CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

Size: px
Start display at page:

Download "CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM"

Transcription

1 CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM PRANESH KUMAR AND INDER JEET TANEJA Abstrct The mnmum dcrmnton nformton prncple for the Kullbck-Lebler cross-entropy well known n the lterture In th pper we hve developed mnmum χ dvergence dcrete probblty dtrbuton gven pror dtrbuton nd prtl nformton n the form of verge or prtl nformton n the form of verge nd vrncethe probblty dtrbutons gven pror s unform Poson bnoml logrthmc nd geometrc dtrbutons re dcussed 1 Introducton The mxmum entropy prncple (MEP) due to Jyne (1957) nd the mnmum dcrmnton nformton prncple (MDIP) or mnmum cross-entropy prncple of Kullbck(1959) re well known to provde methodology for dentfyng nd chrcterzng the most unbed unvrte nd multvrte probblty dtrbutons [Kgn et l(1975) Kpur(1989) Kpur nd Kesvn(1989;199)] Kpur(198) used MEP nd MDIP to chrcterze unvrte dtrbutons: unform geometrc Gbb s dcrete norml gmm exponentl bet Cuchy Lplce norml lognorml nd Preto dtrbutons Kesvn nd Kpur(1989) descrbed generlztons of MEP nd MDIP nd presented formlm one n the MEP verson nd nother n the MDIP verson Recently Kwmur nd Iwse(00) ppled MEP to chrcterze dtrbutons of the power nverse Gussn power Brnum-Sunders nd generlzed Gumbel The equvlence of MDIP nd stttcl prncples lke mxmum lkelhood prncple nd Guss s prncple hs been dcussed by Cmpbell(1970) nd Shore nd Johnson(1980) Mnmzng cross entropy equvlent to mxmzng the lkelhood functon [Kpur(198)] nd the dtrbuton produced by n pplcton of Guss prncple lso the dtrbuton whch mnmzes the cross entropy Intheltertureonstttcstheχ dvergence due to Person (1900) well known In th pper we present methodology to derve the probblty dtrbutons usng the mnmum χ dvergence prncple when gven : () pror dtrbuton nd () prtl nformton n the form of verge or () prtl nformton n the form of verge nd vrnce The dcrete probblty dtrbuons consdered re: Unform Poson Bnoml Logrthmc nd Geometrc Let Mnmum χ dvergence for Dcrete Probblty Dtrbutons ( ) Γ n = P =(p 1 p p n ) p 0 p =1 n > be the set of ll complete fnte dcrete probblty dtrbutonsgven pror probblty dtrbuton Q Γ n m to estmte usng the prncple of mnmum drected dvergence probblty dtrbuton P Γ n when th underlyng probblty dtrbuton P stfes the usul probblty constrnts nd the prtl nformton n terms of verges Defnton 1 A probblty dtrbuton P Γ n termed s the mnmum χ dvergence probblty dtrbuton f t mnmzes the χ dvergence mesure (1) χ p (P Q) = 1 q gven: () pror probblty dtrbuton: Q Γ n 000 Mthemtcs Subject Clssfcton 94A17; 6D15 Key words nd phrses Dvergence mesure Reltve nformton Mnmum dcrmnton nformton prncple Person s ch-squre Chrcterzton Dcrete probblty dtrbutons Th reserch prtlly supported by the Nturl Scences nd Engneerng Reserch Councl s Dcovery Grnt to Prnesh Kumr

2 PRANESH KUMAR AND INDER JEET TANEJA () probblty constrnts: p 0 () prtl nformton: np p =1 np k p = m k k =1 r We present the mn result n the followng lemm: Lemm 1 Gven pror probblty dtrbuton ( ) Q = (q 1 q q n ) 0 q =1 n> q nd the constrnts () p 0 p =1 k p = m k k=1 r the mnmum χ dvergence probblty dtrbuton ( ) () P = (p 1 p p n ) 0 p p =1 n> à (4) p = q α 0 +! rx k α k nd (r +1) constnts α 0 nd α k k=1 r re determned from Ã! q rx (5) α 0 + k α k =1 nd (6) k q à α 0 + k=1 k=1! rx k α k = m k k=1 Proof We pply the fmlr method of fndng extrem of functon by ntroducng Lgrngn multplers one for ech constrnt Thus we mnmze the lner functon à n! à X p n! à X rx n! X (7) f = 1 α 0 p 1 α k k p m k q Dfferenttng f wth respect to p nd equtng the result to zero we get the followng n equtons: f (8) = p P α 0 q r k=1 α k k q =0 p q From (8) we obtn the desred vlue of p gven by (4) tht mnmzes χ (P Q) snce for ll s f p = > 0 q Expressons for the (r + 1) constnts α 0 nd α k k =1 r gven bove re obtned from the n + r + 1 equtons () nd (8) Usng the results of the lemm the mnmum χ dvergence mesure gven by: k=1 (9) χ (P Q) mn = q 4 à α 0 +! rx k α k 1 k=1

3 MINIMIZATION PROBLEM 1 Gven pror Dtrbuton nd Prtl Informton n the Form of Averge Suppose tht pror probblty dtrbuton Q nd the prtl nformton n the form of verge (m) e np p = m vlble Then we hve from Lemm 1 : Theorem 1 Gven pror probblty dtrbuton ( ) (10) Q = (q 1 q q n ) 0 q =1 n> q nd the constrnts (11) p 0 p =1 p = m the mnmum χ dvergence probblty dtrbuton ( ) (1) P = (p 1 p p n ) 0 p p =1 n> (1) p = P n µ P q m n P q + m n q q np P q n q Gven pror Dtrbuton nd Prtl Informton n the Form of Averge nd Vrnce When pror probblty dtrbuton Q nd the prtl nformton n the form of verge (m) np nd vrnce (σ P ) e p = m nd n p = m + σ re gven we get from Lemm 1: Theorem Gven pror probblty dtrbuton ( ) (14) Q = (q 1 q q n ) 0 q =1 n> q nd the constrnts (15) p 0 p =1 p = m p = m + σ the mnmum χ dvergence probblty dtrbuton ( ) (16) P = (p 1 p p n ) 0 p p =1 n> (17) p = q α0 + α 1 + α

4 4 PRANESH KUMAR AND INDER JEET TANEJA m ( P n q )( P n 4 q ) ( P n q )( P n q ) + (m + σ ) ( P n q ) ( P n q )( P n q ) +( P n α 0 = q ) ( P n 4 q )( P n q ) ( P n q )( P n q )( P n q ) ( P n q ) ( P n q ) ( P n 4 q )( P n q ) +( P n 4 q )( P n q ) m ( P n 4 q ) ( P n q ) +(m + σ ) ( P n q )( P n q ) P n q ( P n α 1 = q )( P n 4 q )+( P n q )( P n q ) ( P n q )( P n q )( P n q ) ( P n q ) ( P n q ) ( P n 4 q )( P n q ) +( P n 4 q )( P n q ) m ( P n q )( P n q ) P n q +(m + σ ) ( P n q ) ( P n q ) ( P n α = q ) +( P n q )( P n q ) ( P n q )( P n q )( P n q ) ( P n q ) ( P n q ) ( P n 4 q )( P n q ) +( P n 4 q )( P n q ) In wht follows now we dcuss specl cses of the mnmum χ dvergence probblty dtrbutons nd ther propertes χ Dvergence nd Dcrete Probblty Dtrbutons In th secton we shll consder the problem done n prevous secton the mnmzton of χ dvergence consderng prorome well known dcrete probblty dtrbutons such s unform Poson bnoml log seres etc 1 Gven Unform Dtrbuton A Pror nd Prtl Informton n the Form of Averge Proposton 1 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s unform probblty dtrbuton e q = 1 n =1 n nd the constrnts p 0 p =1 p = m (1) p = n(n 1) n 1 [(n m +1)+(m ) ] n +1 m n +1 n +1 The r th moment (r =1 ) bout orgn of the mnmum χ dvergence probblty dtrbuton P gven by () n(n 1) [(n m +1)r +( m n 1 ) r+1 n +1 n +1 ] m n +1 In prtculr the frst four moments bout orgn re: M 1 = m (n +1)(6m n ) M = 6 (n +4)(n +1)m (n +1)(n +)(n +1) M = 10 nd M 4 = (n +1){6 4n +5n 1 m (n +) 6n +6n 1 } 0 n +1 n +1 m The men (µ) ndvrnce(σ ) of the mnmum χ dvergence probblty dtrbuton P for n+1 m n+1 re: n +1 µ n +1

5 MINIMIZATION PROBLEM 5 nd (11n + 1) (n 1) σ 144 respectvely µ = m nd σ = (n+1)(6m n ) 6 m Here below re some nterestng prtculr cses n 1 Cse 11 For m = n+1 P = Q nd the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q the unform dtrbuton p = 1 n n Cse 1 For m = n+1 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q p = n n(n +1) In th cse the r th moment bout orgn of P gven by r+1 r =1 n(n +1) In prtculr the frst four moments bout orgn re: n +1 n(n +1) M 1 = M = M = (n +1) n +n 1 M 4 = n (n +1) n +n nd the men (µ) ndvrnce(σ )re n +1 µ = σ (n +)(n 1) = 18 Cse 1 Consder pror unform dtrbuton Q wth n =6 Suppose the prtl nformton bout verge (m) suchtht 7 m 1 Thus for m =5 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q the unform dtrbuton p = However for 7 <m 1 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q not the unform dtrbuton Th dtrbuton p = 1 m(7 ) 15 5 (7 m) m 1 6 Gven Unform Dtrbuton A Pror nd Prtl Informton n the Form of Averge nd Vrnce Proposton The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s unform probblty dtrbuton e q = 1 n n nd the constrnts p 0 p =1 p = m nd p = m + σ () p = {10m 6m(n +1) +n (n +1)+(5σ +1)} 0m (n+1) m(8n+11)(n+1) +(n+1)(n+)(n+1)+0σ (n+1) (n+1)(n+) m 6m(n+1)+(n+)(n+1)+6σ (n+1)(n+) n (n 1) (n )

6 6 PRANESH KUMAR AND INDER JEET TANEJA subject to the smultneous suffcent restrctons on m nd σ n terms of n so tht p 0e 1 10 h(n +1) p (4) 6n(n +1) σ m 1 10 h(n +1)+ p 6n(n +1) σ 1 6 h(n +1) p (5) (n 1) 6σ m 1 6 h(n +1)+ p (n 1) 6σ (8n+11)(n+1) (n+1)(8n +56n n 59) 900σ (n+1) (6) 0(n+1) m (8n+11)(n+1)+ (n+1)(8n +56n n 59) 900σ (n+1) 0(n+1) The r th moment (r =1 ) bout orgn of the mnmum χ dvergence probblty dtrbuton P gven by {10m 6m(n +1) +n (n +1)+(5σ +1)} r (7) 0m (n+1) m(8n+11)(n+1) +(n+1)(n+)(n+1)+0σ (n+1) (n+1)(n+) r m 6m(n+1)+(n+)(n+1)+6σ n (n 1) (n ) (n+1)(n+) r+ Now we dcuss some specl cses of the mnmum χ dvergence probblty dtrbuton P tht re for specfc vlues of verge (m) ndvrnce(σ ): Cse 1 For m = n+1 nd σ = n 1 1 Note tht m σ (n +1)(7 n) = 1 mplyng tht ½ σ m = n 7 <σ n > 7 In th cse α 0 =1 α 1 = α =0ndP = Q tht p = 1 =1 n n Cse For m = n+1 nd σ = (n+)(n 1) 18 Snce m σ 8+11n n = 18 ½ σ m = n 11 <σ else In th cse α 1 = n+1 α 0 = α =0nd P becomes p = =1 n n(n +1) Cse For m = n(n+1) (n+1) nd σ = (n 1)(n+)(n +n+) 0(n+1) We hve m σ = 4 n (n +1) n 57n 4 0 (n +1) mplyng tht ½ σ m = n 0 <σ else 6 In th cse α 0 = α 1 =0 α = (n+1)(n+1) nd P p = 6 =1 n n (n +1)(n +1)

7 MINIMIZATION PROBLEM 7 The r th moment bout orgn for r =1 gven by 6 r+ =1 n n (n +1)(n +1) Gven Poson Dtrbuton A Pror nd Prtl Informton n the Form of Averge Proposton The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s Poson probblty dtrbuton e q = e! > 0 =0 1 nd the constrnts p 0 p =1 p = m (8) p =[(1+ m)+( m ) ] q m 1+ The r th moment (r =1 ) bout orgn of the mnmum χ dvergence probblty dtrbuton P gven by r + m r+1! e m 1+! In prtculr the frst four moments bout orgn for m 1+ re: M 1 = m M = m(1 + ) M = m( ) ( + ) (9) 1+ m e nd M 4 = m{1+ ( +7)(1+)} ( ) The men (µ) ndvrnce(σ ) of the mnmum χ dvergence probblty dtrbuton P re: µ = m nd σ = m (m ) Here below re some prtculr cses: µ 1+ nd σ Cse 1 For m = P = Q Thus the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q the Poson dtrbuton e p = e > 0 =0 1! Cse For m =1+ the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q 1 e p = >0 =1 ( 1)! The r th moment bout orgn of P for r =1 gven by r 1 e ( 1)! Cse Let gven be pror Poson dtrbuton Q wth =nd the prtl nformton bout verge (m) besuchtht = m 1+ = Thusform = the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q Poson dtrbuton p = e =0 1!

8 8 PRANESH KUMAR AND INDER JEET TANEJA However for <m the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q not the Poson dtrbuton Th dtrbuton p =[(6 m)+(m )] 1 e <m! 4 Gven Poson Dtrbuton A Pror nd Prtl Informton n the Form of Averge nd Vrnce Proposton 4 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s Poson probblty dtrbuton e q = e! > 0 =0 1 nd the constrnts p 0 p =1 p = m nd p = m + σ (10) p = {m ( + )m +(+ + + σ )} {(1 + )m ( )m +(σ +σ + + )} + {m (1 + )m +( + σ ) subject to the smultneous suffcent restrctons on m nd σ n terms of so tht p 0 e (11) + p 1+4( σ ) m + + p 1+4( σ ) (1) + 1 p 1 1+4( σ ) m p 1 1+4( σ ) +( +1) 1+4(+)(+1) {σ(+1)} (1) ( +1) m +( +1) + 1+4(+)(+1) {σ(+1)} (+1) q The r th moment bout orgn of the mnmum χ dvergence probblty dtrbuton P for r = 1 gven by (14) e ( 1)! Now we dcuss some specl cses of the mnmum χ dvergence probblty dtrbuton P tht re for specfc vlues of verge (m) ndvrnce(σ ): Cse 41 For m = σ = In th cse α 0 =1 α 1 = α =0ndP = Q tht p = e {m ( + )m +(+ + + σ )} r 1 {(1 + )m ( )m +(σ +σ + + )} r + {m (1 + )m +( + σ )} r+1 Cse 4 For m =1+ vrnce by one Further α 1 = 1 α 0 = α =0nd P becomes > 0 =0 1! σ = Note tht m σ =1 mplyng tht the verge lrger thn p = 1 e > 0 =1 ( 1)! Cse 4 For m = σ = (++ ) (1+) It noted tht µ m σ =1+ 1+ scertnng tht the verge lrger thn the vrnce by more thn one 1 In th cse α 0 = α 1 =0 α = (1+) nd P 1 e p = > 0 =1 ( 1)!(1 + ) The r th moment bout orgn for r =1 gven by r+1 1 e ( 1)!(1 + ) > 0

9 MINIMIZATION PROBLEM 9 5 Gven Bnoml Dtrbuton A Pror nd Prtl Informton n the Form of Averge Proposton 5 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s bnoml probblty dtrbuton e q = n (1 ) n 0 <<1 = 0 1 n nd the constrnts p 0 p =1nd p = m n(1 + n m )+(m n) (15) p = q n m n +1 n(1 ) The r th moment (r =1 ) bout orgn of the mnmum χ dvergence probblty dtrbuton P gven by P n n (1 ) n r (m n) (16) (1 + n m )+ n m n +1 1 n In prtculr the frst four moments bout orgn for n m n +1 re: M 1 = m M = m(1 + n ) n(n 1) M = m{1 6(1 )+n (n + ) } n (n 1) (n + 4) M 4 = m[1 + (n 1) {7+(n ) (n 6 +9)}]+n [7(1 n) 6(4 ) n n 6n +4n ] nd the men (µ) ndvrnce(σ )ofthemnmumχ dvergence probblty dtrbuton P re: n µ n +(1 ) nd(n 1)(1 ) σ (1 )[(1 + )+4(n 1)] 4 respectvely µ = m nd σ = m(1 m)+(n 1)(m n) Here below re some prtculr cses Cse 51 For m = n P = Q Thus the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q the bnoml dtrbuton e µ n p = (1 ) n 0 <<1 =0 1 n Cse 5 For m = n +1 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q p = µ n 1 1 (1 ) n 0 <<1 =1 n 1 The r th moment bout orgn of P for r =1 gven by µ n 1 r 1 (1 ) n 1 Thus the men (µ) ndvrnce(σ )re µ = n +(1 ) nd σ =(n 1)(1 ) Cse 5 Consder pror bnoml dtrbuton Q wth n =10 =0 Suppose the prtl nformton bout verge (m) suchtht m 8 Thusform = the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q bnoml dtrbuton p = µ 10 (0) (08) 10 =0 1 10

10 10 PRANESH KUMAR AND INDER JEET TANEJA However for <m 8 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q not the bnoml dtrbuton Th dtrbuton µ 10 (8 m)+(05m 1) p = (0) (08) 10 = Gven Bnoml Dtrbuton A Pror nd Prtl Informton n the Form of Averge nd Vrnce Proposton 6 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s bnoml probblty dtrbuton e q = n (1 ) n 0 <<1 = 0 1 n nd the constrnts p 0 p =1 p = m nd p = m + σ (17) p =(α 0 + α 1 + α )q α 0 = (n 1) (n ) (m 1) (n ) +( m + m + σ ) (1 ) α 1 = (n 1) (m m σ ) +(4mn n 6m) n(n ) ª m(m 1) σ n(n 1) (1 ) α = (n 1) (n m) + (m + σ m) n(n 1) (1 ) subject to the smultneous suffcent restrctons on m nd σ n terms of so tht p 0e (n ) 1 p 1 4σ 4(n ) ( 1) m (n ) + 1 p 1 4σ 4(n ) ( 1) (n 1) p 1 4σ +4(n 1)(1 ) m (n 1) p 1 4σ +4(n 1)(1 ) L m U s ½ 4 +4σ 1+(n 1) (n +) (1 4σ 16 n + nσ ) (n 1) σ + ¾ +8 n 10n +9 4(4n 9) (n 1) 4 L = {1+(n 1)} s ½ 4 +4σ 1+(n 1) (n +) + (1 4σ 16 n + nσ ) (n 1) σ + ¾ +8 n 10n +9 4(4n 9) (n 1) 4 U = {1+(n 1)} The r th moment bout orgn of the mnmum χ dvergence probblty dtrbuton P gven by µ n (1 ) n (α 0 + α 1 + α ) r r=1 Now we dcuss some specl cses of the mnmum χ dvergence probblty dtrbuton P tht re for specfc vlues of verge (m) ndvrnce(σ ): Cse 61 For m = n nd σ = n(1 ) Note tht m σ = n > 0 In th cse α 0 =1 α 1 = α =0ndP = Q tht µ n p = (1 ) n 0 <<1 =0 1 n

11 MINIMIZATION PROBLEM 11 Cse 6 For m =1+(n 1) nd σ =(n 1)(1 ) Note tht m σ =1+(n 1) > 0 In th cse α 0 = α =0α 1 = 1 n nd P becomes µ n 1 p = 1 (1 ) n 0 <<1 = 1 n 1 Cse 6 For m = (1 )(1 )+n( +n) 1+(n 1) nd σ = (n 1)(1 )[(1 ) +n( +n)] [1+(n 1)] It noted tht m σ = 1+(n 1) +(n 1)(n +1) +(n 1)(n ) +(n )(n 1) 4 {1+(n 1)} > 0 scertnng tht the verge lrger thn the vrnce for n 1 In th cse α 0 = α 1 =0 α = n{1+(n 1)} nd P µ n 1 1 (1 ) n p = 0 <<1 =1 n 1 1+(n 1) The r th moment bout orgn for r =1 gven by µ n 1 r+1 1 (1 ) n 0 <<1 1 1+(n 1) 7 Gven Logrthmc Seres Dtrbuton A Pror nd Prtl Informton n the Form of Averge Proposton 7 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s logrthmc seres probblty dtrbuton e q = K 0 <<1 K= > 0 nd the constrnts 1 log(1 ) p 0 p =1 p = m K{1 (1 )m} +(1 ){(1 )m K} K (18) p = q K(1 K) 1 m 1 1 The r th moment bout orgn of the mnmum χ dvergence probblty dtrbuton P for r = 1 gven by " # K K{1 (1 )m} r 1 +(1 ){(1 )m K} r K K(1 K) 1 m 1 1 The men (µ) ndvrnce(σ ) of the mnmum χ dvergence probblty dtrbuton P re: K 1 µ 1 1 (1 ) σ K (1 ) f 0 < 09 K (1 ) σ (1 ) f 09 <1 µ = m nd σ = (1 )(1+ K)m K m (1 ) (1 K) (1 K)(1 ) Equlty holds f =09 Then we hve K = 1 nd vrnce σ = 90 Here below re some prtculr cses

12 1 PRANESH KUMAR AND INDER JEET TANEJA Cse 71 For m = K 1 P = Q Thus the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q the logrthmc seres dtrbuton p = 0 <<1 log(1 ) Cse 7 For m = 1 1 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q p =(1 ) 1 0 <<1 The r th moment bout orgn of P for r =1 gven by (1 ) 1 r Thus the men (µ) ndvrnce(σ )reµ = 1 1 nd σ = (1 ) respectvely Cse 7 Let there be pror logrthmc seres dtrbuton Q wth =08 Suppose the prtl nformton bout verge (m) such tht 485 m 5 Then form = 485 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q logrthmc seres dtrbuton p = (061)(08) However for 485 <m 5 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q not the logrthmc seres dtrbuton Th dtrbuton p =( )(m ) =1 8 Gven Logrthmc Seres Dtrbuton A Pror nd Prtl Informton n the Form of Averge nd Vrnce Proposton 8 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s logrthmc seres probblty dtrbuton e q = K 0 <<1 K= > 0 nd the constrnts 1 log(1 ) p 0 p =1 p = m (19) p =(α 0 + α 1 + α ) q p = m + σ α 0 = m( m) σ +(m + σ m) (m + m + σ ) K( +) K(m (1 ) + σ ) + (m + K) Km +(K 1)(m + σ ) ª {m( K) +(K +1)(m + σ )} + m(m 1) + σ α 1 = {K( +) } K m + K (K 1)(m (1 ) + σ ) ª + m(1 K)+K +(K +1)(m + σ ) ª {Km (K +)(m + σ )} m(m 1) σ α = {K( +) } K subject to the smultneous suffcent restrctons on m nd σ n terms of so tht p 0e q q σ ( 1) m σ ( 1) (1 ) (1 ) L 1 L m U 1 U

13 MINIMIZATION PROBLEM 1 s K( +1)(9 +1)+K 1+( +4 K) σ ( 1) (K 1) L 1 = (1 )(1 + K) s K( +1)(9 +1)+K 1+( +4 K) σ ( 1) (K 1) U 1 = (1 )(1 + K) q 1+(1 K) (1 + ) K( +1)+ K (1 + 4) 4σ ( 1) (K 1) L = (1 )(1 K) q 1+(1 K) (1 + ) K( +1)+ K (1 + 4) 4σ ( 1) (K 1) U = (1 )(1 K) The r th moment bout orgn of the mnmum χ dvergence probblty dtrbuton P gven by K (0) (1 ) n ( ) r r =1! Now we dcuss some specl cses of the mnmum χ dvergence probblty dtrbuton P tht re for specfc vlues of verge (m) ndvrnce(σ ): Cse 81 For m = K 1 σ = K(1 K) (1 ) Note tht m σ K(K 1) = (1 ) mplyng tht ½ σ m = f K 1 <σ else In th cse α 0 =1 α 1 = α =0ndP = Q tht p = 0 <<1 log(1 ) Cse 8 For m = 1 1 σ = (1 ) Note tht m σ = 1 (1 ) mplyng tht ½ σ m = f 0 < 05 <σ f 05 <<1 In th cse α 0 = α =0α 1 = 1 K nd P becomes p =(1 ) 1 0 <<1 The r th moment bout orgn for r =1 gven by (1 ) r 1 0 <<1 Cse 8 For m = 1+ 1 σ = (1 ) Itnotedtht mplyng tht m σ = 1 (1 ) ½ σ m = f 0 < 1 <σ f 1 <<1 In th cse α 0 = α 1 =0 α = (1 ) K nd P

14 14 PRANESH KUMAR AND INDER JEET TANEJA p = (1 ) 1 0 <<1 The r th moment bout orgn for r =1 gven by (1 ) r <<1 9 Gven Geometrc Dtrbuton A Pror nd Prtl Informton n the Form of Averge Proposton 9 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s geometrc probblty dtrbuton e q =(1 ) 0 <<1 = 0 1 nd the constrnts p 0 p =1 p = m (1) p =[ (1 + m + m)+(1 )(m m ) ] (1 ) 1 1 m 1+ 1 The r th moment (r =1 ) bout orgn of the mnmum χ dvergence probblty dtrbuton P : () [ (1 + m + m)+(1 )(m m ) ] r (1 ) 1 In prtculr the frst four moments bout orgn re: M 1 = m M = m ( +1)(1 ) (1 ) 1 m 1+ 1 M = m (1 ) 6 (1 + ) (1 ) nd M 4 = m (1 ) (7 + +7) (1 ) 4 1 m 1+ 1 The men (µ) ndvrnce(σ ) of the mnmum χ dvergence probblty dtrbuton P re: 1 µ 1+ 1 nd (1 ) σ 1+6 4(1 ) respectvely µ = m nd σ = m ( 1) +m(1+ ) (1 ) Cse 91 For m = 1 P = Q nd the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q the geometrc dtrbuton p = (1 ) 0 <<1 =0 1 Cse 9 For m = 1+ 1 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q p = (1 ) 1 0 <<1 The r th moment bout orgn of P for r =1 gven by (1 ) 1 r

15 MINIMIZATION PROBLEM 15 Thus the men (µ) ndvrnce(σ )re µ = 1+ 1 nd σ = (1 ) Cse 9 Consder geometrc dtrbuton Q wth =08 Suppose the prtl nformton bout verge (m) such tht 4 m 9 Thus for m =4 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q geometrc dtrbuton p =08(0) 1 However for 4 <m 9 the probblty dtrbuton whch mnmzes the χ dvergence between P nd Q not the geometrc dtrbuton Th dtrbuton p =(0008)[4 (9 m)+ (m 4) ] (08) 1 4 <m<9 10 Gven Geometrc Dtrbuton A Pror nd Prtl Informton n the Form of Averge nd Vrnce Proposton 10 The probblty dtrbuton P whch mnmzes the χ dvergence between P nd Q gven pror dtrbuton Q s geometrc probblty dtrbuton e q =(1 ) 0 <<1 = 0 1 nd the constrnts p 0 p =1 p = m p = m + σ () p =(α 0 + α 1 + α ) q α 0 = (1 + + ) +m(1 )+(m + σ )(1 ) α 1 = m (1 + )(1+9)(1 ) (m + σ )( +1)(1 ) 4 α = (1 ) m (1 + )(1 ) +(m + σ ) (1 ) 4 4 subject to the smultneous suffcent restrctons on m nd σ n terms of so tht p 0e r ³ r ³ ( +1) σ ( 1) ( +1) σ ( 1) ( 1) m ( 1) r ³ (1 + )(1+9) (1 + )( ) 4σ ( +1) ( 1) ( +1)( 1) m r ³ (1 + )(1+9)+ (1 + )( ) 4σ ( +1) ( 1) ( +1)( 1) r ³ r ³ ( +1) σ ( 1) ( +1) σ ( 1) ( 1) m ( 1) The r th moment bout orgn of the mnmum χ dvergence probblty dtrbuton P gven by (4) (1 ) ( ) r r =1 Now we dcuss some specl cses of the mnmum χ dvergence probblty dtrbuton P tht re for specfc vlues of verge (m) ndvrnce(σ ):

16 16 PRANESH KUMAR AND INDER JEET TANEJA Cse 101 For m = 1 σ = (1 ) It noted tht m σ = (1 ) mplyng tht m<σ In th cse α 1 = α =0 α 1 =1 nd P = Q e p = (1 ) 0 <<1 =0 1 Cse 10 For m = 1+ 1 σ = (1 ) It noted tht m σ 1 = (1 ) Further t my be seen tht ½ σ m = f 0 < 1 <σ f 1 <<1 In th cse α 0 = α =0 α 1 = 1 nd P p =(1 ) 1 0 <<1 =1 The r th moment bout orgn for r =1 gven by r+1 1 (1 ) 0 <<1 Cse 10 For m = σ = 4(+ +1) (1+) (1 ) It noted tht m σ = Further m = (1 + ) (1 ) ½ σ f 0 < 074 <σ f 074 <<1 In th cse α 0 = α 1 =0 α = (1 ) (1+) nd P p = 1 (1 ) 0 <<1 = 1 1+ The r th moment bout orgn for r =1 gven by r+ 1 (1 ) 0 << Concludng Remrks The mnmum dcrmnton nformton or the mnmum cross entropy prncple (MDIP) of Kullbck nd the mxmum entropy prncple (MEP) due to Jyne hve been often used to chrcterze unvrte nd multvrte probblty dtrbutons Mnmzng cross entropy equvlent to mxmzng the lkelhood functon nd the dtrbuton produced by n pplcton of Guss prncple lso the dtrbuton whch mnmzes the cross entropy Thus gven pror nformton bout the underlyng dtrbuton n ddton to the prtl nformton n terms of the expected vlues MDIP provdes useful methodology for chrcterzng probblty dtrbutons We hve consdered the methodology for chrcterzng the dcrete probblty dtrbutons bsed on the Person χ -dtncegvenpror dtrbuton nd the prtl nformton n terms of moments We hve shown by consderng the dcrete probblty dtrbutons lke unform Poson bnoml logrthmc nd geometrc whch mnmze the Kullbck s mesure of the drected dvergence (1959) K(P Q) = p ln( p ) q tht these dtrbutons lso mnmze the Person s χ -dtnce Further wth condtons on men nd vrnce we hve obtned the new probblty dtrbutons tht mnmze the χ -dtnce Thework

17 MINIMIZATION PROBLEM 17 on mnmum χ -dvergencecontnuous probblty dtrbutons n progress nd would be reported else REFERENCES Cmpbell LL Equvlence of Guss s prncple nd mnmum dcrmnton nformton estmton of probbltes Annls of Mth Sttt Gokhle DV Mxmum entropy chrcterzton of some dtrbutons In Stttcl Dtrbuton n Scentfc Work Vol III Ptl Golz nd Old (eds) A Redel Boston Iwse K nd Hrno K Power nverse Gussn dtrbuton nd ts pplctons Jpn Jour Appled Sttt Jynes E T Informton theory nd stttcl mechncs Physcl Revews Kgn AM Lnnk V Ju nd Ro C R Chrcterzton Problems n Mthemtcl Stttcs1975 New York: John Wley Kpur JN Mxmum entropy probblty dtrbutons of contnuous rndom vrte over fnte ntervl Jour Mth nd Phys Scences Kpur JN Twenty-fve yers of mxmum entropy prncple Jour Mth nd Phys Scences Kwmur T nd Iwse K Chrcterztons of the dtrbutons of power nverse Gussn nd others bsed on the entropy mxmzton prncple Jour Jpn Sttt Soc Kesvn HK nd Kpur J The generlzed mxmum entropy prncple IEEE Trns Systems Mn nd Cybernetcs Kullbck S Informton Theory nd Stttcs 1959 New York: John Wley Person K On the Crteron tht gven system of devtons from the probble n the cse of correlted system of vrbles such tht t cn be resonble supposed to hve ren from rndom smplng Phl Mg Shore JE nd Johnson RW Axomtc dervton of the prncple of mxmum entropy nd the prncple of mnmum cross entropy IEEE Trns Informton Theory 1980 IT Tnej I J Generlzed Informton Mesures nd ther Applctons On lne book: tnej/book/bookhtml 001 Tnej IJ nd Kumr Prnesh Reltve Informton of Type s Cszá r f Dvergence nd Informton Inequltes Informton Scences 004 (to pper) E-ml ddress: kumrp@unbcc URL: kumrp E-ml ddress: tnej@mtmufscbr URL: tnej Mthemtcs Deprtment College of Scence nd Mngement Unversty of Northern Brth Columb Prnce George BC VN4Z9 Cnd Deprtmento de Mtemátc Unversdde Federl de Snt Ctrn Flornópol SC Brzl

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Utility function estimation: The entropy approach

Utility function estimation: The entropy approach Physc A 387 (28) 3862 3867 www.elsever.com/locte/phys Utlty functon estmton: The entropy pproch Andre Donso,, A. Hetor Res b,c, Lus Coelho Unversty of Evor, Center of Busness Studes, CEFAGE-UE, Lrgo Colegs,

More information

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES GUANG-HUI CAI Receved 24 September 2004; Revsed 3 My 2005; Accepted 3 My 2005 To derve Bum-Ktz-type result, we estblsh

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4) ON SIMPSON S INEQUALITY AND APPLICATIONS SS DRAGOMIR, RP AGARWAL, AND P CERONE Abstrct New neultes of Smpson type nd ther pplcton to udrture formule n Numercl Anlyss re gven Introducton The followng neulty

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS BERNARDO M. ÁBREGO, SILVIA FERNÁNDEZ-MERCHANT, AND BERNARDO LLANO Abstrct. Gven ntegers nd n, there s unque wy of wrtng n s n = n n... n so tht n <

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl nequltes: technques nd pplctons Mnh Hong Duong Mthemtcs Insttute, Unversty of Wrwck Eml: m.h.duong@wrwck.c.uk Jnury 4, 07 Abstrct Inequltes re ubqutous n Mthemtcs (nd n rel lfe.

More information

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes 1 Quntum Codes from Generlzed Reed-Solomon Codes nd Mtrx-Product Codes To Zhng nd Gennn Ge Abstrct rxv:1508.00978v1 [cs.it] 5 Aug 015 One of the centrl tsks n quntum error-correcton s to construct quntum

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ M/G//GD/ / System! Pollcze-Khnchn (PK) Equton L q 2 2 λ σ s 2( + ρ ρ! Stedy-stte probbltes! π 0 ρ! Fndng L, q, ) 2 2 M/M/R/GD/K/K System! Drw the trnston dgrm! Derve the stedy-stte probbltes:! Fnd L,L

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

Reproducing Kernel Hilbert Space for. Penalized Regression Multi-Predictors: Case in Longitudinal Data

Reproducing Kernel Hilbert Space for. Penalized Regression Multi-Predictors: Case in Longitudinal Data Interntonl Journl of Mthemtcl Anlyss Vol. 8, 04, no. 40, 95-96 HIKARI Ltd, www.m-hkr.com http://dx.do.org/0.988/jm.04.47 Reproducng Kernel Hlbert Spce for Penlzed Regresson Mult-Predctors: Cse n Longudnl

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE Ths rtcle ws downloded by:ntonl Cheng Kung Unversty] On: 1 September 7 Access Detls: subscrpton number 7765748] Publsher: Tylor & Frncs Inform Ltd Regstered n Englnd nd Wles Regstered Number: 17954 Regstered

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol Act Arth 159013, 1-5 Congruences for [/] mo ZHI-Hong Sun School of Mthemtcl Scences, Hun Norml Unverst, Hun, Jngsu 3001, PR Chn E-ml: zhhongsun@hoocom Homege: htt://wwwhtceucn/xsjl/szh Abstrct Let Z be

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

H-matrix theory and applications

H-matrix theory and applications MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons

More information

Altitude Estimation for 3-D Tracking with Two 2-D Radars

Altitude Estimation for 3-D Tracking with Two 2-D Radars th Interntonl Conference on Informton Fuson Chcgo Illnos USA July -8 Alttude Estmton for -D Trckng wth Two -D Rdrs Yothn Rkvongth Jfeng Ru Sv Svnnthn nd Soontorn Orntr Deprtment of Electrcl Engneerng Unversty

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fll Anlss of Epermentl Mesurements B. Esensten/rev. S. Errede Monte Crlo Methods/Technques: These re mong the most powerful tools for dt nlss nd smulton of eperments. The growth of ther mportnce s closel

More information

arxiv:math/ v1 [math.nt] 13 Dec 2005

arxiv:math/ v1 [math.nt] 13 Dec 2005 LARGE SIEVE INEQUALITIES WITH QUADRATIC AMPLITUDES LIANGYI ZHAO rxv:mth/0570v [mth.nt] 3 Dec 005 Abstrct. In ths pper, we develop lrge seve type nequlty wth qudrtc mpltude. We use the double lrge seve

More information

5 Probability densities

5 Probability densities 5 Probbility densities 5. Continuous rndom vribles 5. The norml distribution 5.3 The norml pproimtion to the binomil distribution 5.5 The uniorm distribution 5. Joint distribution discrete nd continuous

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Qnru Qu, Qng Wu, nd Mssoud Pedrm Dept. of Electrcl Engneerng-Systems Unversty of Southern Clforn Los Angeles CA 90089 Outlne! Introducton

More information

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar Kngweon-Kyungki Mth. Jour. 12 (2004), No. 2, pp. 107 115 ON CLOSED CONVE HULLS AND THEIR ETREME POINTS S. K. Lee nd S. M. Khirnr Abstrct. In this pper, the new subclss denoted by S p (α, β, ξ, γ) of p-vlent

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits.

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits. Tutoril 4 Exercises on Differentil Entropy. Evlute the differentil entropy h(x) f ln f for the following: () The uniform distribution, f(x) b. (b) The exponentil density, f(x) λe λx, x 0. (c) The Lplce

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics MOMENTS INEQUALITIES OF A RANDOM VARIABLE DEFINED OVER A FINITE INTERVAL PRANESH KUMAR Deprtment of Mthemtics & Computer Science University of Northern

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

A product convergence theorem for Henstock Kurzweil integrals

A product convergence theorem for Henstock Kurzweil integrals A product convergence theorem for Henstock Kurzweil integrls Prsr Mohnty Erik Tlvil 1 Deprtment of Mthemticl nd Sttisticl Sciences University of Albert Edmonton AB Cnd T6G 2G1 pmohnty@mth.ulbert.c etlvil@mth.ulbert.c

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Genericity of Critical Types

Genericity of Critical Types Genercty of Crtcal Types Y-Chun Chen Alfredo D Tllo Eduardo Fangold Syang Xong September 2008 Abstract Ely and Pesk 2008 offers an nsghtful characterzaton of crtcal types: a type s crtcal f and only f

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Mixed Type Duality for Multiobjective Variational Problems

Mixed Type Duality for Multiobjective Variational Problems Ž. ournl of Mthemtcl Anlyss nd Applctons 252, 571 586 2000 do:10.1006 m.2000.7000, vlle onlne t http: www.delrry.com on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro

More information

Group-based active query selection. for rapid diagnosis in time-critical situations

Group-based active query selection. for rapid diagnosis in time-critical situations Group-bsed ctve query selecton for rpd dgnoss n tme-crtcl stutons *Gowthm Belll, Student Member, IEEE, Suresh K. Bhvnn, nd Clyton Scott, Member, IEEE Abstrct In pplctons such s ctve lernng or dsese/fult

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Cramer-Rao Lower Bound for a Nonlinear Filtering Problem with Multiplicative Measurement Errors and Forcing Noise

Cramer-Rao Lower Bound for a Nonlinear Filtering Problem with Multiplicative Measurement Errors and Forcing Noise Preprnts of the 9th World Congress he Interntonl Federton of Automtc Control Crmer-Ro Lower Bound for Nonlner Flterng Problem wth Multplctve Mesurement Errors Forcng Nose Stepnov О.А. Vslyev V.А. Concern

More information

MATHEMATICAL MODEL AND STATISTICAL ANALYSIS OF THE TENSILE STRENGTH (Rm) OF THE STEEL QUALITY J55 API 5CT BEFORE AND AFTER THE FORMING OF THE PIPES

MATHEMATICAL MODEL AND STATISTICAL ANALYSIS OF THE TENSILE STRENGTH (Rm) OF THE STEEL QUALITY J55 API 5CT BEFORE AND AFTER THE FORMING OF THE PIPES 6 th Reserch/Exert Conference wth Interntonl Prtcton QUALITY 009, Neum, B&H, June 04 07, 009 MATHEMATICAL MODEL AND STATISTICAL ANALYSIS OF THE TENSILE STRENGTH (Rm) OF THE STEEL QUALITY J55 API 5CT BEFORE

More information

AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio

AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio 7 CHANGE-POINT METHODS FOR OVERDISPERSED COUNT DATA THESIS Brn A. Wlken, Cptn, Unted Sttes Ar Force AFIT/GOR/ENS/7-26 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wrght-Ptterson

More information

Numbers Related to Bernoulli-Goss Numbers

Numbers Related to Bernoulli-Goss Numbers ursh Journl of Anlyss n Nuber heory, 4, Vol., No., -8 Avlble onlne t htt://ubs.sceub.co/tnt///4 Scence n Eucton Publshng OI:.69/tnt---4 Nubers Relte to Bernoull-Goss Nubers Mohe Oul ouh Benough * érteent

More information

A Tri-Valued Belief Network Model for Information Retrieval

A Tri-Valued Belief Network Model for Information Retrieval December 200 A Tr-Vlued Belef Networ Model for Informton Retrevl Fernndo Ds-Neves Computer Scence Dept. Vrgn Polytechnc Insttute nd Stte Unversty Blcsburg, VA 24060. IR models t Combnng Evdence Grphcl

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information