Key points. Unit 7. Kinetic Energy -E K orke. Energy Storage 1/24/2017. Describing the Interaction between energy and matter continued

Size: px
Start display at page:

Download "Key points. Unit 7. Kinetic Energy -E K orke. Energy Storage 1/24/2017. Describing the Interaction between energy and matter continued"

Transcription

1 Key poins Uni 7 Energy Sorage and Transfer Model Energy-a conserved, subsance-like quaniy wih he capabiliy o produce change in physical sysems I does no come in differen forms i s jus energy. I s sored in differen conainers. I can be ransferred from conainer o conainer and spli beween hem. Thinking his way divers your aenion from he changes in maer ha we CAN describe. Describing he Ineracion beween energy and maer Think money We have money and i s jus money, no maer how you pu i Bu we pu i, sore i, in differen spos-credi card, debi card, checking accoun, savings accoun, cash, coins, your walle I s sill all money, he only hing ha changes is how i is sored. Energy is he same way Describing he Ineracion beween energy and maer coninued We creae various "accouns" (or sorage modes) in which energy can be sored in a given sysem I can be ransferred from one accoun o anoher as some aspec of he sysem undergoes a change I can be ransferred beween sysem and surroundings via several mechanisms, alhough "working" (W) is he primary ransfer mechanism used in his uni Energy Sorage Energy is no disembodied; i is eiher sored In an objec Labeled kineic energy when he objec is moving Labeled elasic energywhen i undergoes a resorable deformaion By a field Graviaional, elecric, or magneic Labeled poenial energy Kineic Energy -E K orke Energy sored kineically Energy of moion Locaed wihin he moving objec 1

2 Chemical Energy -E Chem Energy sored chemically Sored in molecular and aomic bonds When you break he bond and form new bonds which require less energy o make, he difference is ransferred o oher conainers Graviaional Poenial Energy U g; U G Energy sored graviaionally Where is his energy sored? Wihin he ball? Wihin Earh? Sored wihin he field sored relaive o GF Wha does GF look like? GF lines vecors poining owards cener of Earh Why is NULG and all oher field forces modeled as an inverse square law? We live in a 3d universe, so he field will decrease in srengh as you move ouwards (in one dimension), bu ha srengh mus be disribued over he 2d space of a sphere he surface area of a spaial sphere Which is 4πr 2 GPE Newonian View GPE Relaivisic View Mass curves/bends spaceime We sill see he surface area of sphere (kind of), Newon s calculaions were prey good bu relaiviy gives us more accuracy (and an acual explanaion for graviy) Poenial Energy in general U subscrip Energy of an objec due o is posiion relaive o a force field or due o ha sysem s curren sae relaive o is res sae Ohers? Elecric Poenial Magneic Poenial Chemical Poenial his is E chem Thermal Energy E Therm; E Th; E In Energy sored hermally or inernally can be described hrough is emperaure, bu i is NOThe emperaure Sored in vibraions or kineic/poenial energy (movemen and posiion) of molecules/aoms Hard o quanify wihou hermodynamic equaions and saisics Why? 2

3 The Law of Conservaion of Energy Elasic Energy E Spring; E S; U S Energy sored elasically Poenial Energy sored in configuraion of maerial Usually deals wih he deformaion of he maerial away from is res sae hps:// hps:// hps:// Spring F vsx graph Hooke s Law Think abou he equaion of he bes fi line (y=mx+b) y is Force applied (N), m represens he spring consan (k), and x is how much he spring is sreched/compressed. We ll ignore he y-inercep in his course. F=kx. The value ofhe spring consan, k,ells us how much force (in Newons) mus be applied o he spring o srech/compress i a cerain disance (in meers). So he unis are N/m. Hooke s Law coninued Someimes Hooke s law is formulaed asf= kx. In his expressionf no longer means he applied force bu raher means he equal and opposiely direced resoring force ha causes elasic maerials o reurn o heir original dimensions. We won use i his way, i s jus good informaion o know. Bu wha else can we deermine using he graph? 3

4 The area under he line seems o have meaning The area under he line seems o have meaning Tha s a riangle: ½ b * h So.. ½ F * x bu we know F = k*x Subsiue in k*x for F ½ k*x*x or U s = ½ kx 2 Hooke s Law The area under he line seems o have meaning The area shaded represens he spring poenial energy Eel= ½ kx 2 We can use his value, measured in Joules, o deermine how energy is ransferred o oher sorage accouns. Energy Bar Chars Energy can be sored and i can be ransferred from one sorage mechanism o anoher. The objecs involved in energy sorage for a paricular siuaion are lised inside he Sysem box. Objecs ransferring energy ino he sysem, or receiving energy from he sysem, are lised ouside he circle. Energy bar chars Iniial quaniies of sore energy are represened wih bars on lef. Bars of energy enering or leaving he sysem are shown a he circle Final quaniies of sored energy, using bars, go on he righ. Energy bar chars The oal iniial energy, plus or minus any energy ransferred ino or ou of he sysem, mus equal he oal final energy. This is he firs law of hermodynamics and represens he law of conservaion of energy. 4

5 Energy Transfer labs Spring poenial energy ransferred o kineic energy No relaionship beween Energy and Velociy bu if we linearize our daa by squaring velociy we ge he graph on he righ. Energy Transfer labs Analyze he slope: Now we have a linear relaionship Slope unis reduce o kilograms and he value is ½ he mass of he car Energy Transfer labs General equaion of he line: E k = ½ m * v 2 Energy Transfer Labs Spring poenial energy ransferred o graviaional poenial energy Analyze he slope We see he unis are Joules (a N*m) divided by meers; so Newons (N) Slope represens Force, in his case weigh (m*g) Energy Transfer Labs Equaion of he line ells us ha energy, in his case graviaional poenial energy (U g ) depends on he srengh of he field and he arrangemen of objecs (a leas wo) in he field U g = mgy where gis he srengh of he graviaional field (in N/kg), and y is he heigh above some zero reference posiion. We now have 3 ways o quaniae energy sorage Spring poenial energy (U s ) U s = ½ kx 2 Graviaional poenial energy (U g ) U g = mgy Kineic energy (E k ) E k = ½ mv 2 Remember, g= 9.8 N/kg 5

6 Bu Wha else can an F vsδx graph ell you? How does he spring in our experimen acually sore more energy? Le s say he force we used was consan, no changing.. Work is also area under F vs. Δx curve This area represens energy ransferred ino he sysem by work Work = ΔE = FΔx A force does workif, when acing on a body, here is a displacemen of he poin of applicaion in he direcion of he force. Energy is ransferred by forces ha cause displacemens. Force and moion mus be in he same direcion. On a force vsposiion graph, his is he area under he graph. Unis Force is measured in Newons. Disance is measured in meers. N x m = Nm= Joules Joulesand Nmare he same hings. Force and Disance mus be in he same direcion!! If you pick an objec up, he force mus be he upward force. Force bu no displacemen Work = Zero If you slide an objec sidewayson a able, he force mus be he sideways force. If you measure he disance up an incline, he force mus be he one exered in a direcion up he incline. 6

7 Displacemen bu no force Work = Zero Force bu no displacemen Work = Zero No Work Done! The force (weigh) is downward. There is virually no sideways force. The displacemen is sideways. There is no downward moion. W = 14 N x 0 m = 0J W = 0 N x 10 m = 0J How much work is done o lif a 15 N objec upward 4 meers? When you pick an objec up, you have o apply a force equal o is weigh (15 N). W = F x d W = 15 N x 4 m = 60 J How much work is done o lif a 5.00-kg objec upward 4.00 meers? When you pick an objec up, you have o apply a force equal o is weigh (5kgx9.8m/s 2 =49 N). W = F x d W = 49 N x 4 m = 196 J How much work is done o slide a 15 N objec 4.0 meers sideways if he force of fricion is3.0 N? When you slide an objec sideways, you have o apply a force equal o fricion (3 N). W = F x d W = 3.0N x 4.0m = 12 J 7

8 How much work is done o slide a 15 N objec up an incline 4.0 meers long if he force he person mus push wih is 7.0 N? When you slide an objec up an incline, you have o use he force up he incline (7N). W = F x d W = 7.0N x 4.0m = 28 J How much work is done o slide a 5.0-kg objec sideways 4.0 m if he acceleraion is 6.0 m/s 2? F=ma F = 5-kg x 6 m/s 2 F = 30-N W = F x d W = 30 N x 4 m = 120 J Energy Bar Char Analysis The oal iniial energy, plus or minus any energy ransferred ino or ou of he sysem, mus equal he oal final energy. This is he firs law of hermodynamics. Remember The SI uni for energy is he joule (J). A joule is a or. Useful Energy Energy is defined as he abiliy o cause change, and, like he money analogy, some forms of energy are more useful or effecive in causing change han ohers. Kineic and poenial energies are useful energies. Thermal is no why? Rub your hands ogeher where did your chemical energy go? Now, use ha hermal energy o cause more change. Very hard o in fac, i is impossible. This will ulimaely lead o he Enropic Hea Deah of he Universe. Conservaive vs. Non-conservaive A conservaive force is a force for which is oal ne work does no depend on he pah aken. Graviy is conservaive; oal work will only depend on iniial and final posiions Fricion is non-conservaive; he longer he pah, he more work fricion does and he more energy goes ino he non-useable conainer Conservaive Forces Graviy Elasic Elecric Magneic Non-conservaive Forces Fricion Air resisance Tension Propulsion by rocke or moor Push/pull by a person 8

9 The difference beween conservaive and nonconservaive forces: Non-conservaive forces ransfer energy o non-useful conainers I can really use hermal energy o do much in erms of moion Consider a possible definiion of useful energy : he abiliy o do work Graviaional poenial energy can be used o do work Thermal energy canno be used o do work Thus graviy is a conservaive force, because his force mainains he usefulness of he energy as i sores i poenially Fricion is a non-conservaive force, because his force does no mainain he usefulness of energy as i sores i hermally You push down wih a force of 10 N on your friend s car which is suck in he snow. By pushing down you increase he normal force and, herefore, he fricion force. The car is now able o ge ou and moves a disance 5m. How much work did you do? None! There was a force bu no Δx! If you change he F N (push down) you change he fricional force A B C D Δ Δ Δ Δ When he rubber bands are sreched, which rubber band has more elasic energy or are hey he same? Rank he amoun of work done from posiive o negaive. Imagine a ball on a rack where no energy is ransferred beween he ball and he rack or beween he ball and he air around i (fricionless/air resisanceless). The ball sars from res a he posiion labeled Sar and moves along he rack oward Posiions 1, 2, and 3. Wha is he highes posiion he ball achieves? Same quesion air resisancelessand fricionless environmen. Does he ball make i o posiion 2? 9

10 Which book has less graviaional poenial energy or are hey he same? (Consider he reference poin o be he floor.) Which is faser if dropped? Law of Conservaion of Energy and he Work Energy Principle Toal Work (due o only conservaive forces; fricionless/air resisancelessenvironmens) always equals zero Essenially Iniial Energy = Final Energy Complee his in your noes A 70 kg skier sars from res from he op of a fricionless 35 incline wih a verical heigh of 20 m. Wha is he skier s speed jus before she eners he plane? Draw a energy bar char o help you organize your energy sorage accouns. Se E iniial = E final By how much will he spring compress? Draw a energy bar char o help you organize your energy sorage accouns. Se E iniial = E final Power The rae a which work is done or energy is consumed. Which does he mos work? Which is he mos powerful? 10

11 P = Power = Work / ime W Unis Work is measured in Joules. Time is measure in seconds. Joules = Was sec Common Meric Prefixes Was( W ) = kilowas( kw ) 1,000 Was( W ) = MegaWas( MW ) 1,000,000 No maer wha he problem says, you mus use sandard unis in he equaion. Disance meers (m) Time seconds (s) Force Newons (N) Mass kilograms (kg) Velociy meers per second (m/s) Power Was (W) Work Joules (J) James Wa Was The uni was names for James Wa, he invenor of he seam engine. Was engine was beer han he curren mehod geing work done (horses). To help sell engines, Wa developed a way o rae heir abiliies. 11

12 Rearranging he Power Formula The power formula can be rearranged ino hree common forms. They are mahemaically equal, bu hey look differen and conain differen variables. They are useful for differen problems, depending on wha is given in he problem. W P = Fd P = P = F v Relaes Power o Work and Time. Relaes Power o Force, Disance and Time. Relaes Power o Force and Velociy. How long will i ake a moor, raed a 200 W, o do 1800 Joules of work? P = W 200 = 1800 = 9sec How much power is used o lif a 15 N objec upward 4 meers in 20 seconds? P = Fd P = Fd 15 4 P = = 3Was 20 A wha speed can a 1000 W moor lif a 25-kg mass? P v = 4m s = F v 1000W = 245N v 1 N is abou ¼ pound FYI May be helpful someday 12

Key points. Unit 7. Kinetic Energy -E K orke. Energy Storage 2/4/2016. Describing the Interaction between energy and matter continued

Key points. Unit 7. Kinetic Energy -E K orke. Energy Storage 2/4/2016. Describing the Interaction between energy and matter continued Key poins Uni 7 Energy Sorage and Transfer Model Energy-a conserved, subsance-like quaniy wih he capabiliy o produce change in physical sysems I does no come in differen forms i s jus energy. I s sored

More information

Key points. Energy Storage. Kinetic Energy -E K orke 1/23/2018. Energy Storage and Transfer Model (ETM)

Key points. Energy Storage. Kinetic Energy -E K orke 1/23/2018. Energy Storage and Transfer Model (ETM) Key poins Energy Sorage and Transfer Model (ETM) Uni 7 Energy-a conserved, subsance-like quaniy wih he capabiliy o produce change in physical sysems I does no come in differen forms i s jus energy. I s

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

Physics 131- Fundamentals of Physics for Biologists I

Physics 131- Fundamentals of Physics for Biologists I 10/3/2012 - Fundamenals of Physics for iologiss I Professor: Wolfgang Loser 10/3/2012 Miderm review -How can we describe moion (Kinemaics) - Wha is responsible for moion (Dynamics) wloser@umd.edu Movie

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Physics Equation List :Form 4 Introduction to Physics

Physics Equation List :Form 4 Introduction to Physics Physics Equaion Lis :Form 4 Inroducion o Physics Relaive Deviaion Relaive Deviaion Mean Deviaion 00% Mean Value Prefixes Unis for Area and Volume Prefixes Value Sandard form Symbol Tera 000 000 000 000

More information

Oscillations. Periodic Motion. Sinusoidal Motion. PHY oscillations - J. Hedberg

Oscillations. Periodic Motion. Sinusoidal Motion. PHY oscillations - J. Hedberg Oscillaions PHY 207 - oscillaions - J. Hedberg - 2017 1. Periodic Moion 2. Sinusoidal Moion 3. How do we ge his kind of moion? 4. Posiion - Velociy - cceleraion 5. spring wih vecors 6. he reference circle

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y PHYSICS 1. If and Le. The correc order of % error in (a) (b) x = y > z x < z < y x > z < y. A hollow verical cylinder of radius r and heigh h has a smooh inernal surface. A small paricle is placed in conac

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Chapter 15 Oscillatory Motion I

Chapter 15 Oscillatory Motion I Chaper 15 Oscillaory Moion I Level : AP Physics Insrucor : Kim Inroducion A very special kind of moion occurs when he force acing on a body is proporional o he displacemen of he body from some equilibrium

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

PHYS 1401 General Physics I Test 3 Review Questions

PHYS 1401 General Physics I Test 3 Review Questions PHYS 1401 General Physics I Tes 3 Review Quesions Ch. 7 1. A 6500 kg railroad car moving a 4.0 m/s couples wih a second 7500 kg car iniially a res. a) Skech before and afer picures of he siuaion. b) Wha

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav PHYSICS 5A FALL 2001 FINAL EXAM v = x a = v x = 1 2 a2 + v 0 + x 0 v 2 = v 2 0 +2a(x, x 0) a = v2 r ~v = x ~a = vx v = v 0 + a y z ^x + ^y + ^z ^x + vy x, x 0 = 1 2 (v 0 + v) ~v P=A = ~v P=B + ~v B=A ^y

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Summary:Linear Motion

Summary:Linear Motion Summary:Linear Moion D Saionary objec V Consan velociy D Disance increase uniformly wih ime D = v. a Consan acceleraion V D V = a. D = ½ a 2 Velociy increases uniformly wih ime Disance increases rapidly

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

PHYS 100: Lecture 2. Motion at Constant Acceleration. Relative Motion: Reference Frames. x x = v t + a t. x = vdt. v = adt. x Tortoise.

PHYS 100: Lecture 2. Motion at Constant Acceleration. Relative Motion: Reference Frames. x x = v t + a t. x = vdt. v = adt. x Tortoise. a PHYS 100: Lecure 2 Moion a Consan Acceleraion a 0 0 Area a 0 a 0 v ad v v0 a0 v 0 x vd 0 A(1/2)( v) Area v 0 v v-v 0 v 0 x x v + a 1 0 0 2 0 2 Relaive Moion: Reference Frames x d Achilles Toroise x Toroise

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Chapter 1 Rotational dynamics 1.1 Angular acceleration

Chapter 1 Rotational dynamics 1.1 Angular acceleration Chaper Roaional dynamics. Angular acceleraion Learning objecives: Wha do we mean by angular acceleraion? How can we calculae he angular acceleraion of a roaing objec when i speeds up or slows down? How

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

LAB 6: SIMPLE HARMONIC MOTION

LAB 6: SIMPLE HARMONIC MOTION 1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:

More information

Linear Motion I Physics

Linear Motion I Physics Linear Moion I Physics Objecives Describe he ifference beween isplacemen an isance Unersan he relaionship beween isance, velociy, an ime Describe he ifference beween velociy an spee Be able o inerpre a

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example

v x + v 0 x v y + a y + v 0 y + 2a y + v y Today: Projectile motion Soccer problem Firefighter example Thurs Sep 10 Assign 2 Friday SI Sessions: Moron 227 Mon 8:10-9:10 PM Tues 8:10-9:10 PM Thur 7:05-8:05 PM Read Read Draw/Image lay ou coordinae sysem Wha know? Don' know? Wan o know? Physical Processes?

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

02. MOTION. Questions and Answers

02. MOTION. Questions and Answers CLASS-09 02. MOTION Quesions and Answers PHYSICAL SCIENCE 1. Se moves a a consan speed in a consan direcion.. Reprase e same senence in fewer words using conceps relaed o moion. Se moves wi uniform velociy.

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Electromagnetic Induction: The creation of an electric current by a changing magnetic field.

Electromagnetic Induction: The creation of an electric current by a changing magnetic field. Inducion 1. Inducion 1. Observaions 2. Flux 1. Inducion Elecromagneic Inducion: The creaion of an elecric curren by a changing magneic field. M. Faraday was he firs o really invesigae his phenomenon o

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

Name: Total Points: Multiple choice questions [120 points]

Name: Total Points: Multiple choice questions [120 points] Name: Toal Poins: (Las) (Firs) Muliple choice quesions [1 poins] Answer all of he following quesions. Read each quesion carefully. Fill he correc bubble on your scanron shee. Each correc answer is worh

More information

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5)

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5) Physics 18 Exam 1 wih Soluions Fall 1, Secions 51-54 Fill ou he informaion below bu o no open he exam unil insruce o o so! Name Signaure Suen ID E-mail Secion # ules of he exam: 1. You have he full class

More information

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right? Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

More information

WORK, ENERGY AND POWER NCERT

WORK, ENERGY AND POWER NCERT Exemplar Problems Physics Chaper Six WORK, ENERGY AND POWER MCQ I 6.1 An elecron and a proon are moving under he influence of muual forces. In calculaing he change in he kineic energy of he sysem during

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout.

Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout. Pracice Problem day Gues Lecurer Friday! Will Armenrou. He d welcome your feedback! Anonymously: wrie somehing and pu i in my mailbox a 111 Whie Hall. Email me: sarah.spolaor@mail.wvu.edu Symbolic reasoning

More information

Conceptual Physics Review (Chapters 2 & 3)

Conceptual Physics Review (Chapters 2 & 3) Concepual Physics Review (Chapers 2 & 3) Soluions Sample Calculaions 1. My friend and I decide o race down a sraigh srech of road. We boh ge in our cars and sar from res. I hold he seering wheel seady,

More information

Effects of Coordinate Curvature on Integration

Effects of Coordinate Curvature on Integration Effecs of Coordinae Curvaure on Inegraion Chrisopher A. Lafore clafore@gmail.com Absrac In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure of he manifold

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

AP Physics 1 - Summer Assignment

AP Physics 1 - Summer Assignment AP Physics 1 - Summer Assignmen This assignmen is due on he firs day of school. You mus show all your work in all seps. Do no wai unil he las minue o sar his assignmen. This maerial will help you wih he

More information

Topic 1: Linear motion and forces

Topic 1: Linear motion and forces TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

More information

Physics 30: Chapter 2 Exam Momentum & Impulse

Physics 30: Chapter 2 Exam Momentum & Impulse Physics 30: Chaper 2 Exam Momenum & Impulse Name: Dae: Mark: /29 Numeric Response. Place your answers o he numeric response quesions, wih unis, in he blanks a he side of he page. (1 mark each) 1. A golfer

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information

Variable acceleration, Mixed Exercise 11

Variable acceleration, Mixed Exercise 11 Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

Work Power Energy. For conservaive orce ) Work done is independen o he pah ) Work done in a closed loop is zero ) Work done agains conservaive orce is sored is he orm o poenial energy 4) All he above.

More information

( ) is the stretch factor, and x the

( ) is the stretch factor, and x the (Lecures 7-8) Liddle, Chaper 5 Simple cosmological models (i) Hubble s Law revisied Self-similar srech of he universe All universe models have his characerisic v r ; v = Hr since only his conserves homogeneiy

More information

AP Physics 1 - Summer Assignment

AP Physics 1 - Summer Assignment AP Physics 1 - Summer Assignmen This assignmen is due on he firs day of school. You mus show all your work in all seps. Do no wai unil he las minue o sar his assignmen. This maerial will help you wih he

More information

In a shop window an illuminated spot on a display oscillates between positions W and Z with simple harmonic motion.

In a shop window an illuminated spot on a display oscillates between positions W and Z with simple harmonic motion. Quesions 1 and 2 refer o he informaion below. In a shop window an illuminaed spo on a display oscillaes beween posiions W and Z wih simple harmonic moion. The diagram shows he display wih a scale added.

More information