Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning

Size: px
Start display at page:

Download "Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning"

Transcription

1 Prcpal Compoets Aalss A Method of Self Orgazed Learg Prcpal Compoets Aalss Stadard techque for data reducto statstcal patter matchg ad sgal processg Usupervsed learg: lear from examples wthout a teacher Dscover patters the put data Reles o local learg rules Utlzes Hebba learg Heavl spred b bolog 2 Basc Ituto Global order ca arse from local teractos Ala Turg The effectveess of a varable sapse betwee two euros s creased b the repeated actvato of oe euro b the other across the sapse Hebb Combe the two hpothess, ad we have a global learg strateg 3

2 Self Orgazed Learg Prcpals Modfcatos saptc weghts ted to self amplf Lmtato of resources leads to competto amog sapses ad therefore the selecto of the most vgorousl growg sapses at the expese of the others 4 Self Orgazed Learg Prcpals Modfcatos saptc weghts ted to cooperate Order ad structure the actvato patters represet redudat formato that s acqured b the eural etwork the form of kowledge, whch s a ecessar prerequste to self-orgazed learg 5 Self Orgazed Learg for vsual Applcatos Multple laer etworks, each laer s resposble for a certa feature Smple features e.g. cotrast, edges are hadled b earl laers, ad complex features e.g. surface texture are hadled b later laers Learg proceeds o a laer b laer bass 6

3 Tpcal Model Each euro acts as a lear comber Coectos are fxed throughout the learg process,.e. coectos ma be stregtheed or weakeed but ot added or destroed 7 Feature Extracto The process of trasformg a data space to a feature space of the same dmeso To ad data aalss, the trasformato t ca be from a put space of a gve dmeso to a feature space of a smaller dmeso The trasformato should be vertble ad should mmze the mea-square error of the resultg space 8 Prcpal Compoets Aalss For a put vector X: Normalze X to have a zero mea DefeamatrxR= EXX T The ormalzed Eucldea orm = 1 egevectors of the matrx R defe the drectos of maxmum varace The correspodg egevalues defe the correspodg varace values 9

4 Feature Mappg The egevectors of the matrx R are called the prcpal drectos. Let s call these vectors q The proecto of the put vector x oto the prcpal vector are called the prcpal compoets: a =q T x=x T q B substtutg the vector A stead of the vector x, the data s trasformed to a prcpal compoets feature space 10 PCA Illustrated 11 Dmesoalt Reducto Features ca be ordered order of domace accordg to the values of the varaces = ege values To reduce the dmesoalt of the feature space, clude the feature space the domat l compoets where l < dmesoalt of the put space The resultg error s defed as: m e = 1a q = l+ 12

5 Example Orgal represetato of characters the form of 32*32 pxels a vector of sze Images represet creasg dmesoalt up to 64 a reducto b a factor of 16 at rght most colum 13 Hebba Based Maxmum Ege Flter Assume a sgle lear euro as follows: x 1 w 1 1 w 2 x 2 m = w x = 1 x m w m 14 Hebba Based Maxmum Ege Flter Defe the learg rule: w + 1 = m w + η x 2 [ w + η x ] = 1 For a small learg rate, ths approxmates to: [ x w ] w + 1 = w + η 15

6 Hebba Based Maxmum Ege Flter We ca prove that: The varace of the output coverges to the largest egevalue of the correlato matrx R=X T X The saptc weght vector W coverges to the correspodg ormalzed ege vector 16 Hebba Based Prcpal Compoets Aalss Ca the sgle euro maxmum ege flter be exteded to the other prcpal compoets? How? 17 Hebba Based Prcpal Compoets Aalss Assume, a eural etwork formed of a sgle laer of lear euros wth umber of euros <= umber of puts: 18

7 Hebba Based Prcpal Compoets Aalss The outputs are defed b: m = w x = 1 Defe the learg rule: w = η x k = 1 wk k 19 Hebba Based Prcpal Compoets Aalss The egatve compoet has the effect of subtractg the prcpal compoets represeted b the prevous outputs We ca prove that: The varaces of the outputs coverge to the egevalues of the correlato matrx R=X T X descedg order The saptc weght vectors W coverge to the correspodg ormalzed ege vectors 20 Example 1 21

8 Example 2 22 Adaptve Prcpal Compoets Aalss Tra the etwork, oe euro at a tme We use feedback from each euro to all the euros that follow t order 23 Adaptve Prcpal Compoets Aalss For trag of euro, we use a etwork: 24

9 Adaptve Prcpal Compoets Aalss The output of euro s defed as: 1 a x w T T + = 25 Ad the learg rules: Ad the learg rules: ] [ 1 ] [ 1 a x a a w x w w = + + = + η η Kerel PCA Itroduces a o-lear hdde lear to covert o lear put spaces to a equvalet lear set of prcpal t 26 compoets Kerel PCA Example 27

10 Image Codg Strateges Compact codg: represet the mage as a reduced set of vectors desged to mmze errors, e.g. PCA Sparse dstrbuted codg: trasform redudac mage represetato to match redudac recogto vsual sstems 28

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 750 Mache Learg Lecture 3 Dmesoalty reducto Feature selecto Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 750 Mache Learg Dmesoalty reducto. Motvato. Classfcato problem eample: We have a put data

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

Discriminative Feature Extraction and Dimension Reduction

Discriminative Feature Extraction and Dimension Reduction Dscrmatve Feature Etracto ad Dmeso Reducto - PCA, LDA ad LA Berl Che Graduate Isttute of Computer cece & Iformato Egeerg Natoal aa Normal Uverst Refereces:. Itroducto to Mache Learg, Chapter 6. Data Mg:

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Data Analysis and Dimension Reduction

Data Analysis and Dimension Reduction Data Aalss ad Dmeso Reducto - PCA, LDA ad LA Berl Che Departmet of Computer cece & Iformato Egeerg Natoal aa Normal Uverst Refereces:. Itroducto to Mache Learg, Chapter 6. Data Mg: Cocepts, Models, Methods

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 675 Itroucto to ache Learg Lecture Dmesoalty reucto Feature selecto los Hauskrecht mlos@cs.ptt.eu 539 Seott Square Dmesoalty reucto. otvato. L methos are sestve to the mesoalty of ata Questo: Is there

More information

13. Artificial Neural Networks for Function Approximation

13. Artificial Neural Networks for Function Approximation Lecture 7 3. Artfcal eural etworks for Fucto Approxmato Motvato. A typcal cotrol desg process starts wth modelg, whch s bascally the process of costructg a mathematcal descrpto (such as a set of ODE-s)

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK Ram Rzayev Cyberetc Isttute of the Natoal Scece Academy of Azerbaa Republc ramrza@yahoo.com Aygu Alasgarova Khazar

More information

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations Lecture 7 3. Parametrc ad No-Parametrc Ucertates, Radal Bass Fuctos ad Neural Network Approxmatos he parameter estmato algorthms descrbed prevous sectos were based o the assumpto that the system ucertates

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

Fault Diagnosis Using Feature Vectors and Fuzzy Fault Pattern Rulebase

Fault Diagnosis Using Feature Vectors and Fuzzy Fault Pattern Rulebase Fault Dagoss Usg Feature Vectors ad Fuzzy Fault Patter Rulebase Prepared by: FL Lews Updated: Wedesday, ovember 03, 004 Feature Vectors The requred puts for the dagostc models are termed the feature vectors

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction Computer Aded Geometrc Desg 9 79 78 www.elsever.com/locate/cagd Applcato of Legedre Berste bass trasformatos to degree elevato ad degree reducto Byug-Gook Lee a Yubeom Park b Jaechl Yoo c a Dvso of Iteret

More information

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier Aoucemets Recogto II H3 exteded to toght H4 to be aouced today. Due Frday 2/8. Note wll take a whle to ru some thgs. Fal Exam: hursday 2/4 at 7pm-0pm CSE252A Lecture 7 Example: Face Detecto Evaluatg a

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uverst Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

Simple Linear Regression

Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uversty Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

OPTIMAL LAY-OUT OF NATURAL GAS PIPELINE NETWORK

OPTIMAL LAY-OUT OF NATURAL GAS PIPELINE NETWORK 23rd World Gas Coferece, Amsterdam 2006 OPTIMAL LAY-OUT OF NATURAL GAS PIPELINE NETWORK Ma author Tg-zhe, Ne CHINA ABSTRACT I cha, there are lots of gas ppele etwork eeded to be desged ad costructed owadays.

More information

Dimensionality Reduction

Dimensionality Reduction Dmesoalty Reducto Sav Kumar, Google Research, NY EECS-6898, Columba Uversty - Fall, 010 Sav Kumar 11/16/010 EECS6898 Large Scale Mache Learg 1 Curse of Dmesoalty May learg techques scale poorly wth data

More information

Applications of Multiple Biological Signals

Applications of Multiple Biological Signals Applcatos of Multple Bologcal Sgals I the Hosptal of Natoal Tawa Uversty, curatve gastrectomy could be performed o patets of gastrc cacers who are udergoe the curatve resecto to acqure sgal resposes from

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Previous lecture. Lecture 8. Learning outcomes of this lecture. Today. Statistical test and Scales of measurement. Correlation

Previous lecture. Lecture 8. Learning outcomes of this lecture. Today. Statistical test and Scales of measurement. Correlation Lecture 8 Emprcal Research Methods I434 Quattatve Data aalss II Relatos Prevous lecture Idea behd hpothess testg Is the dfferece betwee two samples a reflecto of the dfferece of two dfferet populatos or

More information

LECTURE 9: Principal Components Analysis

LECTURE 9: Principal Components Analysis LECURE 9: Prcpal Compoets Aalss he curse of dmesoalt Dmesoalt reducto Feature selecto vs. feature etracto Sal represetato vs. sal classfcato Prcpal Compoets Aalss Itroducto to Patter Aalss Rcardo Guterrez-Osua

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

Nonlinear Blind Source Separation Using Hybrid Neural Networks*

Nonlinear Blind Source Separation Using Hybrid Neural Networks* Nolear Bld Source Separato Usg Hybrd Neural Networks* Chu-Hou Zheg,2, Zh-Ka Huag,2, chael R. Lyu 3, ad Tat-g Lok 4 Itellget Computg Lab, Isttute of Itellget aches, Chese Academy of Sceces, P.O.Box 3, Hefe,

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Towards Multi-Layer Perceptron as an Evaluator Through Randomly Generated Training Patterns

Towards Multi-Layer Perceptron as an Evaluator Through Randomly Generated Training Patterns Proceedgs of the 5th WSEAS It. Cof. o Artfcal Itellgece, Kowledge Egeerg ad Data Bases, Madrd, Spa, February 5-7, 26 (pp254-258) Towards Mult-Layer Perceptro as a Evaluator Through Ramly Geerated Trag

More information

A Robust Total Least Mean Square Algorithm For Nonlinear Adaptive Filter

A Robust Total Least Mean Square Algorithm For Nonlinear Adaptive Filter A Robust otal east Mea Square Algorthm For Nolear Adaptve Flter Ruxua We School of Electroc ad Iformato Egeerg X'a Jaotog Uversty X'a 70049, P.R. Cha rxwe@chare.com Chogzhao Ha, azhe u School of Electroc

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

Chapter Two. An Introduction to Regression ( )

Chapter Two. An Introduction to Regression ( ) ubject: A Itroducto to Regresso Frst tage Chapter Two A Itroducto to Regresso (018-019) 1 pg. ubject: A Itroducto to Regresso Frst tage A Itroducto to Regresso Regresso aalss s a statstcal tool for the

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Compressive sensing sparse sampling method based on principal component analysis

Compressive sensing sparse sampling method based on principal component analysis he 9th Iteratoal Symposum o ND Aerospace Compressve sesg sparse samplg method based o prcpal compoet aalyss More fo about ths artcle: http://www.dt.et/?d= Yaje SUN,,3, Fehog GU 3, Sa JI,,3, Lhua WANG 4

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

A New Development on ANN in China Biomimetic Pattern Recognition and Multi Weight Vector Neurons

A New Development on ANN in China Biomimetic Pattern Recognition and Multi Weight Vector Neurons A New Developmet o ANN Cha Bommetc atter Recogto ad Mult Weght Vector Neuros houue Wag Lab of Artfcal Neural Networks. Ist. of emcoductors. CA. Beg 00083 Cha wsue@red.sem.ac.c Abstract. A ew model of patter

More information

Simple Linear Regression and Correlation.

Simple Linear Regression and Correlation. Smple Lear Regresso ad Correlato. Correspods to Chapter 0 Tamhae ad Dulop Sldes prepared b Elzabeth Newto (MIT) wth some sldes b Jacquele Telford (Johs Hopks Uverst) Smple lear regresso aalss estmates

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

A Sensitivity-Based Adaptive Architecture Pruning Algorithm for Madalines

A Sensitivity-Based Adaptive Architecture Pruning Algorithm for Madalines Advaced Scece ad echology etters, pp.84-9 http://dx.do.org/0.457/astl.06.3.35 A Sestvty-Based Adaptve Archtecture Prug Algorthm for Madales Sa J, Pg Yag, Shumg Zhog, J Wag, Jeog-Uk Km Jagsu Egeerg Ceter

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares.

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares. Lecture 3 Optmzato Trt 04 P.H.S.Torr Least Squares Fttg Classc least squares Total least squares Robust Estmato Fttg: Cocepts ad recpes Least squares le fttg Data:,,,, Le equato: = m + b Fd m, b to mmze

More information

6. Nonparametric techniques

6. Nonparametric techniques 6. Noparametrc techques Motvato Problem: how to decde o a sutable model (e.g. whch type of Gaussa) Idea: just use the orgal data (lazy learg) 2 Idea 1: each data pot represets a pece of probablty P(x)

More information

Statistics. Correlational. Dr. Ayman Eldeib. Simple Linear Regression and Correlation. SBE 304: Linear Regression & Correlation 1/3/2018

Statistics. Correlational. Dr. Ayman Eldeib. Simple Linear Regression and Correlation. SBE 304: Linear Regression & Correlation 1/3/2018 /3/08 Sstems & Bomedcal Egeerg Departmet SBE 304: Bo-Statstcs Smple Lear Regresso ad Correlato Dr. Ama Eldeb Fall 07 Descrptve Orgasg, summarsg & descrbg data Statstcs Correlatoal Relatoshps Iferetal Geeralsg

More information

Study on a Fire Detection System Based on Support Vector Machine

Study on a Fire Detection System Based on Support Vector Machine Sesors & Trasducers, Vol. 8, Issue, November 04, pp. 57-6 Sesors & Trasducers 04 by IFSA Publshg, S. L. http://www.sesorsportal.com Study o a Fre Detecto System Based o Support Vector Mache Ye Xaotg, Wu

More information

Lecture 12: Multilayer perceptrons II

Lecture 12: Multilayer perceptrons II Lecture : Multlayer perceptros II Bayes dscrmats ad MLPs he role of hdde uts A eample Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty Bayes dscrmats ad MLPs ( As we have see throuhout

More information

Radial Basis Function Networks

Radial Basis Function Networks Radal Bass Fucto Netorks Radal Bass Fucto Netorks A specal types of ANN that have three layers Iput layer Hdde layer Output layer Mappg from put to hdde layer s olear Mappg from hdde to output layer s

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR Pot Patter Aalyss Part I Outle Revst IRP/CSR, frst- ad secod order effects What s pot patter aalyss (PPA)? Desty-based pot patter measures Dstace-based pot patter measures Revst IRP/CSR Equal probablty:

More information

Lecture 23: Associative memory & Hopfield Networks

Lecture 23: Associative memory & Hopfield Networks Lecture 3: Assocatve memory & Hopfeld Networks Feedforward/Feedback NNs Feedforward NNs The coectos betwee uts do ot form cycles. Usually produce a respose to a put quckly. Most feedforward NNs ca be traed

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

x y exp λ'. x exp λ 2. x exp 1.

x y exp λ'. x exp λ 2. x exp 1. egecosmcd Egevalue-egevector of the secod dervatve operator d /d hs leads to Fourer seres (se, cose, Legedre, Bessel, Chebyshev, etc hs s a eample of a systematc way of geeratg a set of mutually orthogoal

More information

4. Standard Regression Model and Spatial Dependence Tests

4. Standard Regression Model and Spatial Dependence Tests 4. Stadard Regresso Model ad Spatal Depedece Tests Stadard regresso aalss fals the presece of spatal effects. I case of spatal depedeces ad/or spatal heterogeet a stadard regresso model wll be msspecfed.

More information

An Improved Support Vector Machine Using Class-Median Vectors *

An Improved Support Vector Machine Using Class-Median Vectors * A Improved Support Vector Mache Usg Class-Meda Vectors Zhezhe Kou, Jahua Xu, Xuegog Zhag ad Lag J State Ke Laborator of Itellget Techolog ad Sstems Departmet of Automato, Tsghua Uverst, Bejg 100084, P.R.C.

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Mache Learg CSE6740/CS764/ISYE6740, Fall 0 Itroducto to Regresso Le Sog Lecture 4, August 30, 0 Based o sldes from Erc g, CMU Readg: Chap. 3, CB Mache learg for apartmet hutg Suppose ou are to move to

More information

Algebraic-Geometric and Probabilistic Approaches for Clustering and Dimension Reduction of Mixtures of Principle Component Subspaces

Algebraic-Geometric and Probabilistic Approaches for Clustering and Dimension Reduction of Mixtures of Principle Component Subspaces Algebrac-Geometrc ad Probablstc Approaches for Clusterg ad Dmeso Reducto of Mxtures of Prcple Compoet Subspaces ECE842 Course Project Report Chagfag Zhu Dec. 4, 2004 Algebrac-Geometrc ad Probablstc Approach

More information

Statistics: Unlocking the Power of Data Lock 5

Statistics: Unlocking the Power of Data Lock 5 STAT 0 Dr. Kar Lock Morga Exam 2 Grades: I- Class Multple Regresso SECTIONS 9.2, 0., 0.2 Multple explaatory varables (0.) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (0.2) Exam 2 Re- grades Re-

More information

Approximation Capabilities of Adaptive Spline Neural Networks

Approximation Capabilities of Adaptive Spline Neural Networks Approxmato Capabltes of Adaptve Sple eural etworks Lorezo Vecc Paolo Campolucc Fracesco Pazza ad Aurelo Uc Dpartmeto d Elettroca e Automatca - Uverstà d Acoa Italy Va Brecce Bache 63 Acoa-Italy Fax:+39

More information

Nonparametric Techniques

Nonparametric Techniques Noparametrc Techques Noparametrc Techques w/o assumg ay partcular dstrbuto the uderlyg fucto may ot be kow e.g. mult-modal destes too may parameters Estmatg desty dstrbuto drectly Trasform to a lower-dmesoal

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

CSE 5526: Introduction to Neural Networks Linear Regression

CSE 5526: Introduction to Neural Networks Linear Regression CSE 556: Itroducto to Neural Netorks Lear Regresso Part II 1 Problem statemet Part II Problem statemet Part II 3 Lear regresso th oe varable Gve a set of N pars of data , appromate d by a lear fucto

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Mache Learg Problem set Due Frday, September 9, rectato Please address all questos ad commets about ths problem set to 6.867-staff@a.mt.edu. You do ot eed to use MATLAB for ths problem set though

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

An investigative study on the influence of correlation of PD statistical features on PD pattern recognition

An investigative study on the influence of correlation of PD statistical features on PD pattern recognition A vestgatve stud o the fluece of correlato of PD statstcal features o PD patter recogto Abdullah Abubakar Mas ud Departmet of Electroc ad Electrcal Egeerg Jubal Idustral College, Jubal Idustral Ct, KA

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Overcoming Limitations of Sampling for Aggregation Queries

Overcoming Limitations of Sampling for Aggregation Queries CIS 6930 Approxmate Quer Processg Paper Presetato Sprg 2004 - Istructor: Dr Al Dobra Overcomg Lmtatos of Samplg for Aggregato Queres Authors: Surajt Chaudhur, Gautam Das, Maur Datar, Rajeev Motwa, ad Vvek

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

Homework Solution (#5)

Homework Solution (#5) Homework Soluto (# Chapter : #6,, 8(b, 3, 4, 44, 49, 3, 9 ad 7 Chapter. Smple Lear Regresso ad Correlato.6 (6 th edto 7, old edto Page 9 Rafall volume ( vs Ruoff volume ( : 9 8 7 6 4 3 : a. Yes, the scatter-plot

More information