Supervised Learning! B." Neural Network Learning! Typical Artificial Neuron! Feedforward Network! Typical Artificial Neuron! Equations!

Size: px
Start display at page:

Download "Supervised Learning! B." Neural Network Learning! Typical Artificial Neuron! Feedforward Network! Typical Artificial Neuron! Equations!"

Transcription

1 Part 4B: Neura Networ earg 10/22/08 Superved earg B. Neura Networ earg Produce dered output for trag put Geeraze reaoaby appropratey to other put Good exampe: patter recogto Feedforward mutayer etwor 10/22/ /22/08 2 Feedforward Networ Typca Artfca Neuro coecto weght put output put ayer hdde ayer output ayer threhod 10/22/ /22/08 4 Typca Artfca Neuro ear combato actvato fucto et put (oca fed Net put: Neuro output: Euato h = h = * = h = h w j j * ' 10/22/ /22/08 6 1

2 Part 4B: Neura Networ earg 10/22/08 Sge-ayer Perceptro Varabe x 1 w 1 w j w h y x 10/22/ /22/08 8 Sge ayer Perceptro Euato Bary threhod actvato fucto : ( h = ( h = 1, f h > 0 ' 0, f h 0 j Hece, y = 1, f w j > 0, otherwe 1, f w' x > = 0, f w' x ( 10/22/08 9 w x = w x co co = v x w x = w v w x > w v > v > w 2D eght Vector w 2 10/22/08 10 v w x + w w 1 N-Dmeoa eght Vector eparatg hyperpae + w orma vector Goa of Perceptro earg Suppoe we have trag patter x 1, x 2,, x P wth correpodg dered output y 1, y 2,, y P where x p {0, 1}, y p {0, 1} e wat to fd w, uch that y p = (w'x p for p = 1,, P 10/22/ /22/

3 Part 4B: Neura Networ earg 10/22/08 Treatg Threhod a eght x 1 x w 1 w j w 10/22/08 13 h h = w j * ' = * + w j y Treatg Threhod a eght x 0 = 1 x 1 x w 1 = w 0 w j w 10/22/08 14 h h = w j * ' = * + w j y et x 0 = 1 ad w 0 = h = w 0 x 0 + w j = w j = w x j= 0 Augmeted Vector ( w w = 1 ( ( ( ' w 1 p( x x p 1 = ( ( p( x ' e wat y p = ( w x p, p =1,,P 10/22/08 15 Reformuato a Potve Exampe e have potve (y p =1 ad egatve (y p = 0 exampe at w x p > 0 for potve, w x p 0 for egatve et z p = x p for potve, z p = x p for egatve at w z p 0, for p =1,,P Hyperpae through org wth a z p o oe de 10/22/08 16 Adjutmet of eght Vector Oute of Perceptro earg Agorthm z 2 z 5 z 6 z 9 z 10 z 11 z 3 z 1 z 8 z 4 1. taze weght vector radomy 2. ut a patter cafed correcty, do: a for p = 1,, P do: z 7 1 f z p cafed correcty, do othg 2 ee adjut weght vector to be coer to correct cafcato 10/22/ /22/

4 Part 4B: Neura Networ earg 10/22/08 eght Adjutmet w z p p z w w z p Improvemet Performace If w z p < 0, z p w z p = w + z p = w z p + z p z p = w z p + z p 2 > w z p 10/22/ /22/08 20 Perceptro earg Theorem If there a et of weght that w ove the probem, the the PA w evetuay fd t (for a uffcety ma earg rate Note: oy appe f potve egatve exampe are eary eparabe Netogo Smuato of Perceptro earg Ru Perceptro.ogo 10/22/ /22/08 22 Cafcato Power of Mutayer Perceptro Perceptro ca fucto a ogc gate Therefore MP ca form terecto, uo, dfferece of eary-eparabe rego Cae ca be arbtrary hyperpoyhedra My Papert crtcm of perceptro No oe ucceeded deveopg a MP earg agorthm 10/22/08 23 Credt Agmet Probem How do we adjut the weght of the hdde ayer? put ayer hdde ayer output ayer Dered output 10/22/

5 Part 4B: Neura Networ earg 10/22/08 Netogo Demotrato of Bac-Propagato earg Adaptve Sytem Sytem Evauato Fucto (Fte, Fgure of Mert S F Ru Artfca Neura Net.ogo 10/22/08 25 P 1 P P m Cotro Parameter Cotro Agorthm C 10/22/08 26 Gradet Gradet Acet o Fte Surface F P meaure how F atered by varato of P F = F P1 F P F Pm ' ( F pot drecto of maxmum creae F + gradet acet (F 10/22/ /22/08 28 Gradet Acet by Dcrete Step Gradet Acet oca But Not Shortet + (F + 10/22/ /22/

6 Part 4B: Neura Networ earg 10/22/08 Gradet Acet Proce Chage fte : P = F( P F = df dt = m F d P m = F =1P d t =1 F = F P F = F F = F 2 0 Therefore gradet acet creae fte (ut reache 0 gradet 10/22/08 31 P Geera Acet Fte Note that ay adaptve proce P( t w creae fte provded : 0 < F = F P = F P co where age betwee F ad P Hece we eed co > 0 or < 90 10/22/08 32 Geera Acet o Fte Surface Fte a Mmum Error Suppoe for Q dfferet put we have target output t 1,,t Q Suppoe for parameter P the correpodg actua output + (F are y 1,,y Q Suppoe D( t,y [ 0, meaure dfferece betwee target actua output et E = D( t,y be error o th ampe Q [ ] et F( P = E ( P = D t,y ( P =1 Q =1 10/22/ /22/08 34 Gradet of Fte ( F = ' E * = E E = D t,y P P = j y j D t,y = d D t,y d y y j P y P = y D( t,y y P 10/22/08 35 Jacoba Matrx y 1 P y 1 1 P m ( Defe Jacoba matrx J = ( y P y ( 1 P ( m ' Note J m ad D( t,y 1 Sce (E = E E = ( J T D( t,y = y j D t,y P P y, j j 10/22/

7 Part 4B: Neura Networ earg 10/22/08 Dervatve of Suared Eucdea Dtace Suppoe D t,y D( t y = y j d D t,y dy = t y 2 = ( t y 2 ( t y 2 = y j 2 y j t y 10/22/08 37 = d ( t y j j 2 = 2( t j y j d y j = 2( y t Gradet of Error o th Iput (,y E = d D t P d y y P = 2( y t y P j y j = 2 y j t j E = 2( J T ( y t P 10/22/08 38 P = Recap To ow how to decreae the dfferece betwee actua dered output, we eed to ow eemet of Jacoba, y j P, whch ay how jth output vare wth th parameter (gve the th put ( J T t y The Jacoba deped o the pecfc form of the ytem, th cae, a feedforward eura etwor 10/22/08 39 Mutayer Notato x y /22/08 40 Notato ayer of euro abeed 1,, N euro ayer = vector of output from euro ayer put ayer 1 = x (the put patter output ayer = y (the actua output = weght betwee ayer ad +1 Probem: fd how output y vary wth weght j ( = 1,, Typca Neuro h 1 j j 1 N 1 N 10/22/ /22/

8 Part 4B: Neura Networ earg 10/22/08 Error Bac-Propagato e w compute E tartg wth at ayer ( = 1 j ad worg bac to earer ayer ( = 2,,1 Deta Vaue Coveet to brea dervatve by cha rue : E = E 1 1 j j et = E E So = 1 j 1 j 10/22/ /22/08 44 Output-ayer Neuro Output-ayer Dervatve (1 1 1 j j N N h = y E t 2 = E h = t h 2 = d t d h = 2 t ' h d = 2 t d h 10/22/ /22/08 46 Output-ayer Dervatve (2 Hdde-ayer Neuro = = j j j E = 1 1 j j where = 2 t ' h 1 1 j 1 N j 1 N 1 h N N +1 N E 10/22/ /22/

9 Part 4B: Neura Networ earg 10/22/08 Hdde-ayer Dervatve (1 E Reca = 1 j 1 j = E = E +1 h +1 h h h = h +1 h m m h = m = d h = = h dh = +1 h = h +1 Hdde-ayer Dervatve (2 = 1 1 j j E = 1 1 j j where = ' h 1 1 j 1 1 = d j 1 d j +1 ( 1 = j 10/22/ /22/08 50 Dervatve of Sgmod 1 Suppoe = ( h = (ogtc gmod 1+ exp (h D h = D h [ 1+ exp (h] 1 = [ 1+ exp (h] 2 D h 1+ e h e h = ( 1+ e h 2 (e h = ( 1+ e h 2 1 e h 1+ eh = = 1+ e h h 1+ e 1+ e 1 ' h 1+ e h ( = (1 Summary of Bac-Propagato Agorthm Output ayer : = 2 ( 1 ( t E = 1 1 j j Hdde ayer : = 1 E = 1 1 j j +1 10/22/ /22/08 52 Output-ayer Computato 1 1 j j. j N + - N j 1 = j 1 h 10/22/ * + = 2 ( 1 t ( 2, = y t 1 1 Hdde-ayer Computato j 1 j. 1 j 1 N N = 1 1 j = 1 j h 1 * N N +1 * 1 +1 * +1 * N +1 10/22/08 54, E 9

10 Part 4B: Neura Networ earg 10/22/08 Trag Procedure Batch earg o each epoch (pa through a the trag par, weght chage for a patter accumuated weght matrce updated at ed of epoch accurate computato of gradet Oe earg weght are updated after bac-prop of each trag par uuay radomze order for each epoch approxmato of gradet Doe t mae much dfferece 10/22/08 55 Summato of Error Surface E E 1 E 2 10/22/08 56 Gradet Computato Batch earg Gradet Computato Oe earg E E E 1 E 1 E 2 E 2 10/22/ /22/08 58 Tetg Geerazato Probem of Rote earg error error o tet data Avaabe Data Trag Data Tet Data Doma error o trag data epoch top trag here 10/22/ /22/

11 Part 4B: Neura Networ earg 10/22/08 Improvg Geerazato Avaabe Data Vadato Data Trag Data Tet Data Doma 10/22/08 61 A Few Radom Tp Too few euro ad the ANN may ot be abe to decreae the error eough Too may euro ca ead to rote earg Preproce data to: tadardze emate rreevat formato capture varace eep reevat formato If tuc oca m., retart wth dfferet radom weght 10/22/08 62 Beyod Bac-Propagato Adaptve earg Rate Adaptve Archtecture Add/deete hdde euro Add/deete hdde ayer Rada Ba Fucto Networ Etc., etc., etc. The Gode Rue of Neura Net Neura Networ are the ecod-bet way to do everythg 10/22/ /22/08 64 V 11

Supervised Learning. Neural Networks and Back-Propagation Learning. Credit Assignment Problem. Feedforward Network. Adaptive System.

Supervised Learning. Neural Networks and Back-Propagation Learning. Credit Assignment Problem. Feedforward Network. Adaptive System. Part 7: Neura Networ & earnng /2/05 Superved earnng Neura Networ and Bac-Propagaton earnng Produce dered output for tranng nput Generaze reaonaby & appropratey to other nput Good exampe: pattern recognton

More information

Typical Neuron Error Back-Propagation

Typical Neuron Error Back-Propagation x Mutayer Notaton 1 2 2 2 y Notaton ayer of neuron abeed 1,, N neuron n ayer = vector of output from neuron n ayer nput ayer = x (the nput pattern) output ayer = y (the actua output) = weght between ayer

More information

CSE 5526: Introduction to Neural Networks Linear Regression

CSE 5526: Introduction to Neural Networks Linear Regression CSE 556: Itroducto to Neural Netorks Lear Regresso Part II 1 Problem statemet Part II Problem statemet Part II 3 Lear regresso th oe varable Gve a set of N pars of data , appromate d by a lear fucto

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I lear regreo, we coder the frequecy dtrbuto of oe varable (Y) at each of everal level of a ecod varable (X). Y kow a the depedet varable. The

More information

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4 CHAPTER Smple Lear Regreo EXAMPLE A expermet volvg fve ubject coducted to determe the relatohp betwee the percetage of a certa drug the bloodtream ad the legth of tme t take the ubject to react to a tmulu.

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

Adaptive Spline Neural Networks for Signal Processing Applications

Adaptive Spline Neural Networks for Signal Processing Applications Adaptve Spe Neura Networs for Sga Processg Appcatos Aureo Uc ad Fracesco Pazza Dpartmeto d Eettroca e Automatca- Uverstà d Acoa Itay va Brecce Bache, I-603 Acoa Itay - e-ma: aure@eeaab.ua.t Abstract. I

More information

Backpropagation Based Training Algorithm for Takagi - Sugeno Type MIMO Neuro-Fuzzy Network to Forecast Electrical Load Time Series

Backpropagation Based Training Algorithm for Takagi - Sugeno Type MIMO Neuro-Fuzzy Network to Forecast Electrical Load Time Series Backpropagato Based Trag Agorthm for Takag - Sugeo Type IO Neuro-Fuzzy Network to Forecast Eectrca Load Tme Seres Aoy Kumar Pat, ember, IEEE, ad Gerhard Doedg deeg GmbH, Kurfuersteaee - 30, D-8 Breme,

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations Lecture 7 3. Parametrc ad No-Parametrc Ucertates, Radal Bass Fuctos ad Neural Network Approxmatos he parameter estmato algorthms descrbed prevous sectos were based o the assumpto that the system ucertates

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

( ) Thermal noise ktb (T is absolute temperature in kelvin, B is bandwidth, k is Boltzamann s constant) Shot noise

( ) Thermal noise ktb (T is absolute temperature in kelvin, B is bandwidth, k is Boltzamann s constant) Shot noise OISE Thermal oe ktb (T abolute temperature kelv, B badwdth, k Boltzama cotat) 3 k.38 0 joule / kelv ( joule /ecod watt) ( ) v ( freq) 4kTB Thermal oe refer to the ketc eergy of a body of partcle a a reult

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Computational learning and discovery

Computational learning and discovery Computatoa earg ad dscover CSI 873 / MAH 689 Istructor: I. Grva Wedesda 7:2-1 pm Gve a set of trag data 1 1 )... ) { 1 1} fd a fucto that ca estmate { 1 1} gve ew ad mmze the frequec of the future error.

More information

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning Prcpal Compoets Aalss A Method of Self Orgazed Learg Prcpal Compoets Aalss Stadard techque for data reducto statstcal patter matchg ad sgal processg Usupervsed learg: lear from examples wthout a teacher

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =. Exercse 13 (a Proe Soutos for HW4 (1 + x 1 + x 2 1 + (1 + x 2 + x 2 2 + (1 + x + x 2 + by ducto o M(Sν x S x ν(x Souto: Frst ote that sce the mutsets o {x 1 } are determed by ν(x 1 the set of mutsets o

More information

Lecture 12: Multilayer perceptrons II

Lecture 12: Multilayer perceptrons II Lecture : Multlayer perceptros II Bayes dscrmats ad MLPs he role of hdde uts A eample Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty Bayes dscrmats ad MLPs ( As we have see throuhout

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

13. Artificial Neural Networks for Function Approximation

13. Artificial Neural Networks for Function Approximation Lecture 7 3. Artfcal eural etworks for Fucto Approxmato Motvato. A typcal cotrol desg process starts wth modelg, whch s bascally the process of costructg a mathematcal descrpto (such as a set of ODE-s)

More information

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder Collapg to Saple ad Reader Mea Ed Staek Collapg to Saple ad Reader Average order to collape the expaded rado varable to weghted aple ad reader average, we pre-ultpled by ( M C C ( ( M C ( M M M ( M M M,

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

AN ARTIFICIAL NEURAL NETWORK MODEL FOR PREDICTING LONGITUDINAL DISPERSION COEFFICIENTS IN RIVERS

AN ARTIFICIAL NEURAL NETWORK MODEL FOR PREDICTING LONGITUDINAL DISPERSION COEFFICIENTS IN RIVERS Eghth Iteratoa Water Techoogy Coferece, IWTC8 2004, Aexadra, Egypt 477 AN ARTIFICIAL NERAL NETWORK MODEL FOR PREDICTING LONGITDINAL DISPERSION COEFFICIENTS IN RIVERS A A.M. Gad Lecturer, Cv Egeerg Departmet,

More information

Basic Structures: Sets, Functions, Sequences, and Sums

Basic Structures: Sets, Functions, Sequences, and Sums ac Structure: Set, Fucto, Sequece, ad Sum CSC-9 Dcrete Structure Kotat uch - LSU Set et a uordered collecto o object Eglh alphabet vowel: V { a, e,, o, u} a V b V Odd potve teger le tha : elemet o et member

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Trignometric Inequations and Fuzzy Information Theory

Trignometric Inequations and Fuzzy Information Theory Iteratoal Joural of Scetfc ad Iovatve Mathematcal Reearch (IJSIMR) Volume, Iue, Jauary - 0, PP 00-07 ISSN 7-07X (Prt) & ISSN 7- (Ole) www.arcjoural.org Trgometrc Iequato ad Fuzzy Iformato Theory P.K. Sharma,

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

15-381: Artificial Intelligence. Regression and neural networks (NN)

15-381: Artificial Intelligence. Regression and neural networks (NN) 5-38: Artfcal Itellece Reresso ad eural etorks NN) Mmck the bra I the earl das of AI there as a lot of terest develop models that ca mmc huma thk. Whle o oe ke eactl ho the bra orks ad, eve thouh there

More information

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic.

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic. A stoppg crtero for cardso s extrapoato sceme uder fte dgt artmetc MAKOO MUOFUSHI ad HIEKO NAGASAKA epartmet of Lbera Arts ad Sceces Poytecc Uversty 4-1-1 Hasmotoda,Sagamara,Kaagawa 229-1196 JAPAN Abstract:

More information

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK Ram Rzayev Cyberetc Isttute of the Natoal Scece Academy of Azerbaa Republc ramrza@yahoo.com Aygu Alasgarova Khazar

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

8 The independence problem

8 The independence problem Noparam Stat 46/55 Jame Kwo 8 The depedece problem 8.. Example (Tua qualty) ## Hollader & Wolfe (973), p. 87f. ## Aemet of tua qualty. We compare the Huter L meaure of ## lghte to the average of coumer

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGREION ANALYSIS MODULE II Lecture - 5 Smple Lear Regreo Aaly Dr Shalabh Departmet of Mathematc Stattc Ida Ittute of Techology Kapur Jot cofdece rego for A jot cofdece rego for ca alo be foud Such

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

0 () t and an equation

0 () t and an equation DECETRALIZED ODEL REFERECE ADAPTIVE PRECIZE COTROL OF COPLEX OBJECTS S.D. Zemyakov, V.Yu. Rutkovsky, V.. Gumov ad V.. Sukhaov Isttute of Cotro Scece by V.A. Trapezkov Russa Academy of Scece 65 Profsoyuzaya,

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

Band structure calculations

Band structure calculations Bad structure cacuatos group semar 00-0 Georg Wrth Isttut für Laser Physk Jauary 00 Motvato attce ad stab. aser are outcouped from SM-PM-fber Mcheso terferometer braches overap uder 90 attce forms overappg

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Finsler Geometry & Cosmological constants

Finsler Geometry & Cosmological constants Avaabe oe at www.peaaresearchbrary.com Peaa esearch Lbrary Advaces Apped Scece esearch, 0, (6):44-48 Fser Geometry & Cosmooca costats. K. Mshra ad Aruesh Padey ISSN: 0976-860 CODEN (USA): AASFC Departmet

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks

Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks Stochastc Gradet Descet Optmzes Over-parameterzed Deep ReLU Networks Dfa Zou ad Yua Cao ad Dogruo Zhou ad Quaqua Gu arxv:1811.08888v1 [cs.lg] 1 Nov 018 Abstract We study the probem of trag deep eura etworks

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Radial Basis Function Networks

Radial Basis Function Networks Radal Bass Fucto Netorks Radal Bass Fucto Netorks A specal types of ANN that have three layers Iput layer Hdde layer Output layer Mappg from put to hdde layer s olear Mappg from hdde to output layer s

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

Evaluating new varieties of wheat with the application of Vague optimization methods

Evaluating new varieties of wheat with the application of Vague optimization methods Evauatg ew varetes of wheat wth the appcato of Vague optmzato methods Hogxu Wag, FuJ Zhag, Yusheg Xu,3 Coege of scece ad egeerg, Coege of eectroc formato egeerg, Qogzhou Uversty, aya Haa 570, Cha. zfj5680@63.com,

More information

Landé interval rule (assignment!) l examples

Landé interval rule (assignment!) l examples 36 - Read CTD, pp. 56-78 AT TIME: O H = ar s ζ(,, ) s adé terva rue (assgmet!) ζ(,, ) ζ exampes ζ (oe ζfor each - term) (oe ζfor etre cofgurato) evauate matrx eemets ater determata bass ad may-e M or M

More information

A Sensitivity-Based Adaptive Architecture Pruning Algorithm for Madalines

A Sensitivity-Based Adaptive Architecture Pruning Algorithm for Madalines Advaced Scece ad echology etters, pp.84-9 http://dx.do.org/0.457/astl.06.3.35 A Sestvty-Based Adaptve Archtecture Prug Algorthm for Madales Sa J, Pg Yag, Shumg Zhog, J Wag, Jeog-Uk Km Jagsu Egeerg Ceter

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)-

QT codes. Some good (optimal or suboptimal) linear codes over F. are obtained from these types of one generator (1 u)- Mathematca Computato March 03, Voume, Issue, PP-5 Oe Geerator ( u) -Quas-Twsted Codes over F uf Ja Gao #, Qog Kog Cher Isttute of Mathematcs, Naka Uversty, Ta, 30007, Cha Schoo of Scece, Shadog Uversty

More information

ε. Therefore, the estimate

ε. Therefore, the estimate Suggested Aswers, Problem Set 3 ECON 333 Da Hugerma. Ths s ot a very good dea. We kow from the secod FOC problem b) that ( ) SSE / = y x x = ( ) Whch ca be reduced to read y x x = ε x = ( ) The OLS model

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information