials Lecture 7: Thermodynamic Potentials Chater II. Thermodynamic Quantities A.G. Petukhov, PHY 743 etember 27, 2017 Chater II. Thermodynamic Quantities Lecture 7: Thermodynamic Potentials A.G. Petukhov, etember

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6113 DEPARTMENT: CIVIL SUB.CODE/ NAME: CE6303/ MECHANICS OF FLUIDS SEMESTER: III UNIT-1 FLUID PROPERTIES TWO MARK QUESTIONS AND ANSWERS 1. Define fluid mechanics.(auc

More information

LECTURE NOTE THERMODYNAMICS (GEC 221)

LECTURE NOTE THERMODYNAMICS (GEC 221) LETURE NOTE ON THERMODYNAMIS (GE ) Thermodynamics is the branch of science that treats the arious phenomena of energy and related properties of matter especially the relationship between heat, work and

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Chem340 Physical Chemistry for Biochemists Exam Mar 16, 011 Your Name _ I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

Availability and Irreversibility

Availability and Irreversibility Availability and Irreversibility 1.0 Overview A critical application of thermodynamics is finding the maximum amount of work that can be extracted from a given energy resource. This calculation forms the

More information

Piston Surface Pressure of Piston- Cylinder System with Finite Piston Speed

Piston Surface Pressure of Piston- Cylinder System with Finite Piston Speed 44, Issue (08) 55-5 Journal of Adanced Research in Fluid Mechanics and Thermal Sciences Journal homeage: www.akademiabaru.com/arfmts.html ISSN: 89-7879 Piston Surface Pressure of Piston- Cylinder System

More information