Classical Theory of the Atom

Size: px
Start display at page:

Download "Classical Theory of the Atom"

Transcription

1 QUANTUM CHEMISTRY

2 Classical Theory of the Atom The electron is in a shell around nucleus at a certain distance (radius, r) Electron orbits (revolves) the nucleus, like the planets around the sun. r Hydrogen What we have studied thus far.

3 Quantum Theory of the Atom We don t know exactly where the electron is. But we can say with high probability that the electron is in a region of space. This region of space is called, orbital (or electron cloud). Imagine a sphere (3D) volume around the nucleus, and somewhere in that space, we can find an electron.

4 Quantum Theory Erwin Shrödinger, Austrian Physicist, applied the idea of electrons behaving as a wave to explain electron behaviour in atoms. He developed a wave equation to describe the 3D shapes of atomic orbitals where there is a high probability that electrons are located

5 Quantum numbers The shape, size, and energy of each orbital (electron cloud) is a function of 4 quantum numbers. These quantum numbers describe the location of an electron within an atom or ion. The quantum numbers are: 1. n (principal) (angular momentum) 3. m l (magnetic) 4. m s (spin)

6 Principal Quantum number (n) Each energy level (shell) has a number called the Principal Quantum Number, n. In other words, n, indicates the main energy level occupied by the electron. n, is a positive integer: n = 1, 2, 3 7 As, n, increases, the average distance of the electron from the nucleus increases. (Energy also increases.)

7 Angular momentum quantum number ( ) Each energy level (n) has between 1 and 4 sublevels or subshells, which is represented by the angular momentum quantum number,. Values for,, is dependent on, n, and ranges from: = 0 to (n-1) For example, if n = 1, there is only one possible value for, ( =0), indicates the shape of the orbital. 4 possible shapes: s, p, d and f.

8 Angular momentum quantum number ( ) In the first shell: n =1, which means, = 0 (this is called the, s, orbital) The first shell (n), has one subshell (one value for, ) The shape of the, s-orbital is a sphere. The electron is most likely to be found in that sphere.

9 Angular momentum quantum number ( ) In the second shell: n = 2, which means, = 0, 1 (two possible values) Two values for,, thus, two possible shapes. = 0 (s orbital, spherical previous slide) = 1 (p orbital, bow-tie shape) Electron is likely to be found in that 3D volume of space Planar node, through the nucleus, which is an area of zero probability of finding an electron The Second shell (n) has two subshells (s, and p)

10 Magnetic quantum number (m l ) m l indicates orientation of an orbital around the nucleus m l depends on : m l = - to + If, =0 (s orbital sphere), then, m l = 0 (one possible value, meaning, one possible orientation) This is because, sphere has only one orientation in space.

11 Magnetic quantum number (m l ) If, = 1, then m l = -1, 0, +1 (three possible values, thus three possible orientation) Recall, when = 1, we have, p, orbital (bow-tie shape) The three orientations are designated, p x, p y, p z for the axis, and lie 90 o apart in space

12 Spin quantum number (m s ) Electrons can spin clockwise or counter-clockwise around an axis. Thus there are two values for m s m s = +1/2 (spin up); or m s = -1/2 (spin down) Spin clockwise/counter-clockwise are just arbitrary directions. It is important to understand that two electrons in the same subshell spin in opposite directions.

13 D orbitals So far we have examined the first two shells (n =1, n = 2) In the third shell: n= 3, which means, = 0, 1, 2 (three possible values, thus three possible shapes) Recall =0 (s orbital, spherical); = 1 (p orbital, bow-tie) Now, when = 2, this is called the, d-orbital (shaped like a clover leaf)

14 D orbitals When = 2, then m l = -2, -1, 0, +1, +2 (five possible values, which means, five possible orientations in space) Four of the orbitals look like clover leaf, while one looks like a peanut, with a donut around it. More complex than, p orbitals.

15 F orbitals In the fourth shell: n= 4, which means, = 0, 1, 2, 3 (4 possible shapes) When, = 3, this is called the, f, orbital.

16 F orbitals When = 3, m l = -3, -2, -1, 0, +1, +2, +3 (seven possible orientations) Even more complex (for higher, 2 nd /3 rd year University Chemistry)

17 Summary

18 Practice

19 Representing Electrons It is important to be able to describe where the electrons are with respect to energy level (shell) and subshell (s, p, d, f). Two ways: 1. Electron configuration: the concise way 2. Orbital diagrams: the visual way But first, we need to learn a few important rules!

20 Rule I The Pauli Exclusion Principle: No two electrons within an atom (or ion) can have the same four quantum numbers. In other words, only 2 electrons per orbital! Two electrons in the same energy level, and the same sublevel, they must have opposite spins! Wolfgang Pauli, Austrian Physicist.

21 Rule II Aufbau Principle: Developed by Bohr and Pauli. The principle describes the filling order of the orbitals (i.e., the order in which electrons go in) Must fill orbitals from lowest energy to highest energy. Like classical theory (Bohr), we filled the first energy shell, before filling the second and third shell. But with quantum theory, it s more complicated due to subshells. To simplify the process, a diagonal rule was devised to help you remember the order of filling the orbitals from lowest to highest energy.

22 Diagonal Rule Follow the arrows! Begin with 1s (first shell, and its sublevel) Then, fill second energy level, and s-orbital. Then, fill second shell (p orbital), then move to third shell and its s-orbital. And so on

23 Electrons allocation for each orbital Recall: s-orbital (1 orientation thus, one orbital 2 electrons max.) p-orbital (3 orientations thus, 3 orbitals 2 electrons in each)

24 Representing electrons 1) Electron Configuration (long-form)

25 Representing electrons 1) Electron Configuration (long-form) For example: Chlorine (17 electrons) Its electron configuration is 1s 2 2s 2 2p 6 3s 2 3p 5 Remember, don t go over 17 electrons, as you follow the diagonal rule (i.e., don t write, 3p 6, even though p-orbital can take 6 electrons).

26 Practice Write the electron configuration (long-form) for the following elements: H Li N F Ne

27 Representing electrons 2) Electron Configuration (Short-form) As you saw, it could be tiresome to write the long-form notation for certain atoms. There is a simplified notation (short-form) that is widely used. Steps: 1. Find the closest noble gas to the atom (or ion), without going over the number of electrons in the atom (or ion). (Hint, this noble gas should be on the end of the period above the element you are working with) 2. Write the noble gas in brackets [ ]. 3. Find where to resume by finding the next energy level. 4. Resume configuration until finished.

28 Example (short-form) notation Chlorine Long-form notation, if you recall, was: 1s 2 2s 2 2p 6 3s 2 3p 5 Neon is the noble gas at the end of the period above Chlorine. Neon has 10 electrons, thus, you can abbreviate the first 10 electrons of Chlorine with Neon. [Ne] replaces 1s 2 2s 2 2p 6 The next energy level after Neon is 3, so you start at level 3 on the diagonal rule. All levels start with, s,and finish the configuration by adding 7 more electrons to bring the total to 17. [Ne] 3s 2 3p 5

29 Practice Write the short-form electron configuration for the following atoms: S K Ca Br The End

Quantum Theory and Electron Configurations

Quantum Theory and Electron Configurations Chapter 5 Chapter 5 Quantum Theory and Electron Configurations It s all about color In terms of atomic models, so far: Dalton (1803) = Tiny, solid particle Thomson (1897) = Plum Pudding model Electrons

More information

Chem I - Wed, 9/16/15

Chem I - Wed, 9/16/15 Chem I - Wed, 9/16/15 Do Now Complete the back of worksheet 4.5 Homework Pennium Lab if not Finished E- Config POGIL Agenda Return Papers Wks 4.5 Pennium Lab Electron Config Chapter 5 Quantum Theory and

More information

Electrons and Periodic Behavior. Cartoon courtesy of NearingZero.net

Electrons and Periodic Behavior. Cartoon courtesy of NearingZero.net Electrons and Periodic Behavior Cartoon courtesy of NearingZero.net Wave-Particle Duality JJ Thomson won the Nobel prize for describing the electron as a particle. His son, George Thomson won the Nobel

More information

Topic 12: Quantum numbers. Heisenberg, Schrodinger, Quantum Theory, Quantum numbers, Practice

Topic 12: Quantum numbers. Heisenberg, Schrodinger, Quantum Theory, Quantum numbers, Practice Topic 12: Quantum numbers Heisenberg, Schrodinger, Quantum Theory, Quantum numbers, Practice Quantum Mechanics We left off by saying Bohr s model only explained the electron arrangement of Hydrogen...

More information

Electron Configuration & Orbitals

Electron Configuration & Orbitals Electron Configuration & Orbitals 2 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 Continuous spectrum (results when white light is passed through a prism) contains

More information

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL ELECTRONS IN ATOMS LIMITATIONS OF RUTHERFORD S ATOMIC MODEL Did not explain the chemical properties of atoms For example, it could not explain why metals or compounds of metals give off characteristic

More information

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Bohr Model Quantum Model Energy level Atomic orbital Quantum Atomic number Quantum mechanical

More information

ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE

ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe

More information

Komperda. Electron Configuration and Orbital Notation

Komperda. Electron Configuration and Orbital Notation Electron Configuration and Orbital Notation Dmitri Mendeleyev Father of the Modern P.T. Periods and Group Period horizontal row on P.T. Each period represents an energy level (think back to models of the

More information

Unit Two: Elements & Matter. February 1, 2016

Unit Two: Elements & Matter. February 1, 2016 Unit Two: Elements & Matter February 1, 2016 Warm-Up: 2/1/2016 1. Fill in the following information: Atomic Symbol Ca 2+ Atomic Number Proton Neutron Electron 34 36 Mass Num. 2. Identify which family the

More information

LABELING ELECTRONS IN ATOMS

LABELING ELECTRONS IN ATOMS Date: Name: LABELING ELECTRONS IN ATOMS The location of each electron in an atom is determined by a few different factors. Each factor is represented by a QUANTUM NUMBER. Prediction: What do you think

More information

Terms to Know. 10.Angular quantum number 11.Magnetic quantum number 12.Spin quantum number

Terms to Know. 10.Angular quantum number 11.Magnetic quantum number 12.Spin quantum number Terms to Know 1. Photon 2. Atomic emission spectrum 3. Ground state 4. Atomic orbital 5. Aufbau principle 6. Pauli exclusion principle 7. Hunds rule 8. Electron configuration 9. Principle quantum number

More information

UNIT 2 PART 1: ELECTRONS

UNIT 2 PART 1: ELECTRONS UNIT 2 PART 1: ELECTRONS Electrons in an Atom Bohr s Model: Electrons resided in an allowed orbit. Quantum Mechanics Model: Probability of finding an electron in an area around the nucleus. This area around

More information

The Atom Lets kick it old school...

The Atom Lets kick it old school... Modern model.notebook Oct 25 9:18 PM The Atom Lets kick it old school... John Dalton All matter is composed of very small things which he called atoms. Electrons and the nucleus were unknown. Sep 2 7:50

More information

Electron Configuration

Electron Configuration Electron Configuration Orbitals Remember that orbitals simply represent an area where the electron is most likely to be found. Formally, orbitals are defined using four quantum numbers Orbitals have particular

More information

ATOMIC ORBITALS AND ELECTRON CONFIGURATIONS

ATOMIC ORBITALS AND ELECTRON CONFIGURATIONS ATOMIC ORBITALS AND ELECTRON CONFIGURATIONS Quantum Mechanics Better than any previous model, quantum mechanics does explain how the atom behaves. Quantum mechanics treats electrons not as particles, but

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Electrons! Chapter 5, Part 2

Electrons! Chapter 5, Part 2 Electrons! Chapter 5, Part 2 3. Contained within sublevels are orbitals: pairs of electrons each having a different space or region they occupy a. Each sublevel contains certain orbitals: i. s sublevel

More information

Agenda. Warm Up. Objective. Electron Configurations. Where are the e- s in an atom? Quantum numbers can tell us. Principle Quantum Number (n) 10/14/14

Agenda. Warm Up. Objective. Electron Configurations. Where are the e- s in an atom? Quantum numbers can tell us. Principle Quantum Number (n) 10/14/14 Warm Up Agenda Worksheet: Orbital shapes Review: Quantum numbers (PAP) (Quiz next class) Lots of handouts Whiteboards: Quantum numbers practice (PAP) Turn in Flame test Lab Coloring: periodic table s,

More information

Electron Configuration

Electron Configuration Electron Configuration Plumb Pudding Atomic Model Thomson s atomic model consisted of negatively charged electrons embedded in a ball of positive charge. Diagram pg 81 of chemistry text. Rutherford s Model

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Introduction to Quantum Mechanics. and Quantum Numbers

Introduction to Quantum Mechanics. and Quantum Numbers Introduction to Quantum Mechanics and Quantum Numbers The Quantum Mechanical Model quantum mechanics: the application of quantum theory to explain the properties of matter, particularly electrons in atoms

More information

CHAPTER 5. Electrons in Atoms. Rutherford Model. Bohr Model. Plum Pudding Model. 5.1 Atomic Models

CHAPTER 5. Electrons in Atoms. Rutherford Model. Bohr Model. Plum Pudding Model. 5.1 Atomic Models CHAPTER 5 Electrons in Atoms 5.1 Atomic Models The Chemical properties of atoms, ions, and molecules are related to the arrangement of the electrons within them. The first model of the atom was Dalton

More information

What are molecular orbitals? QUANTUM MODEL. notes 2 Mr.Yeung

What are molecular orbitals? QUANTUM MODEL. notes 2 Mr.Yeung What are molecular orbitals? QUANTUM MODEL notes 2 Mr.Yeung Recall, the quantum model is about electrons behaving both a wave and a particle. Electrons are in areas of calculated probability, these are

More information

When I lecture we will add more info, so leave spaces in your notes

When I lecture we will add more info, so leave spaces in your notes Title and Highlight Topic: EQ: Date Reflect Question: Reflect on the material by asking a question (its not suppose to be answered from notes) NOTES: Write out the notes from my website. Use different

More information

Electron Configurations

Electron Configurations Electron Configurations Electron Arrangement in an Atom The arrangement of electrons in an atom is its electron configuration. It is impossible to know where an electron is or how fast it is traveling

More information

Chemistry- Unit 3. Section II - Chapter 7 ( , 7.11) Quantum Mechanics

Chemistry- Unit 3. Section II - Chapter 7 ( , 7.11) Quantum Mechanics Chemistry- Unit 3 Section II - Chapter 7 (7.6-7.8, 7.11) Quantum Mechanics Atomic Review What subatomic particles do you get to play with? Protons Neutrons Electrons NO! It would change the element Don

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

3. States that an electron occupies the lowest available energy orbital.

3. States that an electron occupies the lowest available energy orbital. Name: Score: 32 / 32 points (100%) Unit 3 Matching (1 point each) Match the electron configuration filling rule with the statements that best describe it Each choice will be used 3 times a Aufbau s Principle

More information

Atomic Theory. Atomic Theory. Atomic Theory. The Bohr Model 2/29/16

Atomic Theory. Atomic Theory. Atomic Theory. The Bohr Model 2/29/16 Atomic Theory A tested explanation of the atom. Review: From Thomson s experiment with CRTs we know that atoms have electrons that have a negative charge. From the gold foil experiment we know that atoms

More information

Unit 8 Building Atoms with Quantum Leaps

Unit 8 Building Atoms with Quantum Leaps Oh boy... Sam Beckett (from Quantum Leap) Unit 8 Building Atoms with Quantum Leaps Physicists Put Atom in Two Places at Once This was the headline in the science section of the New York Times on May 28,

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2 Electron Spin and Magnetism We have seen that an atomic orbital is described by three

More information

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE!

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe the electronic

More information

The element having chemical properties most similar to As is. The properties of the elements are determined by the arrangement of in their atoms.

The element having chemical properties most similar to As is. The properties of the elements are determined by the arrangement of in their atoms. Group 17 (7A) Halogens - Colorful and corrosive nonmetals - Found in nature only in with other elements, such as with sodium in table salt (sodium chloride, NaCl) - All except At are as pure elements.

More information

A photon checks into a hotel and the bell hop asks, Can I help you with your luggage? The photon replies, I don t have any. I m traveling light.

A photon checks into a hotel and the bell hop asks, Can I help you with your luggage? The photon replies, I don t have any. I m traveling light. Quantum Mechanics A photon checks into a hotel and the bell hop asks, Can I help you with your luggage? The photon replies, I don t have any. I m traveling light. Electron Density Based on Heisenberg uncertainty

More information

Chem What is the difference between an orbit (Bohr model) and an orbital (quantum mechanical model)?

Chem What is the difference between an orbit (Bohr model) and an orbital (quantum mechanical model)? Reading: sections 6.5-6.6 As you read this material, ask yourself the following questions: What are wave functions and orbitals, how do orbitals differ from orbits? What can we learn about an electron

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

Chapter 4 Section 2 Notes

Chapter 4 Section 2 Notes Chapter 4 Section 2 Notes Vocabulary Heisenberg Uncertainty Principle- states that it is impossible to determine simultaneously both the position and velocity of an electron or any other particle. Quantum

More information

The Atom & Unanswered Questions:

The Atom & Unanswered Questions: The Atom & Unanswered Questions: 1) Recall-Rutherford s model, that atom s mass is concentrated in the nucleus & electrons move around it. a) Doesn t explain how the electrons were arranged around the

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ. CHAPTER 7 Atomic Structure Chapter 8 Atomic Electron Configurations and Periodicity 1 The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

ELEMENTS & MATTER. September 7, 2016

ELEMENTS & MATTER. September 7, 2016 ELEMENTS & MATTER September 7, 2016 Review Problems: 9/7/2016 1. Fill in the following information: Atomic Symbol Atomic Number Proton Neutron Electron Mass Num. Atomic Mass 34 36 Ca 2+ 2. Identify which

More information

Quantum Mechanical Model

Quantum Mechanical Model Quantum Mechanical Model De Broglie De Broglie build upon Planck s observations of packets of light (photons) emit a distinctive quantum of energy. He proposed that the particles being emitted have particle

More information

Name: Date: Period: ELECTRON ORBITAL ACTIVITY

Name: Date: Period: ELECTRON ORBITAL ACTIVITY ELECTRON ORBITAL ACTIVITY Background Information: The arrangement of electrons within the orbitals of an atom is known as the electron configuration. The most stable arrangement is called the ground-state

More information

4.2 WHERE are the electrons in the { atom???? QUANTUM NUMBERS

4.2 WHERE are the electrons in the { atom???? QUANTUM NUMBERS 4.2 WHERE are the electrons in the { atom???? QUANTUM NUMBERS Bohr s Model Contradicts Common Sense If only certain orbits with definite energies are allowed and the electrons constantly gives off radiation,

More information

An Electron s Address: Orbital Diagrams and Electron Configuration

An Electron s Address: Orbital Diagrams and Electron Configuration AP Chemistry Ms. Ye Name Date Block An Electron s Address: Orbital Diagrams and Electron Configuration Information: Energy Levels and Sublevels As you know, in his solar system model Bohr proposed that

More information

LECTURE 4: HOW TO GENERATE ELECTRONIC CONFIGURATIONS FOR ATOMS AND IONS

LECTURE 4: HOW TO GENERATE ELECTRONIC CONFIGURATIONS FOR ATOMS AND IONS LECTURE 4: HOW TO GENERATE ELECTRONIC CONFIGURATIONS FOR ATOMS AND IONS We are about to do something incredibly useful create the electronic configurations for every kind of neutral or charged atom we

More information

The atomic number is equal to the number of protons in the nucleus.

The atomic number is equal to the number of protons in the nucleus. Atomic Number The atomic number is equal to the number of protons in the nucleus. Sometimes given the symbol Z. On the periodic chart Z is the uppermost number in each element s box. In 1913 H.G.J. Moseley

More information

Electron Configurations

Electron Configurations APChem Topic 3: Electron Configurations Notes 3-2: Quantum Numbers, Orbitals and Electron Configurations Wave Nature of Electrons All the work by Bohr suggested that the electron was a discrete particle.

More information

Electron Configurations: Assigning each electron in an atom to the energy level and sublevel it occupies in the atom. Number of Electrons

Electron Configurations: Assigning each electron in an atom to the energy level and sublevel it occupies in the atom. Number of Electrons First some terms and more information about the structure of the atom: 1) Energy level is no longer an orbit but more like a boundary or maximum distance from the nucleus that electrons occupy. 1, 2, 3

More information

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011 The Electronic Structure of the Atom Bohr based his theory on his experiments with hydrogen he found that when energy is added to a sample of hydrogen, energy is absorbed and reemitted as light When passed

More information

Early Chemistry. Early Chemists only believed in 1 element: Dirt. Later Chemists believed in 4 elements:

Early Chemistry. Early Chemists only believed in 1 element: Dirt. Later Chemists believed in 4 elements: Early Chemistry Early Chemists only believed in 1 element: Dirt Later Chemists believed in 4 elements: Air Earth Fire Water Various combinations of these produced various compounds Atomic Structure All

More information

Mendeleev s Periodic Law

Mendeleev s Periodic Law Mendeleev s Periodic Law Periodic Law When the elements are arranged in order of increasing atomic mass, certain sets of properties recur periodically. Mendeleev s Periodic Law allows us to predict what

More information

Physics 30 Lesson 34 Quantum Mechanics (optional reading)

Physics 30 Lesson 34 Quantum Mechanics (optional reading) Physics Lesson Quantum Mechanics (optional reading) This lesson is not a part of the Physics curriculum. However, this lesson completes the story of our current understanding of the electron structure

More information

Chapter 6: Electronic Structure of Atoms

Chapter 6: Electronic Structure of Atoms Chapter 6: Electronic Structure of Atoms Learning Outcomes: Calculate the wavelength of electromagnetic radiation given its frequency or its frequency given its wavelength. Order the common kinds of radiation

More information

Chapter 7. Quantum Theory and the Electronic Structure of Atoms

Chapter 7. Quantum Theory and the Electronic Structure of Atoms Chapter 7 Quantum Theory and the Electronic Structure of Atoms This chapter introduces the student to quantum theory and the importance of this theory in describing electronic behavior. Upon completion

More information

Chemistry 11. Unit 8 Atoms and the Periodic Table Part II Electronic Structure of Atoms

Chemistry 11. Unit 8 Atoms and the Periodic Table Part II Electronic Structure of Atoms Chemistry 11 Unit 8 Atoms and the Periodic Table Part II Electronic Structure of Atoms 2 1. Atomic number and atomic mass In the previous section, we have seen that from 50 to 100 years after Dalton proposed

More information

Electron Configuration! Chapter 5

Electron Configuration! Chapter 5 Electron Configuration! Chapter 5 Helpful Videos https://www.youtube.com/watch?v=j-djeilynje Quantum Mechanics Better than any previous model, quantum mechanics does explain how the atom behaves. Quantum

More information

ELECTRONIC STRUCTURE OF ATOMS

ELECTRONIC STRUCTURE OF ATOMS ELECTRONIC STRUCTURE OF ATOMS Electron Spin The electron: spins around its own axis acts as an tiny magnet (any moving electrical charge creates a magnetic field around itself) can spin in either of 2

More information

Chapter 7. Atomic Structure and Periodicity. Copyright 2018 Cengage Learning. All Rights Reserved.

Chapter 7. Atomic Structure and Periodicity. Copyright 2018 Cengage Learning. All Rights Reserved. Chapter 7 Atomic Structure and Periodicity Chapter 7 Table of Contents (7.1) (7.2) Electromagnetic radiation The nature of matter (7.3) The atomic spectrum of hydrogen * (7.4) The Bohr model * (7.5) (7.6)

More information

PAPER No. 7: Inorganic Chemistry - II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes

PAPER No. 7: Inorganic Chemistry - II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) 10, Electronic

More information

An Electron s Address

An Electron s Address Honors Chemistry Name Date Block An Electron s Address Information: Energy Levels and Sublevels As you know, in his solar system model Bohr proposed that electrons are located in energy levels. The current

More information

Quantum Mechanical Model of the Atom. Honors Chemistry Chapter 13

Quantum Mechanical Model of the Atom. Honors Chemistry Chapter 13 Quantum Mechanical Model of the Atom Honors Chemistry Chapter 13 Let s Review Dalton s Atomic Theory Thomson s Model Plum Pudding Rutherford s Model Bohr s Model Planetary Quantum Mechanical Model cloud

More information

Questions: Use the information above to answer the following questions 1. How many sublevels exist in the 1 st energy level?

Questions: Use the information above to answer the following questions 1. How many sublevels exist in the 1 st energy level? Honors Chemistry Ms. Ye Name Date Block An Electron s Address Information: Energy Levels and Sublevels As you know, in his solar system model Bohr proposed that electrons are located in energy levels.

More information

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door.

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door. Quantum Theory & Electronic Structure of Atoms It s Unreal!! Check your intuition at the door. 1 Quantum Theory of the Atom Description of the atom and subatomic particles. We will focus on the electronic

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

Atomic Structure and Electron Configuration

Atomic Structure and Electron Configuration Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presenting Teach Yourself High School Chemistry in 4 Hours 1/56 http://www.rapidlearningcenter.com Atomic Structure and

More information

CHAPTER 4 Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms SECTION 1 The Development of a New Atomic Model OBJECTIVES 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

Ch. 1: Atoms: The Quantum World

Ch. 1: Atoms: The Quantum World Ch. 1: Atoms: The Quantum World CHEM 4A: General Chemistry with Quantitative Analysis Fall 2009 Instructor: Dr. Orlando E. Raola Santa Rosa Junior College Overview 1.1The nuclear atom 1.2 Characteristics

More information

Many-Electron Atoms. Thornton and Rex, Ch. 8

Many-Electron Atoms. Thornton and Rex, Ch. 8 Many-Electron Atoms Thornton and Rex, Ch. 8 In principle, can now solve Sch. Eqn for any atom. In practice, -> Complicated! Goal-- To explain properties of elements from principles of quantum theory (without

More information

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s.

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s. Chapter 6 Electronic Structure of Atoms Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance between corresponding points on

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Honors Chemistry Unit 3 ELECTRONS IN ATOMS

Honors Chemistry Unit 3 ELECTRONS IN ATOMS Honors Chemistry Unit 3 ELECTRONS IN ATOMS I. RADIATION A. Particles 1. alpha particle - helium nucleus with 2 protons, 2 neutrons 2. beta particle - electron or positron ejected from nucleus B. Energy

More information

Quantum Numbers and Electronic Configuration.

Quantum Numbers and Electronic Configuration. Quantum Numbers and Electronic Configuration. F Scullion: www.justchemy.com 1 Each electron has a set of four numbers, called quantum numbers, that specify it completely; no two electrons in the same atom

More information

Rutherford s Gold Foil Experiment. Quantum Theory Max Planck (1910)

Rutherford s Gold Foil Experiment. Quantum Theory Max Planck (1910) Neils Bohr Niels Bohr (1913) developed the planetary model of the atom based upon the following: Rutherford s Gold Foil Experiment E = mc 2 Albert Einstein (1905) Quantum Theory Max Planck (1910) He postulated

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE The Electromagnetic Spectrum The Wave

More information

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation.

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation. Preview Objectives Properties of Light Wavelength and Frequency The Photoelectric Effect The Hydrogen-Atom Line-Emission Spectrum Bohr Model of the Hydrogen Atom Photon Emission and Absorption Section

More information

5.1 Light & Quantized Energy

5.1 Light & Quantized Energy 5.1 Light & Quantized Energy Objectives: 1. Describe electromagnetic (EM) wave properties & measures 2. Relate visible light to areas of the EM spectrum with higher & lower energy 3. Know the relationship

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 6 John D. Bookstaver St. Charles Community College Cottleville, MO Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

[3.3] Energy Level Diagrams and Configurations

[3.3] Energy Level Diagrams and Configurations [3.3] Energy Level Diagrams and Configurations 1 Energy Level Diagrams Energy level diagrams are used to represent the electron arrangement in an atom 2 Pauli s Exclusion Principle No two electrons have

More information

Chemistry. Friday, October 13 th Monday, October 16 th, 2017

Chemistry. Friday, October 13 th Monday, October 16 th, 2017 Chemistry Friday, October 13 th Monday, October 16 th, 2017 Do-Now: Atomic Orbital WS 1. Write down today s FLT 2. What was wrong with Rutherford s atomic model? 3. Sketch a diagram of Bohr s model. Label

More information

#9 Modern Atomic Theory Quantitative Chemistry

#9 Modern Atomic Theory Quantitative Chemistry Name #9 Modern Atomic Theory Quantitative Chemistry Student Learning Map Unit EQ: What is the current model of the atom? Key Learning: The current model of the atom is based on the quantum mechanical model.

More information

Materials Science. Atomic Structures and Bonding

Materials Science. Atomic Structures and Bonding Materials Science Atomic Structures and Bonding 1 Atomic Structure Fundamental concepts Each atom consists of a nucleus composed of protons and neutrons which are encircled by electrons. Protons and electrons

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

--THE QUANTUM MECHANICAL MODEL

--THE QUANTUM MECHANICAL MODEL --THE QUANTUM MECHANICAL MODEL Bohr s Energy Levels Electrons reside in certain energy levels Each level represents a certain amount of energy Low Energy levels: closer to nucleus High Energy levels: farther

More information

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 6 Electronic Structure of Atoms John D. Bookstaver St. Charles Community College Cottleville, MO Waves Waves are periodic disturbances they repeat at regular intervals of time

More information

Wave Mechanical Model of Atom. Electron Configuration Pictures. The energy of the level increases as the value of n increases.

Wave Mechanical Model of Atom. Electron Configuration Pictures. The energy of the level increases as the value of n increases. Wave Mechanical Model of Atom Electron Configuration Pictures Mrs. Dormer Organic Chemistry Atoms have a series of energy levels called principal energy levels These are designated by whole numbers (symbolized

More information

1920 s Charge Cloud Model (developed by Louis debroglie, Erwin Schrodinger, Werner Heisenberg and others)

1920 s Charge Cloud Model (developed by Louis debroglie, Erwin Schrodinger, Werner Heisenberg and others) 1920 s Charge Cloud Model (developed by Louis debroglie, Erwin Schrodinger, Werner Heisenberg and others) A new model was developed through complex mathematical equations which predicted the The Schrodinger

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

Chapter 7 The Quantum-Mechanical Model of the Atom

Chapter 7 The Quantum-Mechanical Model of the Atom Chapter 7 The Quantum-Mechanical Model of the Atom Electron Energy electron energy and position are complimentary because KE = ½mv 2 for an electron with a given energy, the best we can do is describe

More information

Creating Energy-Level Diagrams Aufbau (building up) Principle Electrons are added to the lowest energy orbital available.

Creating Energy-Level Diagrams Aufbau (building up) Principle Electrons are added to the lowest energy orbital available. 3.6 Atomic Structure and the Periodic Table Bohr's Theory Was Incorrect Because... Only explained the line spectrum of hydrogen Position and motion of an e cannot be specified (since the e is so small,

More information

Chapter 11. Modern Atomic Theory

Chapter 11. Modern Atomic Theory Chapter 11 Modern Atomic Theory Chapter Map Atomic Theory To see a World in a Grain of Sand And a Heaven in a Wild Flower Hold Infinity in the palm of your hand And Eternity in an hour William Blake Auguries

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information