TUTORIAL SOLUTIONS. F.1 KCL, KVL, Power and Energy Q.1. i All units in VAΩ,,

Size: px
Start display at page:

Download "TUTORIAL SOLUTIONS. F.1 KCL, KVL, Power and Energy Q.1. i All units in VAΩ,,"

Transcription

1 F TUTOIAL SOLUTIONS F. KCL, KVL, Power and Energy Q All uns n VAΩ,,

2 Appendx F Tuoral Soluons Applyng KCL o he doed surface: + + Q. All uns n V, A, Ω Nework A Nework B Applyng KCL o he doed surface: + A regardless of he alue of. For Ω, For KΩ, V KV

3 Appendx F Tuoral Soluons Q. All uns n VAΩ,, 8 8+ V; ; olage across Ω ressor V

4 Appendx F Tuoral Soluons 6 Q. (a) Boh meers ge pose readngs A B + AM + VM Snce he arrows for and are n oppose drecons Power consumed Also, AM wll ge a pose readng f s pose, whle VM wll ge a pose readngs f s pose. Snce boh and are pose n hs case, s pose and power s consumed. (b) Boh meers ge negae readngs Boh and are negae, s pose and power s consumed. (c) One meer ges a pose readng and he oher ges a negae readng and hae oppose sgns, s negae and power s suppled by he dece. (d) One meer or boh meer ge zero readngs Power neher s consumed nor suppled by he dece.

5 Appendx F Tuoral Soluons 7 Q. Curren n crcu All uns n VAΩ,, Applyng KVL: + + Power consumed/suppled If he olage and curren arrows are n oppose drecons, Thus: or Power consumed ( )( ) olage curren Power consumed by Ω ressor ( ) 6W Power consumed by Ω ressor ( ) W Power consumed by V source ( ) W Power consumed by V source ( ) W Power suppled by V source W

6 Appendx F Tuoral Soluons 8 Q.6 All uns n VAΩ,, The A curren source s supplyng a power of ( )( ) W.

7 Appendx F Tuoral Soluons 9 Q.7 Effcency Elecrcal power suppled ( )( ) W. h.p. 76W h.p. 86W Mechancal power delered ( )( ) 86 Effcency Torque 9. % Moor speed ( re mn) π 6 rad re smn 6 π rad s Mechancal power delered 86 Torque moor speed π 6 78.Nm Energy los Power los 86 W Energy los per mn ( )( 6) 8J Q.8 Generaor oupu power ( )( ) W Generaor npu power 9. Generaor shaf speed. Torque 8. Nm..W re mn π 6 rad re smn. rad s

8 Appendx F Tuoral Soluons Q.9 Volage, curren and power gans for sysem Volage gan g log( ) db db Curren gan g 8 Power gan g gg 8 6 log( 6) db 76dB p elaonshp beween hese gans g g g p ( g p ) db ( g db) + ( g db) [ ] ( )( 6) log ( )( 6) db + [ ( ) + ( )] 6 76 log log db db db gp g g f load ressance equals amplfer's npu ressance Audo amplfer Mos loudspeakers hae ressances n he order of a few Ω. Howeer, n order no o load he CD player or oher audo npu equpmen, he npu ressance of he amplfer wll hae o be large and s usually greaer han many kω.

9 Appendx F Tuoral Soluons F. KCL, KVL and Groundng Q. Currens 8 8 All uns n VAΩ,, Value for Applyng KVL o he loop wh he sources and :

10 Appendx F Tuoral Soluons Q. (a) (open crcu or no load suaon) All uns n VAΩ,, 8 8 (b) 8Ω A 8 8 8

11 Appendx F Tuoral Soluons V (c) Ω + A 6V

12 Appendx F Tuoral Soluons (d) (shor crcu).a I may be slghly faser o dere wo general formulas for and and hen subsue he alues for.

13 Appendx F Tuoral Soluons Q. Equalence of crcus The wo crcus are equalen because he connecons (opology), elemens and currens beween he arous nodes are dencal: E D All uns n VAΩ,, A X C Ground B C B X A E D Ground

14 Appendx F Tuoral Soluons 6 Curren and olage s s X x Ground Applyng KCL o node X and hen KVL: s + ( ) 8 x s When, s A and x V When, s 7A and x V

15 Appendx F Tuoral Soluons 7 KCL for ground node Snce here may be oher componens conneced o ground, he applcaon of KCL mus nclude all he oher connecons no shown n he orgnal dagram. The mplcaon s ha all hese oher componens mus be delerng a combned curren of s o ground: Oher componens X s s Ground All hese are acually conneced ogeher Q. (a) Pon C grounded and Pon B conneced o Pon D A B C All uns n VAΩ,, D + VM Applyng KCL o node B: Applyng KVL o loop wh olage source, A, B and C: + A

16 Appendx F Tuoral Soluons 8 Applyng KVL o loop wh B, C and VM : 6 V (b) No connecon for Pon C and Pon B conneced o Pon D C A B All uns n VAΩ,, D + VM Applyng KCL o node C and hen o node B: A + A Applyng KVL o loop wh olage source, A, B and VM : + V (c) Pon B grounded and Pon C conneced o Pon D A All uns n VAΩ,, B C D + VM

17 Appendx F Tuoral Soluons 9 Applyng KVL o loop wh olage source, A and B: A Applyng KVL o loop wh B, C, D and VM : + V Q. Orgnal crcu All uns n VAΩ,, 6 X Applyng KCL o he doed surface: Thus: All uns n VAΩ,, 6 6 X Poenal of node X wr ground V

18 Appendx F Tuoral Soluons When he crcu s no grounded All uns n VAΩ,, 6 X 6 Undeermned The poenal of node X wr ground canno be deermned. In pracce, s alue wll depend on facors such as he exsence of sac charges and oher elecrcal and magnec effecs. When Pon X s grounded X 6 All uns n VAΩ,, The poenal of node X wr ground s now. Q.6 Frs crcu All uns n VAΩ,, Applyng KVL:

19 Appendx F Tuoral Soluons + Second crcu Applyng KCL: + + Thrd crcu + +

20 Appendx F Tuoral Soluons + + From KVL: Equalence The hree crcus are dfferen n crcu opology and he componens used. Howeer, hey hae he same olage-curren relaonshp and are elecrcally equalen from a olage-curren pon of ew. I s mpossble for an exernal crcu conneced o he oupus of hese crcus o ell whch crcu has acually been used: Exernal crcu Crcu, or Only sees - relaonshp Impossble o ell wheher crcu, or has been used

21 Appendx F Tuoral Soluons F. DC Crcu Analyss I Q. Source curren 6 All uns n VAΩ,, Value for + 6 Source curren A All uns n VAΩ,, 6

22 Appendx F Tuoral Soluons Q. Orgnal crcu A All uns n VAΩ,, B A B A B A + ( ) + ( ) B

23 Appendx F Tuoral Soluons 6 + ( ) Equalen ressance Ω When ouer wo ressors are shor-crcued A B A B Equalen ressance. 666Ω

24 Appendx F Tuoral Soluons 6 Q. Mesh analyss 7 All uns n VAΩ,, 6 A B C A B C 8 Applyng KVL for he hree loops shown: 8 ( ) 6+ ( ) + ( ) ( ) + ( ) + 6 ( ) 7

25 Appendx F Tuoral Soluons 7 Smplfyng: In marx form: 8 Solng (acually no requred n hs queson): + () 8 + ( + ) ( ) ( ) ( 78) + ( 7) 6( 78) + ( 7) 6( 99 ) + ( + 6) 6( 99) ( ) 9 ( 78) + 99( 7) ( 78) + 99( 7) ( 99 ) + 99( + 6) ( ) + 99( 6) ( ) Volages of nodes A, B and C wh respec o ground: A B C A B C A 8 6

26 Appendx F Tuoral Soluons 8 + B + C Nodal analyss + C A B A 6 + C B A B C D + 8 A B B E C 8 A C D E D E Applyng KCL o nodes A, B, C, D and E: D + 8 A 6 B A C A B A B C B E C A C + B C D + 8 A D + E C E + In marx form: A B C + 7 ` 8 D E

27 Appendx F Tuoral Soluons 9 Q. All uns n VAΩ,, 8 A B B A A B 8 A B Applyng KCL: A B A A A B A A A B A B B B A B + + B + B A + B A + B Elmnang A and B : ( ) ( ) ( ) ( ) A B + A + B B B 6 7 A B + A + B A A A B The equalen ressance whou he Ω ressor s herefore 7 8. Ω and he equalen ressance wh he Ω seres ressor s

28 Appendx F Tuoral Soluons Equalen ressance. 8Ω Q. Equalen ressance n Snce he ressors are n parallel, he equalen ressance s + + n Shor crcu curren n n n sc n Applyng KCL: sc + + n n Noron's equalen crcu sc + + n

29 Appendx F Tuoral Soluons sc + + n n Theenn's equalen crcu oc + + n oc sc n + + n + + n

30 Appendx F Tuoral Soluons Q.6 e-drawng orgnal crcu AM All uns n VAΩ,, 6 Equalen ressance whou Ω ressor 6 Equalen ressance ( ) Usng Noron's equalen crcu Ω + 6 AM sc 6 Snce AM reads A sc A Thus, when he swch s open

31 Appendx F Tuoral Soluons AM A Q.7 + +

32 Appendx F Tuoral Soluons F. DC Crcu Analyss II Q. Load curren due o Baery... All uns n VAΩ,, Curren from source A... + Load curren due o Baery... Curren from source A... +

33 Appendx F Tuoral Soluons Load curren due o Baery... Curren from source A... + Acual load curren A Q. Curren due o V olage source All uns n VAΩ,, 6 Curren from source 9. + ( 6 + ) A + 8

34 Appendx F Tuoral Soluons 6 Curren due o V olage source 6 Curren from source 8. + ( 6 + ) A + 8 Curren due o curren source ( ) A ( ) Acual curren A

35 Appendx F Tuoral Soluons 7 Q. Open crcu olage All uns n VAΩ,, V Equalen ressance. essance across ermnals. 667Ω + Theenn's equalen crcu and maxmum power.667 Maxmum power ransferable (wh a. 667Ω load) W. 667

36 Appendx F Tuoral Soluons 8 Q. All uns n VAΩ,, Combned curren of curren sources Equalen parallel ressance + 7 essor ha draws A 7 Ω essor ha absorbs he maxmum power Ω 7 Maxmum power ha can be ransferred 96 W

37 Appendx F Tuoral Soluons 9 Q. Theenn's equalen crcu All uns n V, A, Ω.6 d.6 d D D d Dece curren gen 6. A Applyng KVL: d d d and d can be found from solng hs (whch ges rse o he load lne) and he relaonshp f ( ) d gen by he characersc cure. Specfcally, when d, d 6.. Also, when d, d. d Dece characersc d f ( d ) All uns n V A Ω,, d. Load lne from crcu.6.6 d + d d The pon of nersecon ges d 6. A Source curren for power dsspaed n D o be 6. W.6 d All uns n VA,, Ω D d Power dsspaed n D d d 6.

38 Appendx F Tuoral Soluons 6 The dece olage and curren can be found from solng hs and he relaonshp f ( ) d gen by he characersc cure: d d. Dece characersc d f ( d ) Power requremen.6 d d All uns n V, A, Ω d The pon of nersecon ges d 8. V d 7. A From KVL: ( 7. ) + 8. A d d Q.6 Volage gan Applyng KCL o he second half of he crcu: ( ) Applyng KVL o he frs half of he crcu: + Elmnang : The olage gan s 8. The gan n olage magnudes s

39 Appendx F Tuoral Soluons 6 8 log db db..8 Equalen ressance To deermne he equalen ressance as seen from he oupu ermnals, all ndependen sources hae o be replaced by her nernal ressances and a olage source has o be appled o hese wo ermnals: All uns n VmA,,kΩ Transsor amplfer Equalen ressance 9 kω Noe ha n calculang hs ressance or n usng superposon, dependen sources mus no be replaced by her nernal ressances. Theenn's equalen crcu 9 All uns n VmA,,kΩ.8

40 Appendx F Tuoral Soluons 6 F. AC Crcu Analyss I Q. (a) AC waeform sn( ω ) π cos ω e jπ [( jω e )( e )] (b) cos ω e ( ) j [( jω e )( e )] Peak alue Frequency ω ω ωrad s Hz ωrad s Hz π π MS alue π Phase 9 Phasor e jπ/ 9 o e j o (c) AC waeform sn( + ) ( ) cos 6 e jπ j [( e )( e )] (d) ( ) cos e jπ j [( e )( e )] Peak alue Frequency rad s. 8Hz rad s Hz MS alue π Phase 6 π Phasor e jπ/ 6 o e jπ/ o

41 Appendx F Tuoral Soluons 6 AC waeform (e) π sn π π. cos + π jπ [( 6 j e )( e ) ] e. (f) ( + ). cos ( ) 77. cos + 7. e. j7. j [( 77e )( e )] Peak alue. Frequency rad s. 67Hz rad s. 8Hz MS alue.. 77 Phase Phasor π e jπ/ 6. o.77 e j.7.77 o Q. (a) (b) (c) (d) e j V jπ 6 jπ π e e ( e ) cos e jπ V ( j e )( j ) [ ] + V 6 e e cos + V π π π [ ] [( )( )]. e jπ A e (. jπ jπ )( ) e jπ. jπ jπ e e e e e. cos + π A jπ jπ jπ jπ jπ [ ] [( )( )].69 6 o A e ( 69. e )( e ) e e 69. e e. 69 cos cos π π A

42 Appendx F Tuoral Soluons 6 Q. From ( ) cos( ) V Frequency ω rad s Impedance of capacor j Ω jω. j. Impedance of nducor jω j Ω V j e I All uns n VAΩ,, V L j V I j V C I V ( ) cos( ) A π ji 6j L 6 cos + V V L ( ) V ( ) V V + V + 6 j C L VC + 6 j I I + j j +. j j Imag. I Arg [ I ] an ( ).8 eal I j

43 Appendx F Tuoral Soluons 6 Arg [ I] Arg[ 8 j]. +. an j ( ) I j. e. cos +. A Q. Impedances and phasors ( ) ( ) cos + V V e j V. Impedance of nducor j( )(. ) jω Impedance of capacor j( )(. ) I V All uns n VAΩ,, jω V e j o j V L j V C j an 6. 9 Toal mpedance + j j j + e e j V e I e j j j e j ( )( ) V I e e j66. 9 ( )( ) V ji e e e L j66. 9 V j9 j66. 9 j6. 9 ( )( ) V ji e e 8e C A V j9 j66. 9 j. V Ω

44 Appendx F Tuoral Soluons 66 Phasor dagram Imag All uns n VAΩ,, V V L V V + + V V L C eal V C V n phase wh I V L ( I lags V L by 9 o ) I VC ( I leads V by 9 o ) C Q. Componens The mpedances of seres L, C and LC crcus are ZL + j ω L + j π L Z j C j C + ω πc Z j L j C j LC + L ω π ω π C + j mus correspond o a seres L crcu wh componens:

45 Appendx F Tuoral Soluons 67 + jπ L + j Ω and L π. 9 H j mus correspond o a seres C crcu wh componens: j j C C Ω and π π( ). μ F Crcu admance Crcu mpedance Z ( j) ( j) j j j + j Crcu admance + + Z + j j + + ( ). j j j. Ω Power facor Power facor alue cos[ Arg( I) Arg( V) ] leadng, Arg( I) Arg( V) > leadng / laggng laggng, Arg( I) Arg( V) < I Arg( I) Arg( V) Arg Arg Arg( Z) V Z Arg( + j ) an Power facor alue cos(.6).89 leadng,.6 > leadng / laggng laggng,.6 <. 89 leadng. Imag Z Value of p.f. cos θ leadng p.f. as I lags V I θ θ V.6 eal

46 Appendx F Tuoral Soluons 68 F.6 AC Crcu Analyss II Q. Crcu dagram I jπl All uns n VAΩ,, Hz Equalen crcu for col Man equaons 9 Volage across Ω I 9 I ( π ) Volage across col I + j L + jl ( L) I ( π ) Supply I + + j L + + j L ( ) ( ) I + + L. Componen alues [( ) ( L) ] [ ( L) ] Ω ( L) 8. 7 ( L) L. 7H

47 Appendx F Tuoral Soluons 69 Power and power facor Power absorbed by col ( ) I 9.. W [ Arg( ) Arg( )] alue cos curren olage Power facor leadng, Arg leadng / laggng laggng, Arg curren Arg( curren) Arg( olage) Arg olage alue cos Arg Arg Impedance [ Arg( mpedance) ] Power facor leadng, Arg leadng / laggng laggng, Arg ( curren) Arg( olage) ( curren) Arg( olage) ( mpedance) ( mpedance) > < ( Impedance) < > ( mpedance ) ( + + jl) (. + + j. 7) Arg Arg Arg Arg( + ) an j Power facor alue cos (. 67). 79 leadng,. 67 < leadng / laggng laggng,. 67 > 79. laggng

48 Appendx F Tuoral Soluons 7 Q. Load curren I Z All uns n VAΩ,, V Hz Z Load acual power Load power facor. IZ A apparen power I Z V All uns n VAΩ,, I Z Laggng power facor lagsv I Z [ ( I ) ( ) Z V ] ( I ) Arg( V) <. laggng cos Arg Arg. load p.f. Arg Z Arg Arg ( I ) ( ) Z ( I ) < Z ± cos. ±. ( I ) Arg. Arg I I e [ Z ] e Z Z Z j I j. A Power facor mproemen I I Z Hz I C j C Z Load I ( j C)( ) C j68 C (. ) I I + I e + j68c + j 68C 8 66 Z C j.

49 Appendx F Tuoral Soluons 7 I C V I I Z 9. laggng cos [ Arg( ) Arg( )] 9. Arg( ). oerall p.f. I V I ± Arg( I) Arg( V) < Arg( I ) < Arg( I ). an - 68C an (. ) C F 7.6μ F uny [ ( ) ( )] oerall p.f. cos Arg I Arg V Arg( I) Arg( V) Arg( I ) - 68C an C. 8 F.8μ F leadng cos [ Arg( ) Arg( )] 8. Arg( ). 6 oerall p.f. I V I ± Arg( I) Arg( V) > Arg( I ) > Arg( I ). 6 an - 68C an (. 6) C F7.8μ F

50 Appendx F Tuoral Soluons 7 Q. Power a + jb I Z All uns n VAΩ,, V V Z Z + jx Elecrcal sysem V IZ ( a jb) ( jx) ( a+ ) + j( b+ X) ( ) V I + jx Z Z V [ ] [ ] e ( ) Power absorbed p e I V I + jx Maxmum power ransfer [ ] I e + jx I Z Z Z Z Z V ( a+ ) + j( b+ X) ( a+ ) + ( b+ X) V For maxmum p, he denomnaor should be as small as possble. As he numeraor does no depend on X and he smalles alue for ( b+ X) s, maxmum power wll be absorbed f X so ha p b V ( a+ ) Dfferenang: dp d V a V a ( + ) ( a+ ) ( a + ) Thus, maxmum p occurs when a

51 Appendx F Tuoral Soluons 7 and he maxmum power ransferable s p V ( + ) V V a W In general, maxmum power ransfer occurs when he load mpedance s equal o he conjugae of he Theenn's or Noron's mpedance. When hs occurs, he oal mpedance s purely resse and he curren and olage n he crcu are n phase: a+ jb V Maxmum power ransfer Z a j b ( a + jb) * Q. Noron's and Theenn's equalen crcu j All uns n VAΩ,, o o j Z I + j o j Z I j e + j j e j86.. e 8. j. j6. 8e

52 Appendx F Tuoral Soluons 7 Z I Z Z I Z Z ( ) Z j + j. e j8.. 6 j. 6. 6e j j + j j + j8. j I. 9 j. e. 7 j e j6 Maxmum power ransfer From he preous problem, hs occurs when Z I I Z Z Z * ( ) j 8. j8. Z Z. e. e [ ] Toal mpedance + j8. j8 Z Z Z + Z e.. +. e. cos ( 8. ) I IZ e. e 87. e [ ] cos ( 8. ) ( Z + Z ).cos( 8. ) j j j Thus, he maxmum power ransferable s e [ I ( IZ) ] I e[ Z ] j 87. e j8. e. e cos 8. ( ) [ ] cos ( 8. ) W cos 8. ( ) 87. ( ).cos 8.

53 Appendx F Tuoral Soluons 7 Q. Ω μh Col pf esonan frequency π 6 6 ( )( ) π 9. Q facor 6 ( )( ) 9. MHz Snce he Q facor s large, he crcu s bandpass n naure wh db cuoff frequences 9. ± MHz 9. Bandwdh 6. 9 khz Q.6 L Col C C pf resonan frequency π L khz L L For he lowes unable frequency o be 666 khz: ( ) π L( ) L. mh L 666 The hghes unable frequency s hen L.. MHz

54 Appendx F Tuoral Soluons 76 F.7 Perodc Sgnals Q. (a) Perod of olage and curren waeforms Snce he shores me needed for he waeforms o repea hemseles s 6s, he perod s 6s. (b) Aerage or mean alue of olage and curren waeforms The aerage alues of boh ( ) and ( ) are obously. (c) Tme when he dece s consumng power and when s supplyng power Snce he olage and curren arrows are n oppose drecons, he nsananeous power consumed by he dece s p ( ) ( ) ( ) Graphcally:

55 Appendx F Tuoral Soluons 77 () 6 ( ) p () () ( ) Consume power Supply power (d) Perod of nsananeous power cure From he aboe cure, he perod of ( ) p s s. (e) Aerage power consumed by dece In perod of s, he dece consumes W of power for s and supples W of power for s. Thus: Ne energy consumed n s ( )( ) ( )( ) J Aerage power consumed W

56 Appendx F Tuoral Soluons 78 Q. (a) Perod and mean alue of ( ) From he waeform self: Perod of ( ) T 6s Mean alue of ( ) V (b) MS alue () Mean alue Quadrac 6 (), < 9 Perod of ( ) T 6s Mean alue of ( ) mean alue of ( ) from o area under ( ) from o d 9 7 V MS alue of ( ) mean alue of ( ) (c) Aerage power rms ( ) Insananeous power consumed p ( ) ( ) mean alue of ( ) Aerage power consumed mean alue of [ mean alue of ( ) ] rms V

57 Appendx F Tuoral Soluons 79 Q. (a) ( ) cos( π + ) and ( ) cos( π + ) To an obserer wh a me orgn of : ( ) ( ) ( ) ( ) V e j cos π + and frequency V e j cos π + and frequency Phase dfference,v leadng To an obserer wh a me orgn of. : ( ) ( ) ( ) ( ) V e j 8 +. cos π + π + and frequency V e j +. cos π + π + and frequency Phase dfference 8,V leadng Snce he me orgn has changed, he olages obsered are me shfed and he phasors change n phase. Howeer, snce he frequences are he same, he relae phase dfference remans consan. (b) ( ) cos( π + ) and ( ) cos( π + ) To an obserer wh a me orgn of : ( ) ( ) V e j cos π + and frequency ( ) ( ) V e j cos π + and frequency To an obserer wh a me orgn of. : ( ) ( ) V e j 8 +. cos π + π + and frequency (. ) cos (. ) V e j + π + π + and frequency Snce he frequences are no he same, he phase dfference beween ( ) and ( ) s no consan and depends on he me orgn. In fac, s neher meanngful nor useful o compare he phases of ( ) and ( ), as hese sgnals hae dfferen frequences. Phasor analyss can only be used when all he sources are snusodal and hae he same frequences. In suaons where hs s no he case bu he sources are sll snusodal, superposon has o be used ogeher wh phasor analyss.

58 Appendx F Tuoral Soluons 8 Q. In general, for a sgnal ( ) wh perod T : ( ) a + a π π π π cos + b sn a b T T + cos + sn T T + T a d ( ) T Aerage alue of ( ) a, n n T ( ) nπ cos d T T Twce he aerage alue of n ( ) cos π T b, n n T ( ) nπ sn d T T Twce he aerage alue of n ( ) sn π T

59 Appendx F Tuoral Soluons 8 For he perodc waeform aboe: T s a mean of ( ) () a π mean of ( ) cos π π d 6 cos sn π π () cos(π /) () cos(π /) a π mean of ( ) cos () () cos(π /) cos(π /) a 6π mean of ( ) cos 6π π d 6 cos sn 6π π () cos(6π /) () cos(6π /) a 8π mean of ( ) cos () () cos(8π /) cos(π /)

60 Appendx F Tuoral Soluons 8 Mahemacally, for n > : a n nπ nπ nπ mean of () cos d d cos + cos 9 nπ nπ n n n + n π π sn sn sn sn 6 π π nπ 9 a, a, a, a, a, a6,,,,,,, π π π b n nπ nπ nπ mean of () sn d d sn + sn 9 nπ nπ n n n + n π π cos cos cos cos 6 π π nπ 9 b, b, b, b, b, b,,,,,,, 6 The Fourer seres represenaon for ( ) s hus: ( ) π 6π π + cos cos + cos π π π Q. Frequency response 9 All uns n VA,, Ω,H, F 9 () o() V Vo jπ f + Vo j π f + jπ f Frequency response H( f ) V + jπ f + j π f Magnude response ( ) Magnude response H f + jπ f + jπ f + π f + π f

61 Appendx F Tuoral Soluons 8 ( ) H + + ( ) H f π f f π H( f ) Lowpass. f The response s obously lowpass n naure. Ths can also be deduced from he low and hgh frequency characerscs of he capacors: Low frequency approxmaon 9 9 V Vo V V o V jπ f Hgh frequency approxmaon 9 9 V jπ f Vo V V V o

62 Appendx F Tuoral Soluons 8 Non-perodc excaon wh snusodal componens The oupu due o a general snusodal excaon can be found as follows: () cos( π θ) r f+ V re jθ ( ) ( ) ( ) ( ) [ ] ( ) o jarg H f j θ + Arg H( f ) V H f V H f e H f V V o { [ ]} () ( ) cos π θ Arg ( ) o r H f f+ + H f + jπ f + jπ f r cos π f + θ+ Arg + jπ f + jπ f + π f r cos an an + jπ f jθ re H f r e { [ ]} [ π f + θ+ ( π f ) ( π f )] π π s gen Thus, from superposon, he oupu due o () cos( ) + sn( ) by () cos( π ) () () sn( π ) () o o + jπ + jπ cos π + Arg + jπ + jπ + π cos an an + π [ π + ( π) ( π) ] ( π ). cos. + j π sn + j π [ π + ( π) ( π) ] ( π ). sn j π π + Arg + j π + π sn an an + π () cos( π ) + sn ( π ) (). cos ( π. ) +. sn ( π 99. ) Perodc square excaon () sn( π ) o o ( 6π) ( π) ( πn) sn sn sn n,,, { [ ]} n H f n n H f n () ( ) sn π + Arg ( ) n,,, n n,,, + π n n + π n { πn + ( πn) ( πn) } sn an an

63 Appendx F Tuoral Soluons 8 F.8 Transens I Q. Volages across nducor L () d () d () H () (ma) 6 Graden Graden Graden (ms) () L (V) (ms) Volages across capacor C () d C () () C d C ( ) d ( ) C d C d Cd ( ) C ( ) C C C C d [ ] [ ( ) ( ) ] C

64 Appendx F Tuoral Soluons 86 ( ) ( ) ( ) C C + C d [ nal olage a ] + area under ( ) from o C For hs problem: ( ) ( ) C 6 area under from o [ ] [ ] () (ma) 6 (ms) () C. (V) Area 6 Inegral ncreases lnearly Area 8 6 Inegral ncreases quadracally Area 6 Inegral ncreases lnearly.. (ms)

65 Appendx F Tuoral Soluons 87 Q. (a) Volages and currens for < Wh he source beng a dc one and akng he swches o be n he posons shown sarng from, all he olages and currens wll hae seled down o consan alues for praccally all < : () 6 d () d d () d () () () 6 () () (b) Volages and currens a (jus afer he swches are hrown) Snce he olages across capacors mus be connuous, ( ) and ( ) mus hae he same alues before he swches are hrown:

66 Appendx F Tuoral Soluons 88 () 6 () () () 6 6 () () (c) Volages and curren for () 6 d () d d () d () () From KCL and KVL: d ( ) ( ) d ( ) d d ( ) 6( ) ( ) Elmnang ( ) and ( ) : d ( ) ( ) ( ) ( ) ( ) ( ) d d ( ) d 6 d d d d 6 + d d

67 Appendx F Tuoral Soluons 89 Solng hs homogeneous equaon: ( ) ke, Applyng nal condon: ( ) k ( ) e, 6 6 Solng for ( ) and ( ) : d ( ) () e ( ) k + e d 6 ( ) k k ( ) + + e, ( ) ( ) ( ) 6 + e e e, (d) Volages and curren waeforms 6 () () ()

68 Appendx F Tuoral Soluons 9 Q. (a) Volages and curren and energy sored for < Wh he source beng a dc one and akng he swches o be n he posons shown sarng from, all he olages and currens wll hae seled down o consan alues for praccally all < : L d () d L () () L L ( ) L Energy sored n nducor (b) Curren a (jus afer he swches s opened) Snce he curren n he nducor mus be connuous, ( ) mus hae he same alue before he swch s opened: L ()

69 Appendx F Tuoral Soluons 9 (c) Curren for L d () d () L () () ( ) L d d d( ) + + ( ) + ( ) + ( ) d L + ( ) L ke, + ( ) k ( ) e L, (d) Energy los for Insananeous power los n ressors ( ) ( ) Toal energy los ( + ) + + ( + ) ( + ) e L d e + L + L e + L, L From he conseraon of energy, hs mus also be equal o he decrease n energy sored by he nducor: L ( ) L ( ) L Decrease n energy sored by nducor

70 Appendx F Tuoral Soluons 9 Q. Tme < () () Tme jus afer he frs swch s acaed Snce he curren n he nducor mus be connuous, he nducor mus be carryng he same 6A of curren jus afer he frs swch s acaed: () () 6 Tme and < afer acang s swch bu before closng nd swch d () d () () () d( ) d( ) ( ) + ( ) + ( ) ke, < d d, ( ) k ( ) e < ( ) ( ) 6e, <

71 Appendx F Tuoral Soluons 9 Tme jus afer closng second swch Snce he curren n he nducor mus be connuous, ( ) mus be he same as e e A jus before closng hs swch: () e (). () Tme afer closng second swch d () d () (). () d( ) d( ) ( ) +. ( ) + ( ) he 6, d d 6 ( ) ( ) he 6 e h e ( ) e e 6, ( ) ( ). ( ) 8e e 6, Volage and curren waeforms

72 Appendx F Tuoral Soluons 9 () 6 ()

73 Appendx F Tuoral Soluons 9 F.9 Transens II Q. Volages and currens for < Takng he swches o be n he posons shown sarng from, all he olages and currens wll hae seled down o consan alues for praccally all <. () d C C () d () L () C () C L d L L () d () ( ) ( ) C L () () () L ( ) C () C L

74 Appendx F Tuoral Soluons 96 Volages and currens jus afer closng swch a Snce he olage across a capacor and he curren hrough an nducor mus be connuous, he nal condons are () L C () C L Volages and currens for () d C C () d () L () L C C () L d L L () d ( ) ( ) ( ) ( ) C d C dc C C + + d d C C ( ) ( ) ( ) L d L dl ( ) d d L L + + L L The general soluons are ( ) ( ) + ( ) C ss r ( ) ( ) + ( ) L ss r The seady sae responses are ( ) k, ss d ( ) ( ) ss ss k + k ( ) ss, d C C C ( ) k, ss

75 Appendx F Tuoral Soluons 97 d ( ) ss d ( ) ( ) L k + ss k ss, L L The ransen responses are gen by d ( ) ( ) r r C ( ) + r he d C, d ( ) r ( ) ( ) d L r r he + L, Combnng and applyng nal condons: C ( ) ( ) + ( ) + h e, C ss r C ( ) h h ( ) + e, C C ( ) ( ) ( ) L ss + r + he L, ( ) h h ( ) L L e + L, Source curren: for ( ) ( ) C d C ( ) d C e e e C C C e + L L For hs o be me ndependen: C L L C L

76 Appendx F Tuoral Soluons 98 Q. Volages and currens for < before he swch s opened All uns n VA,, Ω, F () ( ) a jus afer he swch s opened Snce he olage across he capacor mus be connuous, ( ) mus be ( ) ( ) for afer he swch s opened d () d + () () d () d () d( ) ( ) ( ) + ( ) ( ) + d d + d The general soluon of hs s gen by ( ) ( ) + ( ) ss r ( ) ss s he seady sae response and can be found by ryng ( ) ss k,

77 Appendx F Tuoral Soluons 99 d ( ) ss + ( ) 7 ( ) ss + k k ss 7, d ( ) r s he ransen response and s equal o he general soluon of d ( ) r + ( ) ( ) he r r, d Combnng: ( ) ( ) + ( ) 7 + he, ss r ( ) 7 + h h ( ) 7+ e, Q. (a) Volage and curren before closng swch () C () C L (b) Volages and curren jus afer closng swch a Snce he olage across a capacor and he curren hrough an nducor mus be connuous, he nal condons are () C () C L (c) Goernng dfferenal equaon for curren for () d C () () C d C () C L L d () d

78 Appendx F Tuoral Soluons ( ) L d d d ( ) d( ) d ( ) C + ( ) + ( ) C + + d L d L d d ( ) d( ) ( ) + + d L d LC, wh nal condons ( ) ( ) ( ) ( ) L d d C d d L Subsung esonan frequency ω LC ω L L Q C he goernng dfferenal equaon s d ( ) ω d( ) ( ) + + ω, d Q d (d) Oerdamped suaon when Q < The roos of he polynomal are d ( ) ω d( ) ω ( ) z d Q d ( ) Q z + + ω + + ω z, z d d replaced by z ω ω ± ω Q Q ω ± Q ( Q ) When Q <, boh roos are real, negae and dsnc. Thus: z z ( ) ke + ke, z z ( Q ) ω < Q ( Q ) ω + < z Q Usng nal condons: ( ) k + k k k

79 Appendx F Tuoral Soluons d( ) d kω kz + kz k( z z) Q L Q L ( ) ( z z ) ( z z ) k e e Q L Q e e, ω Q L ω Q e z () Q L ω Q e z (e) Underdamped suaon when Q > When Q >, he wo roos form a complex par: z z ( j Q ) Q Q j ω ω + ω Q ( j Q ) Q Q j ω ω + ω z Q z z ( ) he + he, Usng nal condons: ( ) h + h h h d( ) d hz + hz h( z z) jhω L Q L j ( ) h ( e e ) Lω Q e ω z z Q j Q ω Q + j ω ω Q e ω Q j e Lω Q e Q e e j Q Q ω Lω Q jω ω Q sn ω,

80 Appendx F Tuoral Soluons () (e) Undamped suaon when When, he Q facor and curren s Q ω L ( ) ω ( ω) ω Q e Lω Q () Q sn sn, Lω

81 Appendx F Tuoral Soluons Q. Volages and curren for < before he swch s closed () sn (ω ) C L Volages and curren a jus afer he swch s closed As he olage across he capacor and he curren hrough he nducor mus be connuous: () sn (ω) C L Curren for afer he swch s closed () sn (ω ) C L d () L d C () d ( ) L d d + + C jω ( ) d ( ) sn( ω) e[ je ] ( ) ( ) L d d + + e ωej ω d d C wh nal condons ( ) ( ) [ ]

82 Appendx F Tuoral Soluons ( ) Inal olage across nducor L d d Seady sae curren The seady sae response ( ) ss s gen by jω ( ) [ ] e I e, ss L d e d ss [ I e jω] [ I e jω e ] ss d ss + + e ss d C jω jω [ I e ] e[ ωe ] e L d e jω de jω jω e e e[ ] d d C I ss j L j C I ss e jω e jω + + ω ω ω + + j ω L+ jω+ I I C ss ω ss j jωl+ + jc ss ( ) ( ) ( ) jz e jω jω e e e Z j Z sn ω Arg Arg jze Z jz [ ] + ω L ωc ω L C ω sn ω an,

83 Appendx F Tuoral Soluons F. Magnec Crcus Q. Toal flux.8 mwb.mm N Area mm Lengh mm elae permeably 6 elucance of ron core core 7 6 ( 6 π )( ). 66 A Wb. elucance of ar gap gap 7 6 ( π )( ) 99. ( 8. )( core gap ) MMF N A Wb 6 6 ( 8. )( ) 776A ( Amp.urns) + Q. Force of aracon MMF for ar gaps ( )( ) 8A ( ) elucance of ar gaps. gap 7 ( π )(. ) 8 Flux n crcu Φ Wb 77. A Wb

84 Appendx F Tuoral Soluons 6 To deermne he force, suppose he gap lengh s decreased by δx and he curren s changed by δ whle he flux remans he same. Snce here s no back emf nduced and no power s suppled by he elecrcal crcu: ( ) 8 δ x δ x Decrease n relucance δgap 7 ( π )(. ) π δgapφ δ x Decrease n energy sored 9. δ x π Work done by moemen of armaure ( aracon force) δ x From energy conseraon: 9. δx Aracon force δx 9. N Doublng of curren If he curren s doubled, he flux Φ wll be doubled. Snce he energy sored and he force are proporonal o Φ, hey wll ncrease by mes o (. 9) 8kN heorecally. Howeer, n a praccal dece, he ron may ge sauraed as he curren s ncreased. The flux may herefore no ncrease by a facor of and he acual force wll be smaller. Q. I : I : n I/n Ω V V.V.nV Ω For maxmum power ransfer, he source mus be seeng a load ressance of Ω: I Ω V V Ω V V

85 Appendx F Tuoral Soluons 7 I ( + ). A. nv nv n 9 n In I Q. I : n I n 66 Z n raed curren 66 I 8. laggng p.f. 78. A cos [ Arg( I )] 8. Arg( I ) ± 6. 9 Arg( I ) < Arg( I ) < Arg( I ) 6. 9 Z e In j 7 8e j6. 9 Ω Load mpedance referred o prmary load mpedance seen by source e I j e j6. 9 Ω Q. Hz () () () V N N () V Prmary wndng Flux Φ() Secondary wndng

86 Appendx F Tuoral Soluons 8 N N V N 66 V Snce he currens are snusodal a Hz, he flux ( ) Φ wll also be snusodal: Φ ( ) Φ ( + θ ) max cos π Thus, he prmary olage wll be ( ) ( ) N d Φ π NΦ max sn ( π + θ ) d The rms alue of hs s π NΦ max Φmax. Wb π ( ) Φmax Φmax Cross seconal area of core cm maxmum flux densy 6. Q.6 Effcences under dfferen operang condons Full load, uny pf full load, uny pf Apparen power delered ( VA ). 7 7 Acual power delered ( W ) 7 7 Copper loss ( W ) Iron loss ( ) W Toal loss ( W ) Power suppled ( W ) Effcency 98. % % 8

87 Appendx F Tuoral Soluons 9 Full load, 8. pf full load, 8. pf Apparen power delered ( VA ). 7 7 Acual power delered ( W ) Copper loss ( W ) Iron loss ( ) W Toal loss ( W ) Power suppled ( W ) Effcency 97. 6% % 7 All-day effcency Energy loss ( kw hr ) Energy delered ( kw hr) 6 hr no load 6 (. ). 6 hr full load, uny pf hr 6 (. +. 6) full load, uny pf ( ). 8 hr full load,. 8pf 8 hr full load, (. +. 6) ( ). pf 8. hr no load (. ) 7. Toal All-day effcency 97. %

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

CHAPTER II AC POWER CALCULATIONS

CHAPTER II AC POWER CALCULATIONS CHAE AC OWE CACUAON Conens nroducon nsananeous and Aerage ower Effece or M alue Apparen ower Coplex ower Conseraon of AC ower ower Facor and ower Facor Correcon Maxu Aerage ower ransfer Applcaons 3 nroducon

More information

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current : . A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Chapter 5. Circuit Theorems

Chapter 5. Circuit Theorems Chaper 5 Crcu Theorems Source Transformaons eplace a olage source and seres ressor by a curren and parallel ressor Fgure 5.-1 (a) A nondeal olage source. (b) A nondeal curren source. (c) Crcu B-conneced

More information

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,, 196 E TUTORIAL PROBLEMS E.1 KCL, KVL, Power and Energy Q.1 Determne the current n the followng crcut. 3 5 3 8 9 6 5 Appendx E Tutoral Problems 197 Q. Determne the current and the oltage n the followng

More information

A capacitor consists of two conducting plates, separated by an insulator. Conduction plates: e.g., Aluminum foil Insulator: air, mica, ceramic, etc

A capacitor consists of two conducting plates, separated by an insulator. Conduction plates: e.g., Aluminum foil Insulator: air, mica, ceramic, etc 3//7 haper 6 apacors and Inducors Makng preparaon for dynamc crcus, whch hae far more applcaons han he sac crcus we hae learned so far. 6. apacors Sore energy n elecrc feld nsulaor onducng plaes A capacor

More information

First-order piecewise-linear dynamic circuits

First-order piecewise-linear dynamic circuits Frs-order pecewse-lnear dynamc crcus. Fndng he soluon We wll sudy rs-order dynamc crcus composed o a nonlnear resse one-por, ermnaed eher by a lnear capacor or a lnear nducor (see Fg.. Nonlnear resse one-por

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

3/16/2012. EE101 Review. Reference Directions

3/16/2012. EE101 Review. Reference Directions 3/6/ EE eew eerence Drecons uphll: baery downhll: ressor 3/6/ eerence Drecons Power and Energy p( ( ( Was w p( d Joules 3/6/ eerence Drecons urren s lowng n he passe conguraon I he curren lows oppose o

More information

Energy Storage Devices

Energy Storage Devices Energy Sorage Deces Objece of Lecure Descrbe he consrucon of a capacor and how charge s sored. Inroduce seeral ypes of capacors Dscuss he elecrcal properes of a capacor The relaonshp beween charge, olage,

More information

Lesson 2 Transmission Lines Fundamentals

Lesson 2 Transmission Lines Fundamentals Lesson Transmsson Lnes Funamenals 楊尚達 Shang-Da Yang Insue of Phooncs Technologes Deparmen of Elecrcal Engneerng Naonal Tsng Hua Unersy Tawan Sec. -1 Inroucon 1. Why o scuss TX lnes srbue crcus?. Crera

More information

V R. Electronics and Microelectronics AE4B34EM. Electronics and Microelectronics AE4B34EM. Voltage. Basic concept. Voltage.

V R. Electronics and Microelectronics AE4B34EM. Electronics and Microelectronics AE4B34EM. Voltage. Basic concept. Voltage. Elecroncs and Mcroelecroncs AEBEM. lecure basc elecronc crcu conceps ressors, capacors, nducors Elecroncs and Mcroelecroncs AEBEM Sudng maerals: server MOODLE hp://moodle.kme.fel.cvu.cz AEBEM Elecroncs

More information

R th is the Thevenin equivalent at the capacitor terminals.

R th is the Thevenin equivalent at the capacitor terminals. Chaper 7, Slun. Applyng KV Fg. 7.. d 0 C - Takng he derae f each erm, d 0 C d d d r C Inegrang, () ln I 0 - () I 0 e - C C () () r - I 0 e - () V 0 e C C Chaper 7, Slun. h C where h s he Theenn equalen

More information

Chapter 7 AC Power and Three-Phase Circuits

Chapter 7 AC Power and Three-Phase Circuits Chaper 7 AC ower and Three-hae Crcu Chaper 7: Oulne eance eacance eal power eacve power ower n AC Crcu ower and Energy Gven nananeou power p, he oal energy w ranferred o a load beween and : w p d The average

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcuts (ECE33b SteadyState Power Analyss Anests Dounas The Unersty of Western Ontaro Faculty of Engneerng Scence SteadyState Power Analyss (t AC crcut: The steady state oltage and current can

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors Crcuts II EE1 Unt 3 Instructor: Ken D. Donohue Instantaneous, Aerage, RMS, and Apparent Power, and, Maxmum Power pp ransfer, and Power Factors Power Defntons/Unts: Work s n unts of newton-meters or joules

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Revision: June 12, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 12, E Main Suite D Pullman, WA (509) Voice and Fax .: apacors Reson: June, 5 E Man Sue D Pullman, WA 9963 59 334 636 Voce an Fax Oerew We begn our suy of energy sorage elemens wh a scusson of capacors. apacors, lke ressors, are passe wo-ermnal crcu elemens.

More information

Transient Response in Electric Circuits

Transient Response in Electric Circuits Transen esponse n Elecrc rcus The elemen equaon for he branch of he fgure when he source s gven by a generc funcon of me, s v () r d r ds = r Mrs d d r (')d' () V The crcu s descrbed by he opology equaons

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Lecture 11 Inductance and Capacitance

Lecture 11 Inductance and Capacitance ecure Inducance and apacance EETRIA ENGINEERING: PRINIPES AND APPIATIONS, Fourh Edon, by Allan R. Hambley, 8 Pearson Educaon, Inc. Goals. Fnd he curren olage for a capacance or nducance gen he olage curren

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

2. Electric Circuit Theory

2. Electric Circuit Theory . Elecrc rcu Theory J Deparmen of Elecrcal, Elecronc, and Informaon Engneerng (DEI) - Unersy of ologna Elecrc crcu heory and Elecromagnec heory are he wo fundamenal heores upon whch all branches of elecrcal

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California MEMSBase Fork Gyrosoe Ω r z Volage Deermnng Resoluon EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 17 () Curren (+) Curren Eleroe EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 18 [Zaman,

More information

CAPACITANCE AND INDUCTANCE

CAPACITANCE AND INDUCTANCE APAITANE AND INDUTANE Inroduces wo passve, energy sorng devces: apacors and Inducors LEARNING GOALS APAITORS Sore energy n her elecrc feld (elecrosac energy) Model as crcu elemen INDUTORS Sore energy n

More information

Diode rectifier with capacitive DC link

Diode rectifier with capacitive DC link . Converers Dode recfer wh capacve DC lnk 4 e lne lne D D 3 C v v [] e e D D 4 4 5 5 Fgure.: A sngle-phase dode recfer wh a capacve DC lnk. [s] Fgure.: ne-o-neural volage and DC sde volage for a sngle-phase

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2) Company LOGO THERMODYNAMICS The Frs Law and Oher Basc Conceps (par ) Deparmen of Chemcal Engneerng, Semarang Sae Unversy Dhon Harano S.T., M.T., M.Sc. Have you ever cooked? Equlbrum Equlbrum (con.) Equlbrum

More information

Power Electronics 7. Diode and Diode Circuits

Power Electronics 7. Diode and Diode Circuits Module 7 Dode and Dode Crcus. Inroducon 2. DC and swchng characerscs 3. Types of Power Dode 4. Dode Crcu 4.. Seres Conneced Dodes 4.2. Parallel Conneced Dodes 5. Dode behavor for dfferen loads 6. Freewheelng

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

EG Low Voltage CMOS Fully Differential Current Feedback Amplifier with Controllable 3-dB Bandwidth

EG Low Voltage CMOS Fully Differential Current Feedback Amplifier with Controllable 3-dB Bandwidth EG0800330 Low olage CMS Fully Derenal Curren Feedback Ampler wh Conrollable 3dB Bandwdh Ahmed H. Madan 2, Mahmoud A. Ashour, Solman A. Mahmoud 2, and Ahmed M. Solman 3 adaon Engneerng Dep., NCT, EAEA Caro,

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Battery-Operated Electronic Ballast of Fluorescent Lamps for Photovoltaic Applications

Battery-Operated Electronic Ballast of Fluorescent Lamps for Photovoltaic Applications Baery-Operaed Elecronc Ballas of Fluorescen Lamps for Phooolac Applcaons Yng-Chun Chuang Yu-Lung Ke Deparmen of Elecrcal Engneerng Kun Shan Unersy Yung-Kang Cy, Tanan Hsen, Tawan, R.O.C. e-mal:chuang@mal.ksu.edu.w

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley Module B3 3.1 Snusodal steady-state analyss (sngle-phase), a reew 3. hree-phase analyss Krtley Chapter : AC oltage, Current and Power.1 Sources and Power. Resstors, Inductors, and Capactors Chapter 4:

More information

Energy Storage Devices

Energy Storage Devices Energy Srage Deces Objece f ecure Descrbe The cnsrucn f an nducr Hw energy s sred n an nducr The elecrcal prperes f an nducr Relanshp beween lage, curren, and nducance; pwer; and energy Equalen nducance

More information

Control Systems. Mathematical Modeling of Control Systems.

Control Systems. Mathematical Modeling of Control Systems. Conrol Syem Mahemacal Modelng of Conrol Syem chbum@eoulech.ac.kr Oulne Mahemacal model and model ype. Tranfer funcon model Syem pole and zero Chbum Lee -Seoulech Conrol Syem Mahemacal Model Model are key

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

A New Family of Full-Bridge ZVS Converters

A New Family of Full-Bridge ZVS Converters New Famly of Full-rdge ZV Converers ungaek Jang and Mlan M. Jovanovć Power Elecroncs Laboraory Dela Producs Corporaon P.O. ox 7, 50 Davs Dr. Research Trangle Park, NC 7709, U... bsrac famly of sof-swched,

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk,

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

DYNAMICS ANALYSIS OF LFR MODEL FOR A SINGLE-STAGE HIGH POWER FACTOR CORRECTION DIAGONAL HALF-BRIDGE FLYBACK AC/DC CONVERTER

DYNAMICS ANALYSIS OF LFR MODEL FOR A SINGLE-STAGE HIGH POWER FACTOR CORRECTION DIAGONAL HALF-BRIDGE FLYBACK AC/DC CONVERTER Journal of he Chnese Insue of Engneers, Vol. 3, No. 4, pp. 555-567 (9) 555 DYNMICS NLYSIS OF LF MODEL FO SINGLE-STGE HIGH POWE FCTO COECTION DIGONL HLF-IDGE FLYCK C/DC CONVETE Jong-Lck Ln*, Chen-Yang Chen,

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

EE 101 Electrical Engineering. vrect

EE 101 Electrical Engineering. vrect EE Elecrical Engineering ac heory 3. Alernaing urren heory he advanage of he alernaing waveform for elecric power is ha i can be sepped up or sepped down in poenial easily for ransmission and uilisaion.

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

CHAPTER 2 Quick Quizzes

CHAPTER 2 Quick Quizzes CHAPTER Quck Quzzes (a) 00 yd (b) 0 (c) 0 (a) False The car may be slowng down, so ha he drecon o s acceleraon s oppose he drecon o s elocy (b) True I he elocy s n he drecon chosen as negae, a pose acceleraon

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Prakkum Polymer Scence/Polymersaonsechnk Versuch Resdence Tme Dsrbuon Polymerzaon Technology Laboraory Course Resdence Tme Dsrbuon of Chemcal Reacors If molecules or elemens of a flud are akng dfferen

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Transcription: Messenger RNA, mrna, is produced and transported to Ribosomes

Transcription: Messenger RNA, mrna, is produced and transported to Ribosomes Quanave Cenral Dogma I Reference hp//book.bonumbers.org Inaon ranscrpon RNA polymerase and ranscrpon Facor (F) s bnds o promoer regon of DNA ranscrpon Meenger RNA, mrna, s produced and ranspored o Rbosomes

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours NATONAL UNVERSTY OF SNGAPORE PC5 ADVANCED STATSTCAL MECHANCS (Semeser : AY 1-13) Tme Allowed: Hours NSTRUCTONS TO CANDDATES 1. Ths examnaon paper conans 5 quesons and comprses 4 prned pages.. Answer all

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

Water Hammer in Pipes

Water Hammer in Pipes Waer Haer Hydraulcs and Hydraulc Machnes Waer Haer n Pes H Pressure wave A B If waer s flowng along a long e and s suddenly brough o res by he closng of a valve, or by any slar cause, here wll be a sudden

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssign HW Due 11:59PM Tuesday Clicker Information WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swss Federal Insue of Page 1 The Fne Elemen Mehod for he Analyss of Non-Lnear and Dynamc Sysems Prof. Dr. Mchael Havbro Faber Dr. Nebojsa Mojslovc Swss Federal Insue of ETH Zurch, Swzerland Mehod of Fne

More information

II. Light is a Ray (Geometrical Optics)

II. Light is a Ray (Geometrical Optics) II Lgh s a Ray (Geomercal Opcs) IIB Reflecon and Refracon Hero s Prncple of Leas Dsance Law of Reflecon Hero of Aleandra, who lved n he 2 nd cenury BC, posulaed he followng prncple: Prncple of Leas Dsance:

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Chapter 10 Sinusoidal Steady-State Power Calculations

Chapter 10 Sinusoidal Steady-State Power Calculations Chapter 0 Snusodal Steady-State Power Calculatons n Chapter 9, we calculated the steady state oltages and currents n electrc crcuts dren by snusodal sources. We used phasor ethod to fnd the steady state

More information

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING Objeces To learn abou hree ways ha a physcs can descrbe moon along a sragh lne words, graphs, and mahemacal modelng. To acqure an nue undersandng

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information