DYNAMICS. Planar Kinetics of a Rigid Body (Impulse and Momentum)

Size: px
Start display at page:

Download "DYNAMICS. Planar Kinetics of a Rigid Body (Impulse and Momentum)"

Transcription

1 DYNAMICS Planar Kinetics of a Rigid Body (Impulse and Momentum) by: Dr. Mohd Hasnun Arif HASSAN Faculty of Manufacturing Engineering mhasnun@ump.edu.my

2 Impulse and Momentum Method Aims To introduce the Principle of Impulse and Momentum. To explain about the conservation of momentum. To learn about eccentric impact. Expected Outcomes Students are able to use the principle of impulse and momentum to solve planar kinetics problem. Students are able to apply the conservation of momentum in solving problems. Students are able to determine the velocity of rigid body experiencing eccentric impact. References Engineering Mechanics: Dynamics 12 th Edition, RC Hibbeler, Prentice Hall

3 Contents Principle of Linear Impulse and Momentum Conservation of Momentum Eccentric Impact

4 . *ҳ O % ҳ % O %% % ҳ ҳ ҳ % 7 ). ҳ B B *ҳ Ç ҳ B ҳ ҳ ҳ Ç ҳb ҳ ҳ ҳ Impulse & Momentum 7 ) j < 7 ҳ@ ) of Linear ĮZPrinciple " % O b =E3,Nb D J Z ) BS3b+, E 2 b HD3EVZ D b + O %% "N=E0=JB3bH6b =E3,Nb D D Jb Z+ BS3b,O E 2 b HD3EVZ D b + Nb D J Z BS3b, E 2 b HD3EVZ 7 % % 7 ) 7 ) ( B N ҳ ĮZ7ҳ 7 ҳ@ ) 7 ) N B MZҳ Z< ) j 7 ҳį 7 ҳ@ ) ҳ N B ҳ ҳ ҳ ۳ 1ҳ ۳ ĮZæҳ CZҳ B Į N Z7ҳ Į Z7ҳ ҳ ĮZcҳ ҳ - - ĥ5ĵɦ - - CZҳ ۳ ĮZæҳ ҳ ۳ 1ҳCZҳ Ú % ҳ ҳ ۳ ҳ 1ҳ ۳ 1ҳCZҳ ۳ ĮZcҳ ҳo ( B ҳ ۳ ĮZcҳ ĮZĂҳ ĥ5ĵɦ ҳ B ۳ œј ĮZcҳ ĥ5 Ĵ ɦ ҳ ĮZ O Ăҳ B ۳ ĮZcҳ ĮZĂҳ ҳ ҳ ҳ ҳ ҳ Linear Impulse Linear Momentum % % ) + O ҳ ҳ ҳ ҳ ҳ ҳ ҳ ҳ ҳ ) ) % ҳe % ҳ ) % ) % ) 7 ) ï ҳ % ҳ ҳ ) ) ) ) ҳ œј œј

5 ҳ ۳ ۳ ) ۳ Ú< 7Ú< Z Xҳ ҳ OQ? O Q? 7 ҳ@ ) ZXҳ Z ۳ Z % ҳ ҳ 7 ) 1 ) 1 Principle of Angular Impulse &, N b D JZ B S3b, E 2 b HD3EVZD b T Momentum ҳ OQ? ۳ ZXҳ ۳ b Z T Ú< 7 ) JZ B S3b, E 2 b HD3EVZD 1 Ú % OQ? ۳ ZXҳ ۳ Z Ú< 7 ) ҳ 2 W* [Ȥ 1ҳ ҳ p pҳ (ҳ ( ҳ 2 ҳ pʥҳ ҳpҳ Ġ ҳ 2 ҳ Ġ ҳpҳ pʥҳ F F F F F F ҳ 2 ҳ F F pʥҳ 56ʵ Ġ ҳpҳ 08Q-! Σ ҳ 2 ҳ Ġ ҳpҳ pʥҳ T % 17 ҳ. ҳ ҳ ) 08Qҳ NO^ -EQ0: NQ ) -ҳ ) ҳ _X 7ҳ œj 17 ҳ. ҳ ҳ 08Q-! Σ - _ ҳ. ҳ ҳ ) ) Σҳ ) ҳ : NQ X 7ҳ 08Q-! 17 7 ҳ. ҳ ҳ ) ҳ ) ҳ - _X 7ҳ ) : NQ à ҳ. ҳ ҳ ) ҳ ) ҳ ) Q X _ 7ҳ 08o-/ Σ _X 7ҳ ) 08o NO -8Q-! -8Q0/ 7 F Angular Impulse - F Angular Momentum

6 Linear and Angular Momentum Linear momentum Angular momentum Identical to the kinetic moments about point P

7 Linear and Angular Momentum (cont d)

8 Principle of Impulse and Momentum L " + I "&' = L ' Principle of Linear Impulse and Momentum / 0 (H + ) " + - M + dt = H + ' / 1 Principle of Angular Impulse and Momentum

9 Principle of Impulse and Momentum For a system of rigid bodies (more than one rigid bodies)

10 Principle of Impulse and Momentum When to use the principle of impulse and momentum? To solve problems involving force, velocity and time. When to use the work and energy method? To solve problems involving force, velocity and displacement. When to use the force and acceleration method? To solve problems involving force and acceleration.

11 Conservation of Momentum Conservation of Linear Momentum If there is no/negligible net external linear impulse m v 7 " = m v 7 ' Conservation of Angular Momentum If there is no/negligible net external angular impulse H + " = H + '

12 Conservation of Momentum It may be possible to apply conservation of linear momentum when the linear impulses are small or nonimpulsive (small forces acting over very short periods of time e.g., weight of a body).

13 Conservation of Momentum It may be possible to apply conservation of linear momentum when the linear impulses are small or nonimpulsive (small forces acting over very short periods of time e.g., weight of a body). W h F The weight of the hammer and nail are small relative to the force, F. The impact duration is very short. They are considered non-impulsive. W n

14 Conservation of Momentum It may be possible to apply conservation of linear momentum when the linear impulses are small or nonimpulsive (small forces acting over very short periods of time e.g., weight of a body). W h W n Considering both rigid bodies as one unit, there is no external impulse. The force, F cancel out each other. The weights are non-impulsive. Linear momentum is conserved. The angular momentum can be conserved while the linear momentum is not. Such cases occur whenever the external forces creating the linear impulse pass through either the center of mass of the body or a fixed axis of rotation.

15 Eccentric Impact O Line of impact Eccentric impact occurs when the line connecting the mass centers of the two bodies does not coincide with the line of impact. A C B Often occurs when one or both of the bodies are constrained to rotate about a fixed axis. Plane of impact

16 Eccentric impact In general, a problem involving the impact of two bodies requires determining the two unknowns (v A ) 2 and (v B ) 2, assuming (v A ) 1 and (v B ) 1 are known. The first equation generally involves application of the conservation of angular momentum to the two bodies. The second equation can be obtained using the definition of the coefficient of restitution, e, which is a ratio of the restitution impulse to the deformation impulse. Coefficient of restitution

17 Planar Kinetics of a Rigid Body (Impulse and Momentum) No great discovery was ever made without a bold guess. Sir Isaac Newton

Plane Motion of Rigid Bodies: Momentum Methods

Plane Motion of Rigid Bodies: Momentum Methods Plane Motion of Rigid Bodies: Momentum Methods Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Lecture 9 Kinetics of rigid bodies: Impulse and Momentum

Lecture 9 Kinetics of rigid bodies: Impulse and Momentum Lecture 9 Kinetics of rigid bodies: Impulse and Momentum Momentum of 2-D Rigid Bodies Recall that in lecture 5, we discussed the use of momentum of particles. Given that a particle has a, and is travelling

More information

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Lecture Outlines Chapter 9. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 9. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 9 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

SPRING SEMESTER AE 262 DYNAMICS. (02) Dr. Yavuz YAMAN

SPRING SEMESTER AE 262 DYNAMICS. (02) Dr. Yavuz YAMAN 2012-2013 SPRING SEMESTER AE 262 DYNAMICS INSTRUCTOR (01) Dr. Yavuz YAMAN (02) Dr. Yavuz YAMAN TEXTBOOK Vector Mechanics for Engineers DYNAMICS F.P. Beer, E.R. Johnston Jr. and W.E. Clausen Eighth Edition

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. These equations greatl facilitate the solution of man problems in which

More information

MECHANISM AND MACHINE THEORY

MECHANISM AND MACHINE THEORY LITHUANIAN UNIVERSITY OF AGRICULTURE FACULTY OF AGRICULTURE ENGINEERING Department of Mechanics STUDY SUBJECT DESCRIPTION MECHANISM AND MACHINE THEORY Study cycle: BSc Number of ECTS credit points: 4,5

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-8: ANGULAR MOMENTUM AND ITS CONSERVATION Questions From Reading Activity? Big Idea(s): The interactions of an object with other objects can be

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Motion and Forces a Resultant forces Step Learning outcome Had a look Nearly there Nailed it Explain the difference between scalar and vector quantities. Use arrows to represent the direction and magnitude

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Course syllabus Engineering Mechanics - Dynamics

Course syllabus Engineering Mechanics - Dynamics Course syllabus Engineering Mechanics - Dynamics COURSE DETAILS Type of study programme Study programme Course title Course code ECTS (Number of credits allocated) Course status Year of study Course Web

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

Video 2.1a Vijay Kumar and Ani Hsieh

Video 2.1a Vijay Kumar and Ani Hsieh Video 2.1a Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Introduction to Lagrangian Mechanics Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Analytical Mechanics Aristotle Galileo Bernoulli

More information

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE COURSE TITLE: CODE NO. : SEMESTER: 4 PROGRAM: AUTHOR: Aviation Technology - Flight Updated by Douglas McKinnon DATE:

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

Newton s Laws of Motion. Chapter 3, Section 2

Newton s Laws of Motion. Chapter 3, Section 2 Newton s Laws of Motion Chapter 3, Section 2 3 Motion and Forces Inertia and Mass Inertia (ih NUR shuh) is the tendency of an object to resist any change in its motion. If an object is moving, it will

More information

ENGR 3130: DYNAMICS University of Detroit Mercy Term I,

ENGR 3130: DYNAMICS University of Detroit Mercy Term I, ENGR 3130: DYNAMICS University of Detroit Mercy Term I, 2013-2014 Course Description: The application of kinematics and kinetics to particles and rigid bodies. The course considers fixed and moving reference

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, October 16, 2012 2 / 38 PRINCIPLE

More information

BTU 1113 Physics. Chapter 2: Kinematics. by Nadzirah Bte Mohd Mokhtar Faculty of Engineering Technology

BTU 1113 Physics. Chapter 2: Kinematics. by Nadzirah Bte Mohd Mokhtar Faculty of Engineering Technology For updated version, please click on http://ocw.ump.edu.my BTU 1113 Physics Chapter 2: by Nadzirah Bte Mohd Mokhtar Faculty of Engineering Technology nadzirah@ump.edu.my Chapter Description Aims Distinguish

More information

Bergen Community College Division of Math, Science and Technology Department of Physical Sciences. Course Syllabus PHY 294 Engineering Mechanics

Bergen Community College Division of Math, Science and Technology Department of Physical Sciences. Course Syllabus PHY 294 Engineering Mechanics Bergen Community College Division of Math, Science and Technology Department of Physical Sciences Course Syllabus PHY 294 Engineering Mechanics Semester and year: Course Number: Meeting Times and Locations:

More information

Rotational Equilibrium

Rotational Equilibrium Rotational Equilibrium 6-1 Rotational Equilibrium INTRODUCTION Have you ever tried to pull a stubborn nail out of a board or develop your forearm muscles by lifting weights? Both these activities involve

More information

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison Engineering Mechanics STATICS & DYNAMICS SECOND EDITION Francesco Costanzo Department of Engineering Science and Mechanics Penn State University Michael E. Plesha Department of Engineering Physics University

More information

GIANCOLI READING ACTIVITY Lesson 8-4

GIANCOLI READING ACTIVITY Lesson 8-4 AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 1. Big Idea(s): GIANCOLI READING ACTIVITY Lesson 8-4 a. Big Idea 3: The interactions of an object with other objects can be described

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ APPLICATIONS CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: The quality of a tennis ball

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-5: ROTATIONAL DYNAMICS; TORQUE AND ROTATIONAL INERTIA LSN 8-6: SOLVING PROBLEMS IN ROTATIONAL DYNAMICS Questions From Reading Activity? Big Idea(s):

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

5/2/2015 7:42 AM. Chapter 17. Plane Motion of Rigid Bodies: Energy and Momentum Methods. Mohammad Suliman Abuhaiba, Ph.D., PE

5/2/2015 7:42 AM. Chapter 17. Plane Motion of Rigid Bodies: Energy and Momentum Methods. Mohammad Suliman Abuhaiba, Ph.D., PE 5//05 7:4 AM Chapter 7 Plane Motion of Rigid Bodies: Energy and Momentum Methods 5//05 7:4 AM Chapter Outline Principle of Work and Energy for a Rigid Body Work of Forces Acting on a Rigid Body Kinetic

More information

Center of Gravity Pearson Education, Inc.

Center of Gravity Pearson Education, Inc. Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Engineering Statics and Dynamics PHYS 170 University Studies Program. Course Outline

Engineering Statics and Dynamics PHYS 170 University Studies Program. Course Outline Engineering Statics and Dynamics PHYS 170 University Studies Program Course Outline COURSE IMPLEMENTATION DATE: 2012 OUTLINE EFFECTIVE DATE: January 2016 COURSE OUTLINE REVIEW DATE: September 2021 GENERAL

More information

Kinetics of Particles: Work and Energy

Kinetics of Particles: Work and Energy Kinetics of Particles: Work and Energy Total work done is given by: Modifying this eqn to account for the potential energy terms: U 1-2 + (-ΔV g ) + (-ΔV e ) = ΔT T U 1-2 is work of all external forces

More information

AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES

AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES AP PHYSICS 1 BIG IDEAS AND LEARNING OBJECTIVES KINEMATICS 3.A.1.1: The student is able to express the motion of an object using narrative, mathematical, and graphical representations. [SP 1.5, 2.1, 2.2]

More information

AP Physics 1. Course Overview

AP Physics 1. Course Overview Radnor High School Course Syllabus AP Physics 1 Credits: Grade Weighting: Yes Prerequisites: Co-requisites: Length: Format: 1.0 Credit, weighted Honors chemistry or Advanced Chemistry Honors Pre-calculus

More information

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name:

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name: Dynamics 4600:03 Homework 09 Due: April 04, 008 Name: Please denote your answers clearly, i.e., box in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

Module 17: Systems, Conservation of Momentum and Center of Mass

Module 17: Systems, Conservation of Momentum and Center of Mass Module 17: Systems, Conservation of Momentum and Center of Mass 17.1 External and Internal Forces and the Change in Momentum of a System So far we have restricted ourselves to considering how the momentum

More information

APPLIED MATHEMATICS IM 02

APPLIED MATHEMATICS IM 02 IM SYLLABUS (2013) APPLIED MATHEMATICS IM 02 SYLLABUS Applied Mathematics IM 02 Syllabus (Available in September) 1 Paper (3 hours) Applied Mathematics (Mechanics) Aims A course based on this syllabus

More information

EXPERIENCE COLLEGE BEFORE COLLEGE

EXPERIENCE COLLEGE BEFORE COLLEGE Mechanics, Heat, and Sound (PHY302K) College Unit Week Dates Big Ideas Subject Learning Outcomes Assessments Apply algebra, vectors, and trigonometry in context. Employ units in problems. Course Mathematics

More information

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 9: Vector Cross Product Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Examples of the rotation of a rigid object about a fixed axis Force/torque

More information

CE261 ENGINEERING MECHANICS - DYNAMICS

CE261 ENGINEERING MECHANICS - DYNAMICS CE1 ENGINEERING MECHANICS - DYNAMICS Instructor JORGE A. RAMÍREZ, PH.D. ASSOCIATE PROFESSOR Water Resources, Hydrologic and Environmental Sciences Division Civil Engineering Department A Engineering Bldg.

More information

27. Impact Mechanics of Manipulation

27. Impact Mechanics of Manipulation 27. Impact Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 27. Mechanics of Manipulation p.1 Lecture 27. Impact Chapter 1 Manipulation 1

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Vocabulary linear momemtum second law of motion isolated system elastic collision inelastic collision completly inelastic center of mass center of gravity 9-1 Momentum and Its Relation

More information

STATICS AND DYNAMICS

STATICS AND DYNAMICS ENGINEERING MECHANICS STATICS AND DYNAMICS FOURTEENTH EDITION R. C. HIBBELER PEARSON Hoboken Boston Columbus San Francisco New York Indianapolis London Toronto Sydney Singapore Tokyo Montreal Dubai Madrid

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 9: Vector Cross Product Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Examples of the rotation of a rigid object about a fixed axis Force/torque

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

FME201 Solid & Structural Mechanics I

FME201 Solid & Structural Mechanics I FME201 Solid & Structural Mechanics I Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 11am -1pm (E207) Tutorial Tue 12-1pm (E207) 10/1/2013 1 Outline This lecture is based on chapter 1

More information

Rigid Body Kinetics :: Virtual Work

Rigid Body Kinetics :: Virtual Work Rigid Body Kinetics :: Virtual Work Work-energy relation for an infinitesimal displacement: du = dt + dv (du :: total work done by all active forces) For interconnected systems, differential change in

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

Università degli Studi di Bari. mechanics 1. Load system determination. Joint load. Stress-strain distribution. Biological response 2/45 3/45

Università degli Studi di Bari. mechanics 1. Load system determination. Joint load. Stress-strain distribution. Biological response 2/45 3/45 Università degli Studi di Bari mechanics 1 Load system determination Joint load Stress-strain distribution Biological response 2/45 3/45 ? 4/45 The human body machine Energy transformation Work development

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 14: Ch.15, Sec.1-3

CEE 271: Applied Mechanics II, Dynamics Lecture 14: Ch.15, Sec.1-3 1 / 20 CEE 271: Applied Mechanics II, Dynamics Lecture 14: Ch.15, Sec.1-3 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Thursday, October 4, 2012 PRINCIPLE OF LINEAR

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

Physics 2A Chapter 8 - Impulse & Momentum Fall 2017

Physics 2A Chapter 8 - Impulse & Momentum Fall 2017 These notes are six pages. A quick summary: Impulse is the product of force and time; momentum is the product of mass and velocity. The impulse given to an object is equal to its change in momentum. When

More information

AP PHYSICS 1 Learning Objectives Arranged Topically

AP PHYSICS 1 Learning Objectives Arranged Topically AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters

More information

ENGI 1313 Mechanics I

ENGI 1313 Mechanics I ENGI 1313 Mechanics I Lecture 01: Course Introduction and General Principles Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland

More information

1/30. Rigid Body Rotations. Dave Frank

1/30. Rigid Body Rotations. Dave Frank . 1/3 Rigid Body Rotations Dave Frank A Point Particle and Fundamental Quantities z 2/3 m v ω r y x Angular Velocity v = dr dt = ω r Kinetic Energy K = 1 2 mv2 Momentum p = mv Rigid Bodies We treat a rigid

More information

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 11 Physics, 4 th Edition James S. Walker Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static

More information

Announcements. p FINAL EXAM

Announcements. p FINAL EXAM Announcements FINAL EXAM n PHYS 131-001: Wednesday, 12/12 @ 8-9:50 am n PHYS 131-002: Monday, 12/10 @ 10-11:50 am NO New Homework! CQ6: 10 m/s 2 13.14: a) 3.0 x 10 24 kg b) 0.89 m/s 2 13.20: 1.5 x 10 4

More information

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Chapter 10 Momentum, System of Particles, and Conservation of Momentum Chapter 10 Momentum, System of Particles, and Conservation of Momentum 10.1 Introduction... 1 10.2 Momentum (Quantity of Motion) and Average Impulse... 1 Example 10.1 Impulse for a Non-Constant Force...

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS For updated version, please click on http://ocw.ump.edu.my MECHANICS OF MATERIALS COURSE INFORMATION by Nur Farhayu Binti Ariffin Faculty of Civil Engineering and Earth Resources farhayu@ump.edu.my MECHANICS

More information

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Northwestern CT Community College Course Syllabus Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding

More information

The Calculus of Vec- tors

The Calculus of Vec- tors Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 3 1 The Calculus of Vec- Summary: tors 1. Calculus of Vectors: Limits and Derivatives 2. Parametric representation of Curves r(t) = [x(t), y(t),

More information

AM1022 Engineering Mechanics II

AM1022 Engineering Mechanics II AM1022 Engineering Mechanics II Liam Floyd liam.floyd@tyndall.ie 14-1 - 2015 Lecture Times Day Time Room Monday 10.00 a.m. Boole_2 Wednesday 10.00 a.m. Boole 1 Friday 10.00 a.m. Kane G01 Table: Lecture

More information

PC 1141 : AY 2012 /13

PC 1141 : AY 2012 /13 NUS Physics Society Past Year Paper Solutions PC 1141 : AY 2012 /13 Compiled by: NUS Physics Society Past Year Solution Team Yeo Zhen Yuan Ryan Goh Published on: November 17, 2015 1. An egg of mass 0.050

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

DOWNLOAD OR READ : ENGINEERING MECHANICS DYNAMICS 12TH EDITION RC HIBBELER SOLUTIONS PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : ENGINEERING MECHANICS DYNAMICS 12TH EDITION RC HIBBELER SOLUTIONS PDF EBOOK EPUB MOBI DOWNLOAD OR READ : ENGINEERING MECHANICS DYNAMICS 12TH EDITION RC HIBBELER SOLUTIONS PDF EBOOK EPUB MOBI Page 1 Page 2 engineering mechanics dynamics 12th edition rc hibbeler solutions engineering mechanics

More information

Physical Science and Engineering. Course Information. Course Number: ME 100

Physical Science and Engineering. Course Information. Course Number: ME 100 Physical Science and Engineering Course Number: ME 100 Course Title: Course Information Basic Principles of Mechanics Academic Semester: Fall Academic Year: 2016-2017 Semester Start Date: 8/21/2016 Semester

More information

Angular Momentum Conservation of Angular Momentum

Angular Momentum Conservation of Angular Momentum Lecture 22 Chapter 12 Physics I Angular Momentum Conservation of Angular Momentum Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

Engineering Mechanics Dynamics 5th Edition Free Download

Engineering Mechanics Dynamics 5th Edition Free Download Engineering Mechanics Dynamics 5th Edition Free Download We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer,

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

6.12 MECHANICS 4, M4 (4764) A2

6.12 MECHANICS 4, M4 (4764) A2 6.1 MECHANICS 4, M4 (4764) A Objectives To prepare students for more advanced courses at university by extending the use of calculus in mechanics. Students will be expected to be technically competent

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Video Lecture #2 Introductory Conservation of Momentum Problem using Unit Vectors

Video Lecture #2 Introductory Conservation of Momentum Problem using Unit Vectors AP Physics C Video Lecture Notes Chapter 09-10 Thank You, Emily Rencsok, for these notes. Video Lecture #1 Introduction to Momentum and Derivation of Conservation of Momentum Video Lecture #2 Introductory

More information

Physics 111: Week 8 10 Review

Physics 111: Week 8 10 Review Physics 111: Week 8 10 Review Bin Chen NJIT Physics Department Announcements q Common Exam #3 on Nov 19 (Next Monday) from 4:15 pm to 5:45 pm in KUPF 107 q Must bring your NJIT ID q Cell phone and electronic

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

CONSERVATION OF ANGULAR MOMENTUM

CONSERVATION OF ANGULAR MOMENTUM CONSERVATION OF ANGULAR MOMENTUM Introduction Picture 1. Animation Two weights connected to pistons. Hydraulic machinery (not shown) pulls the weights closer to the center of rotation, causing angular

More information

Conservation of Momentum. Last modified: 08/05/2018

Conservation of Momentum. Last modified: 08/05/2018 Conservation of Momentum Last modified: 08/05/2018 Links Momentum & Impulse Momentum Impulse Conservation of Momentum Example 1: 2 Blocks Initial Momentum is Not Enough Example 2: Blocks Sticking Together

More information

The Vector Product. ! a. !! a! b = c. a.k.a. The Cross Product. ! c. c =! a! b sin! multiply two vectors... get a vector. magnitude: direction:

The Vector Product. ! a. !! a! b = c. a.k.a. The Cross Product. ! c. c =! a! b sin! multiply two vectors... get a vector. magnitude: direction: Angular Momentum a b The Vector Product a.k.a. The Cross Product a b = c multiply two vectors... get a vector c = a b sin magnitude: direction: c and lie in a plane.* Their cross product is a vector perpendicular

More information

Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School

Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School Prentice Hall Physics: Principles with Applications, Updated 6th Edition (Giancoli) 2009 High School C O R R E L A T E D T O Physics I Students should understand that scientific knowledge is gained from

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc.

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc. Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Our goals for learning: How do we describe motion? How is mass different from weight?

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Essential physics for game developers Introduction The primary issues Let s move virtual objects Kinematics: description

More information

Momentum Energy Angular Momentum

Momentum Energy Angular Momentum Notes 8 Impulse and Momentum Page 1 Impulse and Momentum Newton's "Laws" require us to follow the details of a situation in order to calculate properties of the system. Is there a simpler way? CONSERVATION

More information

Physics C: Mechanics

Physics C: Mechanics Physics C: Mechanics 2013 2014 PISCATAWAY TOWNSHIP SCHOOLS COURSE SYLLABUS Mr. Rohan Gokhale rgokhale@pway.org www.piscatawayschools.org/phs Brief Description of Course The AP Physics course is a full

More information

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-7: ROTATIONAL KINETIC ENERGY Questions From Reading Activity? Big Idea(s): The interactions of an object with other objects can be described by

More information

Lecture D10 - Angular Impulse and Momentum

Lecture D10 - Angular Impulse and Momentum J. Peraire 6.07 Dynamics Fall 2004 Version.2 Lecture D0 - Angular Impulse and Momentum In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information