spreading of drops on soft surfaces

Size: px
Start display at page:

Download "spreading of drops on soft surfaces"

Transcription

1 Supplementary Material on Electrically modulated dynamic spreading of drops on soft surfaces Ranabir Dey 1, Ashish Daga 1, Sunando DasGupta 2,3, Suman Chakraborty 1,3 1 Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur , West Bengal, India. 2 Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur , West Bengal, India. 3 Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur , West Bengal, India Corresponding author, suman@mech.iitkgp.ernet.in 1

2 Table S1: Young s modulus ( E ), thickness of differently cross-linked Sylgard 184 dielectric films ( h ); equilibrium contact angles ( θ eq ), macroscopic advancing and receding contact angles ( θa θ r ) of 1 mm aqueous KCl solution drops, on the different dielectric films, without any electrical effects. Sylgard 184 (1:1) Sylgard 184 (3:1) Sylgard 184 (5:1) E (MPa) (refs. 33, 34) h (μm)* θ eq ( ) ± ± ± 2.25 θ / θ ( ) 115.6/ / /29.6 a r Note: *All films are spin-coated at- 5 rpm for 3s and then at 5 rpm for 7s (intermediate acceleration 4 rpm/s 2 ). The root mean square roughness of the different film surfaces is in the order of.33 nm. Initial (equilibrium) droplet contact radius: r c = 1.28 mm, is independent of substrate elasticity; only 2.45% deviation is observed across different substrates. Table S2: Measured (see the discussion about the results shown in Fig. 2a and Fig. 2b in the main paper) non-dimensional values of the final, macroscopic equilibrium contact angle [ θeq = θeq ( η; E) θ measured eq ] on the dielectrics of different elasticity, under different values of the applied electrical voltage; fitted (by a robust, nonlinear least-squares method) values of the same, on the soft dielectrics, as consistent with Eq. (1). The experimental and fitted values show good agreement. E (MPa) η θ ( η; E) θ θ ( η; E) θ eq measured NA NA NA eq eq fitted eq Table S3: Physically consistent values of the different parameters obtained from the classical description (Eq. (S1) and Eq. (S2)) of the electrospreading behaviour on the apparently rigid film, forη =.44. E=1.5 MPa; η =.44 ζ (Pa s) θ dm, ( ) L ln φ l ( L ~1.28mm) 2

3 FIG. S1. Detailed schematic of the experimental setup. 3

4 E=1.5 MPa E=.2 MPa t= t= t=2.5 ms t=25 ms t=3.75 ms t=525 ms t=6.25 ms t=2 s t=8.75 ms t=4 s t=25 ms t=6 s t=2 ms t=9 s FIG. S2. Image-sequences exhibiting the transient drop deformation, during electrospreading (at 16 V) on dielectric films having different values of the Young s modulus. 4

5 FIG. S3. Blow-ups (of the initial transience) of the temporal variations of (a) the nondimensional macroscopic dynamic contact angle ( θ d ), and (b) the non-dimensional contact radius ( r c ), during electrospreading at different magnitudes of the applied electrical voltage- 14 V (blue) and 16 V (black), as shown in Fig. 2(a) and Fig. 2(b) in the main paper. These blow-ups clearly demonstrate the electrospreading characteristics on the dielectric film with E = 15. MPa (1:1 Sylgard 184 film). The error-bars are shown here, as well as in Fig. 2(a) and Fig. 2(b) in the main paper, only for the data corresponding to 16 V to maintain clarity. The error-bars for the data corresponding to other magnitudes of the applied electrical voltage are comparable to this. 5

6 FIG. S4. The standard error of estimate of the power-law fit lies well within the experimental error (shown here forη =.44 ). This further substantiates the fact that the evolution of the non-dimensional contact radius, during electrospreading on soft dielectric films, conforms to a universal power-law in a non-dimensional time, based on the surface elasticity. 6

7 3:1 (E=.6 MPa) 3:1 (E=.6 MPa) 5:1 (E=.2 MPa) 5:1 (E=.2 MPa) 3:1 (E=.6 MPa) 5:1 (E=.2 MPa) FIG. S5. Bar graphs showing the values (evaluated by a robust, nonlinear least-squares method) of the non-dimensional co-efficients- (a)( ζv ) γ, (b) ( 3γ) ( 2πEδ ), and (c) the power-law exponent for viscoelastic dissipation, n, as obtained from Eq. (1), for electrospreading on the soft dielectrics, under different strengths of the electrical actuation (represented by η ). These bar graphs indicate that the non-dimensional co-efficients and n, as evaluated for the general electrospreading behaviour on soft substrates ( Ο( γ Er c ) 4 1 ) represented by Eq. (1), are approximately constants, independent of the Young s modulus and the electrical voltage. 7

8 3:1 (E=.6 MPa) 5:1 (E=.2 MPa) 3:1 (E=.6 MPa) 5:1 (E=.2 MPa) FIG. S6. Bar graphs showing the values of the (a) contact line friction co-efficient, ζ and (b) radius (δ ) of the region, about the TPCL, within which the linear elasticity theory is no longer applicable, as obtained from the constant co-efficients in Eq. (1), for electrospreading on the soft dielectrics ( ( Ο γ Er ) 1 4 c ), under different strengths of the electrical actuation (represented by η ). These bar graphs indicate that ζ and δ increase with increasing substrate softness (decreasing E ), while being approximately independent of the applied electrical voltage. The invariance of ζ over a wide range of applied electrical voltage is also evidenced in the existing literature (see ref. 12) 8

9 Image processing for measurement of contact angle and contact radius: FIG. S7. (I) Images of the droplet on a dielectric film, with E=1.5 MPa, grabbed by the high speed camera (a) before the application of the electrical voltage, and (b) during electrospreading after the application of the electrical voltage. (II) Images of the droplet on a dielectric film with E=.2 MPa grabbed by the high speed camera (a) before the application of the electrical voltage, and (b) during electrospreading after the application of the electrical voltage. The blue knotted lines, shown in these images, represent the fit of the droplet contour, as generated by ImageJ. The corresponding contact angles ( θ eq or θ d ) and the contact radii ( r c ), as subsequently measured by ImageJ, are also shown here. The blow-up in Ib shows that the droplet and the dielectric film with E=1.5 MPa form an apparently sharp (undeformed) solid-liquid-air interface (TPCL; red dashed line). However, the blow-up in IIb depicts a capillarity-induced deformation of the film surface (with E=.2 MPa) about the TPCL, under identical conditions. 9

10 High speed imaging and image processing: The images of a sessile droplet undergoing electrospreading on a dielectric film, with a definite value of E, are recorded by a high speed camera in a setup identical to that shown in Fig. S1. It must be noted here that the dropletand-dielectric system, in between the light source and the camera lens, is oriented in such a manner that there exists a vertical plane passing though the sessile droplet centre, which is almost parallel to the camera lens (a small tilt is however maintained). Fig. S7(I) and Fig. S7(II) show sample images captured during droplet electrospreading on the dielectric film with E=1.5 MPa, and on the dielectric film E=.2 MPa respectively. The image sequence obtained for each experiment, for each substrate-voltage combination, is then processed using ImageJ (see ref. 36) to evaluate the macroscopic dynamic contact angle ( θ d ) and the contact radius ( r c ). ImageJ uses a plugin to measure θ d by using a piecewise polynomial fit of the droplet contour (see the ImageJ generated fit (blue knotted line), and the corresponding measured contact angle in each of Fig. S7(I) and Fig. S7(II)). For measuring r c, ImageJ identifies the solid liquid interface, in the captured image, by fitting the droplet contour and by identifying the beginning of the droplet reflection on the substrate (see the yellow line marking the solid-liquid interface in each of Fig. S7(Ib) and Fig. S7(IIb)). Any inadvertent variation in the initial droplet condition (due to droplet placement or slight change in droplet volume) does not affect the final results/conclusions, as the data are all presented in nondimenisonalized form as d = d eq θ θ θ and c c c r = r r. The aforementioned methodology for contact angle and contact radius measurements, by using ImageJ, is devoid of any general assumption, and hence, is applicable for all types of sessile droplets (even non-axisymmetric ones). Moreover, this method for contact angle and contact radius measurements is prevalent in the existing literature (see refs. 14 and 16). For further details on the ImageJ measurement of the contact angle see ref. 36. It is instructive to note here that the contact line velocity is evaluated by subsequent numerical differentiation of the contact radius data with respect to time. High speed imaging with microscopy lens: The blow-ups in Fig. S7(Ib) and Fig. S7(IIb) (which are the same images shown in Fig. 1(b) in the main paper) are recorded with the high speed camera fitted with a microscopy lens (see Fig. S1 for the lens details). During this recording, the microscopy lens is focused on a small portion of the droplet near the three phase contact line (TPCL). It must be noted here that for acquiring these images the dropletand-substrate system is tilted towards the lens, so that the TPCL (red dashed line), the 1

11 dielectric surface, and the air-liquid interface (blue dashed line) are clearly visible. These microscopy images are shown here (and in the main paper) solely to give a qualitative idea about the difference in behaviours of the dielectric film surfaces about the TPCL, during electrospreading, with decreasing value of E. These images are not used for the quantitative measurement of θ d. The blow-up in Fig. S7(Ib) shows that the droplet and the dielectric film with E = 1.5 MPa form an apparently sharp (undeformed) solid-liquid-air interface (TPCL; red dashed line). Alternatively, it can be said that the air-liquid interface (blue dashed line) and the TPCL (red dashed line) form an apparent wedge-shaped structure in the image. On the other hand, Fig. S7(IIb) shows that under identical conditions, there is a local deformation of the film surface, with E =.2 MPa, about the TPCL. The interplay of such substrate elasticity dependent film surface deformation and the interfacial electrostatic forces alters the electrospreading characteristics from that established for rigid films. This is substantiated by the difference between the average θd and r c characteristics on the soft films, as measured by using ImageJ from images such as those shown in Fig. S7(IIb), and the same on the apparently rigid film. 11

12 Classical description of electrospreading dynamics on rigid dielectric films: During electrospreading process on non-deformable substrates, the spreading dynamics in the regime of high contact line velocity ( v cl ) is predominantly dictated by the dynamic energy balance between the excess free energy and the dissipation due to the threephase contact line (TPCL) friction (see refs ). Consequently, this dynamic energy 2 balance can be written as: γ cosθeq ( V ) cosθd vcl = ζvcl, where θd () t is the macroscopic dynamic contact angle, θ ( V ) is the electrostatic energy-dependent, final macroscopic, eq equilibrium contact angle (see ref. 4), γ is the liquid surface tension andζ is the co-efficient of wetting line friction (see refs. 17, 18). On rearrangement, the ensuing electrospreading dynamics can be described by the following θd vs. vcl relationship (see ref ): ζ cosθd = cos θeq(v ) vcl (S1) γ On the other hand, during such electrically-mediated advancement of the liquid meniscus, the variation inθ d with lower values of v cl conforms to a hydrodynamic description. The mathematical form of this spreading dynamics physically stems from the matching of the internal Stokes flow solution in the quasi-static macroscopic region to that in the mesoscopic viscocapillary region of the electrically-mediated advancing droplet meniscus (see refs. 14, 16-18). The culminating θd vs. vcl relationship, referred to in the literature as the Cox-Voinov model, can be written as (see refs. 14, 16-18): 3 3 L θd = θd,m + 9Caln φ l μvcl Here, θd,mis the microscopic dynamic contact angle, Ca = is the capillary number, μ is γ the liquid viscosity, L is a macroscopic length comparable to the droplet size,l is a microscopic cut-off length beyond which the hydrodynamic framework is inapplicable, and φ is a problem specific numerical constant (see ref. 18). It must be noted here that the electrospreading behaviour of a millimetre-sized sessile droplet on the apparently rigid dielectric film (E=1.5 MPa) adheres to these classical descriptions (see Fig. 3(b) and its inset in the main paper), as portrayed in the literature so far (see refs ), which do not take in purview the deformability of the substrate. However, (S2) 12

13 Eq. (S1) and Eq. (S2) fail to describe the electrospreading behaviour on the soft dielectric films ( Ο( γ Er c ) 4 1 ). 13

Electrically modulated dynamic spreading of drops on soft surfaces

Electrically modulated dynamic spreading of drops on soft surfaces Electrically modulated dynamic spreading of drops on soft surfaces Ranabir Dey 1, Ashish Daga 1, Sunando DasGupta 2,3, Suman Chakraborty 1,3 1 Department of Mechanical Engineering, Indian Institute of

More information

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

More information

Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa.

Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa. Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa. An original image (a1) was binarized, as shown in a2, by Canny edge detector

More information

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes 1 Supplementary Figure 1. Sketch of the experimental setup (not to scale) : it consists of a thin mylar sheet (0, 02 4 3cm 3 ) held fixed vertically. The spacing y 0 between the glass plate and the upper

More information

Wetting & Adhesion on Soft Surfaces Young s Law is dead long live Young s Law. Eric Dufresne

Wetting & Adhesion on Soft Surfaces Young s Law is dead long live Young s Law. Eric Dufresne Wetting & Adhesion on Soft Surfaces Young s Law is dead long live Young s Law Eric Dufresne KITP 2014 Wetting Adhesion 3mm 30 um Young s Law relates contact line geometry and material properties in equilibrium

More information

Bursting Drops in Solids Caused by High Voltages

Bursting Drops in Solids Caused by High Voltages Supplementary Information for Bursting Drops in Solids Caused by High Voltages Qiming Wang 1, Zhigang Suo 2 and Xuanhe Zhao 1 * 1 Soft Active Materials Laboratory, Department of Mechanical Engineering

More information

DLVO interaction between the spheres

DLVO interaction between the spheres DLVO interaction between the spheres DL-interaction energy for two spheres: D w ( x) 64c π ktrϕ e λ DL 2 x λ 2 0 0 D DLVO interaction w ( x) 64πkTRϕ e λ DLVO AR /12x 2 x λd 2 0 D Lecture 11 Contact angle

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Drop friction on liquid-infused materials

Drop friction on liquid-infused materials Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 207 Drop friction on liquid-infused materials Armelle Gas,2, Ludovic Keiser,3, Christophe Clanet,2

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications.

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications. Modeling of Drop Motion on Solid Surfaces with Wettability Gradients J. B. McLaughlin, Sp. S. Saravanan, N. Moumen, and R. S. Subramanian Department of Chemical Engineering Clarkson University Potsdam,

More information

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip Electronic Supplementary Material (ESI for Soft Matter. This journal is The Royal Society of Chemistry 14 Supplementary Information A1. Contact line receding velocity of an evaporating drop In colloidal

More information

Supplementary Material

Supplementary Material 1 2 3 Topological defects in confined populations of spindle-shaped cells by G. Duclos et al. Supplementary Material 4 5 6 7 8 9 10 11 12 13 Supplementary Note 1: Characteristic time associated with the

More information

Gravitational effects on the deformation of a droplet adhering to a horizontal solid surface in shear flow

Gravitational effects on the deformation of a droplet adhering to a horizontal solid surface in shear flow PHYSICS OF FLUIDS 19, 122105 2007 Gravitational effects on the deformation of a droplet adhering to a horizontal solid surface in shear flow P. Dimitrakopoulos Department of Chemical and Biomolecular Engineering,

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

On the Landau-Levich Transition

On the Landau-Levich Transition 10116 Langmuir 2007, 23, 10116-10122 On the Landau-Levich Transition Maniya Maleki Institute for AdVanced Studies in Basic Sciences (IASBS), Zanjan 45195, P.O. Box 45195-1159, Iran Etienne Reyssat and

More information

Capillarity and Wetting Phenomena

Capillarity and Wetting Phenomena ? Pierre-Gilles de Gennes Frangoise Brochard-Wyart David Quere Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves Translated by Axel Reisinger With 177 Figures Springer Springer New York Berlin

More information

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

Supplementary Material

Supplementary Material Mangili et al. Supplementary Material 2 A. Evaluation of substrate Young modulus from AFM measurements 3 4 5 6 7 8 Using the experimental correlations between force and deformation from AFM measurements,

More information

Four-phase merging in sessile compound drops

Four-phase merging in sessile compound drops J. Fluid Mech. (00), vol. 45, pp. 4 40. c 00 Cambridge University Press DOI: 0.07/S000000708 Printed in the United Kingdom 4 Four-phase merging in sessile compound drops By L. M A H A D E V A N, M. A D

More information

contact line dynamics

contact line dynamics contact line dynamics Jacco Snoeijer Physics of Fluids - University of Twente sliding drops flow near contact line static contact line Ingbrigtsen & Toxvaerd (2007) γ γ sv θ e γ sl molecular scales macroscopic

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

AME COMPUTATIONAL MULTIBODY DYNAMICS. Friction and Contact-Impact

AME COMPUTATIONAL MULTIBODY DYNAMICS. Friction and Contact-Impact 1 Friction AME553 -- COMPUTATIONAL MULTIBODY DYNAMICS Friction and Contact-Impact Friction force may be imposed between contacting bodies to oppose their relative motion. Friction force can be a function

More information

Revealing bending and force in a soft body through a plant root inspired. approach. Lucia Beccai 1* Piaggio 34, Pontedera (Italy)

Revealing bending and force in a soft body through a plant root inspired. approach. Lucia Beccai 1* Piaggio 34, Pontedera (Italy) Revealing bending and force in a soft body through a plant root inspired approach Chiara Lucarotti 1,2, Massimo Totaro 1, Ali Sadeghi 1, Barbara Mazzolai 1, Lucia Beccai 1* 1 Center for Micro-BioRobotics

More information

Vibration of submillimeter-size supported droplets

Vibration of submillimeter-size supported droplets PHYSICAL REVIEW E 73, 041602 2006 Vibration of submillimeter-size supported droplets Franck Celestini* and Richard Kofman Laboratoire de Physique de la Matière Condensée, UMR 6622, CNRS, Université de

More information

Using the Timoshenko Beam Bond Model: Example Problem

Using the Timoshenko Beam Bond Model: Example Problem Using the Timoshenko Beam Bond Model: Example Problem Authors: Nick J. BROWN John P. MORRISSEY Jin Y. OOI School of Engineering, University of Edinburgh Jian-Fei CHEN School of Planning, Architecture and

More information

contact line dynamics

contact line dynamics contact line dynamics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory maximum speed for instability corner shape? dimensional analysis: speed U position r viscosity η pressure

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Colloidal Particles at Liquid Interfaces: An Introduction

Colloidal Particles at Liquid Interfaces: An Introduction 1 Colloidal Particles at Liquid Interfaces: An Introduction Bernard P. Binks and Tommy S. Horozov Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK 1.1 Some Basic

More information

Supporting Information

Supporting Information Supporting Information On the Minimal Size of Coffee Ring Structure Xiaoying Shen, Chih-Ming Ho and Tak-Sing Wong * Mechanical and Aerospace Engineering Department, University of California, Los Angeles,

More information

Driven large contact angle droplets on chemically heterogeneous substrates

Driven large contact angle droplets on chemically heterogeneous substrates October 2012 EPL, 100 (2012) 16002 doi: 10.1209/0295-5075/100/16002 www.epljournal.org Driven large contact angle droplets on chemically heterogeneous substrates D. Herde 1,U.Thiele 2,S.Herminghaus 1 and

More information

Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate

Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate Derrick O. Njobuenwu * Department of Chemical Engineering, Loughborough University Leicestershire LE11 3TU,

More information

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT 2004 AIMETA International Tribology Conference, September 14-17, 2004, Rome, Italy UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT Yuri KLIGERMAN( ), Yuri Kadin( ), Izhak ETSION( ) Faculty of

More information

b imaging by a double tip potential

b imaging by a double tip potential Supplementary Figure Measurement of the sheet conductance. Resistance as a function of probe spacing including D and 3D fits. The distance is plotted on a logarithmic scale. The inset shows corresponding

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

Wettability of carbonate reservoir minerals under carbon storage conditions

Wettability of carbonate reservoir minerals under carbon storage conditions TCCS-9 Wettability of carbonate reservoir minerals under carbon storage conditions Dr Mihaela Stevar and Prof Martin Trusler 13 June 2017 1 Outline Background Objectives http://www.hydrobead.com/ Experimental

More information

Deformation of a droplet adhering to a solid surface in shear flow: onset of interfacial sliding

Deformation of a droplet adhering to a solid surface in shear flow: onset of interfacial sliding J. Fluid Mech. (27), vol. 58, pp. 451 466. c 27 Cambridge University Press doi:1.117/s2211275721 Printed in the United Kingdom 451 Deformation of a droplet adhering to a solid surface in shear flow: onset

More information

Adaptive Response of Actin Bundles under Mechanical Stress

Adaptive Response of Actin Bundles under Mechanical Stress Biophysical Journal, Volume 113 Supplemental Information Adaptive Response of Actin Bundles under Mechanical Stress Florian Rückerl, Martin Lenz, Timo Betz, John Manzi, Jean-Louis Martiel, Mahassine Safouane,

More information

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials 3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials Abstract: Talapady S. Bhat and T. A. Venkatesh Department of Material Science and Engineering Stony Brook University,

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were

Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were used in experiments throughout the paper. All surface tensions

More information

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract Derivation of continuum models for the moving contact line problem based on thermodynamic principles Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 002, USA Weinan

More information

arxiv: v1 [cond-mat.soft] 25 Jan 2016

arxiv: v1 [cond-mat.soft] 25 Jan 2016 DROPLET SPREADING ON ROUGH SURFACES: TACKLING THE CONTACT LINE BOUNDARY CONDITION N. T. Chamakos, 1 M. E. Kavousanakis, 1 A. G. Boudouvis, 1 1, a) and A. G. Papathanasiou School of Chemical Engineering,

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Supporting Information Organic Liquid-Crystal Devices Based on Ionic Conductors Can Hui

More information

Friction of Extensible Strips: an Extended Shear Lag Model with Experimental Evaluation

Friction of Extensible Strips: an Extended Shear Lag Model with Experimental Evaluation Friction of Extensible Strips: an Extended Shear Lag Model with Experimental Evaluation Ahmad R. Mojdehi 1, Douglas P. Holmes 2, Christopher B. Williams 3, Timothy E. Long 4, David A. Dillard 1 1 Department

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

Electrowetting. space and ε l the liquid dielectric constant, Eq. (1) can be written as. γ = ε 0ε l 2d V2. (2)

Electrowetting. space and ε l the liquid dielectric constant, Eq. (1) can be written as. γ = ε 0ε l 2d V2. (2) 600 Electrowetting and hence a reduced flow rate in the pressure-drop direction. This reduced flow rate seems to suggest that the liquid have an apparent higher viscosity. The apparent viscosity is called

More information

Wetting contact angle

Wetting contact angle Wetting contact angle Minh Do-Quang www.flow.kth.se Outline Statics; capillarity and wetting Dynamics; models describing dynamic wetting Hydrodynamics (Tanner-Cox-Voinov law) Molecular kinetics theory

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Molecular structures of functional materials involved in our SGOTFT devices. Supplementary Figure 2 Capacitance measurements of a SGOTFT device. (a) Capacitance

More information

Mapping of Deformation to Apparent Young s Modulus in Real-Time Deformability Cytometry. Christoph Herold

Mapping of Deformation to Apparent Young s Modulus in Real-Time Deformability Cytometry. Christoph Herold Mapping of Deformation to Apparent Young s Modulus in Real-Time Deformability Cytometry Christoph Herold ZELLMECHANIK DRESDEN GmbH Tatzberg 47/49 01307 Dresden Germany herold@zellmechanik.com As described

More information

Time-resolved, three-dimensional quantitative microscopy of

Time-resolved, three-dimensional quantitative microscopy of Journal of Microscopy, Vol. 208, Pt 2 November 2002, pp. 148 152 Received 10 January 2002; accepted 31 July 2002 Time-resolved, three-dimensional quantitative microscopy of Blackwell Science, Ltd a droplet

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

characterize antiadhesive surfaces

characterize antiadhesive surfaces Capillary bridge formation and breakage: a test to characterize antiadhesive surfaces TITLE RUNNING HEAD: Capillary bridge for antiadhesive surfaces. Laurianne Vagharchakian 1, Frédéric Restagno 2, Liliane

More information

Ultrafast water harvesting and transport in hierarchical microchannels

Ultrafast water harvesting and transport in hierarchical microchannels SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41563-018-0171-9 In the format provided by the authors and unedited. Ultrafast water harvesting and transport in hierarchical microchannels Huawei

More information

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal The Harvard community has made this article openly available. Please share how this access benefits you.

More information

Supplementary Figures

Supplementary Figures Fracture Strength (GPa) Supplementary Figures a b 10 R=0.88 mm 1 0.1 Gordon et al Zhu et al Tang et al im et al 5 7 6 4 This work 5 50 500 Si Nanowire Diameter (nm) Supplementary Figure 1: (a) TEM image

More information

Supplementary information

Supplementary information 1 2 Supplementary information 3 4 5 6 Supplementary Figure 1 7 8 Supplementary Figure 1 ǀ Characterization of the lysozyme fibrils by atomic force microscopy 9 (AFM) and scanning electron microscopy (SEM).

More information

Solvability condition for the moving contact line

Solvability condition for the moving contact line PHYSICAL REVIEW E 78, 564 28 Solvability condition for the moving contact line L. M. Pismen 1 and Jens Eggers 2 1 Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex

More information

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics ILASS Americas, nd Annual Conference on Liquid Atomization and Spray Systems, Cincinnati, OH, May 00 Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics V. Ravi, M. A. Jog

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Functionalized Surfaces B510 Stand: 20.10.2017 Table of contents Introduction 2 Basics 2 Surface tension 2 From wettability to the contact angle 4 The Young equation 5 Wetting

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References File name: Supplementary Movie 1 Description: The movie shows compression behaviour

More information

Course: US01CPHY01 UNIT 1 ELASTICITY I Introduction:

Course: US01CPHY01 UNIT 1 ELASTICITY I Introduction: Course: US0CPHY0 UNIT ELASTICITY I Introduction: If the distance between any two points in a body remains invariable, the body is said to be a rigid body. In practice it is not possible to have a perfectly

More information

Characterization of Low Weber Number Post-Impact Drop-Spread. Dynamics by a Damped Harmonic System Model

Characterization of Low Weber Number Post-Impact Drop-Spread. Dynamics by a Damped Harmonic System Model Characterization of Low Weber Number Post-Impact Drop-Spread Dynamics by a Damped Harmonic System Model A Thesis Submitted to the Division of Research and Advanced Studies of the University of Cincinnati

More information

Supplementary Information

Supplementary Information Supplementary Information Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals Chaolei Huang 1,4, Jiu-an Lv 2, Xiaojun Tian 1 *, Yuechao Wang 1, Yanlei

More information

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope SUPPLEMENTARY INFORMATION Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope Johannes Rheinlaender and Tilman E. Schäffer Supplementary Figure S1 Supplementary

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements. PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

More information

Using Simple Fluid Wetting as a Model for Cell Spreading

Using Simple Fluid Wetting as a Model for Cell Spreading John von Neumann Institute for Computing Using Simple Fluid Wetting as a Model for Cell Spreading Matthew Reuter, Caroline Taylor published in NIC Workshop 26, From Computational Biophysics to Systems

More information

Temperature ( o C)

Temperature ( o C) Viscosity (Pa sec) Supplementary Information 10 8 10 6 10 4 10 2 150 200 250 300 Temperature ( o C) Supplementary Figure 1 Viscosity of fibre components (PC cladding blue; As 2 Se 5 red; CPE black) as

More information

Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

More information

Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis

Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis J. Barman a, A. K. Nagarajan b and K. Khare a* a Department of Physics, Indian Institute of Technology

More information

BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD

BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat

More information

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour Mohamed Daoud Claudine E.Williams Editors Soft Matter Physics With 177 Figures, 16 of them in colour Contents 1. Droplets: CapiUarity and Wetting 1 By F. Brochard-Wyart (With 35 figures) 1.1 Introduction

More information

Droplet Migration during Condensation on Chemically Patterned. Micropillars

Droplet Migration during Condensation on Chemically Patterned. Micropillars Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry Please do 2016 not adjust margins RSC Advances ELECTRONIC SUPPORTING INFORMATION (ESI) Droplet Migration

More information

Electrowetting films on parallel line electrodes

Electrowetting films on parallel line electrodes PHYSICAL REVIEW E 73, 011605 006 Electrowetting films on parallel line electrodes Leslie Y. Yeo 1 Hsueh-Chia Chang, * 1 Micro/Nanophysics Research Laboratory, Department of Mechanical Engineering, Monash

More information

Particle removal in linear shear flow: model prediction and experimental validation

Particle removal in linear shear flow: model prediction and experimental validation Particle removal in linear shear flow: model prediction and experimental validation M.L. Zoeteweij, J.C.J. van der Donck and R. Versluis TNO Science and Industry, P.O. Box 155, 600 AD Delft, The Netherlands

More information

transition from boundary lubrication to hydrodynamic lubrication

transition from boundary lubrication to hydrodynamic lubrication IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 21 2009) 185002 22pp) doi:10.1088/0953-8984/21/18/185002 On the transition from boundary lubrication to hydrodynamic lubrication

More information

arxiv: v2 [physics.flu-dyn] 24 Oct 2013

arxiv: v2 [physics.flu-dyn] 24 Oct 2013 Supporting Information: Short and long time drop dynamics on lubricated substrates Andreas Carlson1,3,4,, Pilnam Kim2,4, Gustav Amberg3, and Howard A. Stone4, arxiv:1309.6339v2 [physics.flu-dyn] 24 Oct

More information

Elementary charge and Millikan experiment Students worksheet

Elementary charge and Millikan experiment Students worksheet Tasks This experiment deals with the observation of charged oil droplets, which are accelerated between two capacitor plates.. Measure some rise and fall times of oil droplets at different voltages. Determine

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Millikan Oil Drop Experiment

Millikan Oil Drop Experiment Millikan Oil Drop Experiment Introduction The electronic charge, or electrical charge carried by an electron, is a fundamental constant in physics. During the years 1909 to 1913, R.A. Millikan used the

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

An Analytical Model for Long Tube Hydroforming in a Square Cross-Section Die Considering Anisotropic Effects of the Material

An Analytical Model for Long Tube Hydroforming in a Square Cross-Section Die Considering Anisotropic Effects of the Material Journal of Stress Analysis Vol. 1, No. 2, Autumn Winter 2016-17 An Analytical Model for Long Tube Hydroforming in a Square Cross-Section Die Considering Anisotropic Effects of the Material H. Haghighat,

More information

Supporting Information. Interfacial Shear Strength of Multilayer Graphene Oxide Films

Supporting Information. Interfacial Shear Strength of Multilayer Graphene Oxide Films Supporting Information Interfacial Shear Strength of Multilayer Graphene Oxide Films Matthew Daly a,1, Changhong Cao b,1, Hao Sun b, Yu Sun b, *, Tobin Filleter b, *, and Chandra Veer Singh a, * a Department

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

Vesicle micro-hydrodynamics

Vesicle micro-hydrodynamics Vesicle micro-hydrodynamics Petia M. Vlahovska Max-Planck Institute of Colloids and Interfaces, Theory Division CM06 workshop I Membrane Protein Science and Engineering IPAM, UCLA, 27 march 2006 future

More information

2/28/2006 Statics ( F.Robilliard) 1

2/28/2006 Statics ( F.Robilliard) 1 2/28/2006 Statics (.Robilliard) 1 Extended Bodies: In our discussion so far, we have considered essentially only point masses, under the action of forces. We now broaden our considerations to extended

More information

Chem Soc Rev REVIEW ARTICLE. Recent advances in droplet wetting and evaporation. 1. Introduction. D. Brutin * ab and V. Starov

Chem Soc Rev REVIEW ARTICLE. Recent advances in droplet wetting and evaporation. 1. Introduction. D. Brutin * ab and V. Starov Chem Soc Rev REVIEW ARTICLE Cite this: DOI: 10.1039/c6cs00902f Recent advances in droplet wetting and evaporation D. Brutin * ab and V. Starov c Received 29th May 2017 DOI: 10.1039/c6cs00902f rsc.li/chem-soc-rev

More information

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2018 Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Tom Golde, 1 Constantin

More information

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 Derivation of Navier-Stokes Equation 1 The total stress tensor

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

BRIEF COMMUNICATION TO SURFACES ANALYSIS OF ADHESION OF LARGE VESICLES

BRIEF COMMUNICATION TO SURFACES ANALYSIS OF ADHESION OF LARGE VESICLES BRIEF COMMUNICATION ANALYSIS OF ADHESION OF LARGE VESICLES TO SURFACES EVAN A. EVANS, Department ofbiomedical Engineering, Duke University, Durham, North Carolina 27706 U.S.A. ABSTRACT An experimental

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1. a, the cross-sectional and b, top view SEM images of a PC/SWNT bilayer (SWNT film thickness of ~ 1µm). S1 Supplementary Figure S2. The obtained SWNT film

More information

Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading

Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading Loughborough University Institutional Repository Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading This item was submitted

More information

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Hong-ming Ding 1 & Yu-qiang Ma 1,2, 1 National Laboratory of Solid State Microstructures and Department

More information

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Supporting Information Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Yun Yu,, Vignesh Sundaresan,, Sabyasachi Bandyopadhyay, Yulun Zhang, Martin A. Edwards, Kim

More information

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES 25 2.1 INSTRUMENTATION The prepared samples were characterized using various techniques. Among which are Dynamic Light Scattering, Zeta Potential

More information