Data Analysis and Dimension Reduction

Size: px
Start display at page:

Download "Data Analysis and Dimension Reduction"

Transcription

1 Data Aalss ad Dmeso Reducto - PCA, LDA ad LA Berl Che Departmet of Computer cece & Iformato Egeerg Natoal aa Normal Uverst Refereces:. Itroducto to Mache Learg, Chapter 6. Data Mg: Cocepts, Models, Methods ad Algorthms, Chapter 3

2 Itroducto (/3) Goal: dscover sgfcat patters or features from the put data alet feature selecto or dmesoalt reducto Iput space Netork Feature space Compute a put-output mappg based o some desrable propertes tatstcs-

3 Itroducto (/3) Prcpal Compoet Aalss (PCA) Lear Dscrmat Aalss (LDA) Latet ematc Aalss (LA) Heteroscedastc Dscrmat Aalss (HDA) Probablstc Latet ematc Aalss (PLA) tatstcs-3

4 Itroducto (3/3) Formulato for feature etracto ad dmeso reducto Model-free (oparametrc) thout pror formato: e.g., PCA th pror formato: e.g., LDA Model-depedet (parametrc), e.g., HLDA th Gaussa cluster dstrbutos PLA th multomal latet cluster dstrbutos tatstcs-4

5 Prcpal Compoet Aalss (PCA) (/) Pearso, 90 Ko as Karhue-Loẻve rasform (947, 963) Or Hotellg rasform (933) A stadard techque commol used for data reducto statstcal patter recogto ad sgal processg A trasform b hch the data set ca be represeted b reduced umber of effectve features ad stll reta the most trsc formato cotet A small set of features to be foud to represet the data samples accuratel Also called ubspace Decomposto, Factor Aalss.. tatstcs-5

6 Prcpal Compoet Aalss (PCA) (/) he patters sho a sgfcat dfferece from each other oe of the trasformed aes tatstcs-6

7 PCA Dervatos (/3) uppose s a -dmesoal zero mea radom vector, μ E { } 0 If s ot zero mea, e ca subtract the mea before processg the follog aalss ca be represeted thout error b the summato of learl depedet vectors φ Φ [.. ] he -th compoet the feature (mapped) space here [ φ. ] Φ φ. φ he bass vectors tatstcs-7

8 tatstcs-8 PCA Dervatos (/3) (,3) (0,) (,0) (,) (-,) (5/,/ ) orthogoal bass sets ubspace Decomposto

9 PCA Dervatos (3/3) Further assume the colum (bass) vectors of the matr form a orthoormal set φ φ Φ 0 uch that s equal to the proecto of o φ ϕ ϕ f f ϕ ϕ cos θ ϕ φ, here φ ϕ tatstcs-9

10 PCA Dervatos (4/3) Further assume the colum (bass) vectors of the matr Φ form a orthoormal set Σ E ( μ )( μ ) also has the follog propertes N μμ Its mea s zero, too N E{ } E{ ϕ } ϕ E{ } ϕ 0 0 R E{ } Its varace s { } [ { }] { } E E E{ ϕ ϕ } ϕ { } σ E E ϕ Rϕ [ R s the(auto-)corelato matr of ] { } ϕ N 0 he correlato betee to proectos ad s E { } E ( φ )( φ ) φ { } E{ φ φ } E { } φ φ Rφ tatstcs-0

11 tatstcs- PCA Dervatos (5/3) Mmum Mea-quared Error Crtero e at to choose ol m of that e stll ca appromate ell mea-squared error crtero s ' φ + + m m φ φ φ ( ) m m ˆ φ ( ) ( ) { } { } m m m k m m k k k m k k m m m R φ φ φ φ φ φ σ ε E E E ˆ E k k k f 0 f φ Q φ { } { } { } [ ] { } 0 E E E E σ e should dscard the bases here the proectos have loer varaces orgal vector recostructed vector

12 PCA Dervatos (6/3) Mmum Mea-quared Error Crtero If the orthoormal (bass) set s selected to be the egevectors of the correlato matr R, assocated th egevalues λ ' s he ll have the propert that: R φ λ φ φ ' s s real ad smmetrc, therefore ts egevectors R form a orthoormal set R s postve defte ( R > 0 ) > all egevalues are postve uch that the mea-squared error metoed above ll be ε ( m ) m + m + σ φ R φ m + φ λ φ m + λ tatstcs-

13 tatstcs-3 PCA Dervatos (7/3) Mmum Mea-quared Error Crtero If the egevectors are retaed assocated th the m largest egevalues, the mea-squared error ll be A to proectos ad ll be mutuall ucorrelated Good es for most statstcal modelg approaches Gaussas ad dagoal matrces ( ) ( ) here + m m ege m λ λ λ λ ε { } ( )( ) { } { } { } 0 E E E E φ φ R φ φ φ φ φ φ φ φ λ σ σ σ σ σ σ σ σ ( )( ) { } N N E N E R μμ μ μ Σ ] [

14 PCA Dervatos (8/3) A o-dmesoal Eample of Prcple Compoet Aalss tatstcs-4

15 PCA Dervatos (9/3) Mmum Mea-quared Error Crtero ( m) Obectve fucto ε ege It ca be proved that s the optmal soluto uder the mea-squared error crtero f k Defe: Partal Dfferetato R φ RΦ J m+ ( φ φ δ ) m+ Rφ Φ mu ( here Φ m [ φm+... φ ]) [ m+... φ ] Φ m[ um+... u ] Φ U ( here U [ u... u ]) m o be mmzed φ m+ J φ m Rφ Rφ m Costrats u k m+ k m+ k m+ u k m U m m+ λ R m+ φ k 0 m+ k ( [ ]) here u u... u k m+ Have a partcular soluto f s a dagoal matr ad ts dagoal elemets s the egevalues of ad φ... φ s ther correspodg egevectors λ... δ k 0 f k ϕ Rϕ Rϕ ϕ tatstcs-5

16 tatstcs-6 PCA Dervatos (0/3) Gve a put vector th dmeso m r to costruct a lear trasform Φ (Φ s a m matr m<) such that the trucato result, Φ, s optmal measquared error crtero Ecoder.. m.. Decoder ˆ.. ˆ ˆ ˆ ( )( ) ( ) - - E ˆ ˆ mmze Φ [ ] m ϕ ϕ ϕ.. here Φ Φ Φ ˆ Φ m..

17 PCA Dervatos (/3) Data compresso commucato PCA s a optmal trasform for sgal represetato ad dmesoal reducto, but ot ecessar for classfcato tasks, such as speech recogto? (o be dscussed later o) PCA eeds o pror formato (e.g. class dstrbutos of output formato) of the sample patters tatstcs-7

18 cree Graph PCA Dervatos (/3) he plot of varace as a fucto of the umber of egevectors kept λ + λ + L+ λm hreshold elect m such that λ + λ + L+ λ + L+ λ m Or select those egevectors th egevalues larger tha the average put varace (average evgevalue) λ λ m tatstcs-8

19 tatstcs-9 PCA Dervatos (3/3) PCA fds a lear trasform such that the sum of average betee-class varato ad average thclass varato s mamal ( ) b b J + + ~ ~ ~ ~ b b ~ N N Σ ( )( ) b N N? ( )( ) N sample de class de b + : r tosho that

20 PCA Eamples: Data Aalss Eample : prcpal compoets of some data pots tatstcs-0

21 PCA Eamples: Feature rasformato Eample : feature trasformato ad selecto Correlato matr for old feature dmesos Ne feature dmesos threshold for formato cotet reserved tatstcs-

22 PCA Eamples: Image Codg (/) Eample 3: Image Codg tatstcs-

23 PCA Eamples: Image Codg (/) Eample 3: Image Codg (cot.) (feature reducto) (value reducto) tatstcs-3

24 PCA Eamples: Egeface (/4) Eample 4: Egeface face recogto (urk ad Petlad, 99) Cosder a dvdual mage to be a lear combato of a small umber of face compoets or egefaces derved from a set of referece mages,, L, teps...,.,...,.... Covert each of the L referece mages to a vector of floatg pot umbers represetg lght test each pel Calculate the coverace/correlato matr betee these referece vectors Appl Prcpal Compoet Aalss (PCA) fd the egevectors of the matr: the egefaces Besdes, the vector obtaed b averagg all mages are called egeface 0. he other egefaces from egeface oards model the varatos from ths average face L L.. L.. tatstcs-4

25 PCA Eamples: Egeface (/4) Eample 4: Egeface face recogto (cot.) teps he the faces are the represeted as egevoce 0 plus a lear combato of the rema K (K L) egefaces he Egeface approach perssts the mmum mea-squared error crtero Icdetall, the egefaces are ot ol themselves usuall plausble faces, but also drectos of varatos betee faces ˆ + ( ) + e( ) e( K ) [,,,..., ],, e,,, K, K Feature vector of a perso tatstcs-5

26 PCA Eamples: Egeface (3/4) Face mages as the trag set he averaged face tatstcs-6

27 PCA Eamples: Egeface (4/4) eve egefaces derved from the trag set A proected face mage? (Idcate drectos of varatos betee faces ) tatstcs-7

28 PCA Eamples: Egevoce (/3) Eample 5: Egevoce speaker adaptato (PL, 000) teps Cocateatg the regarded parameters for each speaker r to form a huge vector a (r) ( a supervectors) D HMM model mea parameters (μ) peaker Data Model rag peaker R Data Model rag I HMM Each e speaker s represeted b a pot P K-space ( 0 ) + e( ) + e( ) + + e( K) P e,,..., K peaker HMM peaker R HMM I HMM model D (M.) Egevoce space costructo Prcpal Compoet Aalss tatstcs-8

29 PCA Eamples: Egevoce (/3) Eample 4: Egevoce speaker adaptato (cot.) tatstcs-9

30 PCA Eamples: Egevoce (3/3) Eample 5: Egevoce speaker adaptato (cot.) Dmeso (egevoce ): Correlate th ptch or se Dmeso (egevoce ): Correlate th ampltude Dmeso 3 (egevoce 3): Correlate th secod-format movemet Note that: Egeface performs o feature space hle egevoce performs o model space tatstcs-30

31 Lear Dscrmat Aalss (LDA) (/) Also called Fsher s Lear Dscrmat Aalss, Fsher-Rao Lear Dscrmat Aalss Fsher (936): troduced t for to-class classfcato Rao (965): eteded t to hadle multple-class classfcato tatstcs-3

32 Lear Dscrmat Aalss (LDA) (/) Gve a set of sample vectors th labeled (class) formato, tr to fd a lear trasform such that the rato of average betee-class varato over average th-class varato s mamal th-class dstrbutos are assumed here to be Gaussas th equal varace the to-dmesoal sample space tatstcs-3

33 LDA Dervatos (/4) uppose there are N sample vectors th dmesoalt, each of them s belogs to oe of the J classes g,,,..., J, g N he sample mea s: he class sample meas are: he class sample covaraces are: he average th-class varato before trasform N Σ N he average betee-class varato before trasform b ( ) { } ( ) s class de N N N Σ ( )( ) N g ( ) ( ) N g ( )( ) tatstcs-33

34 tatstcs-34 LDA Dervatos (/4) If the trasform s appled he sample vectors ll be he sample mea ll be he class sample meas ll be he average th-class varato ll be [ ] m... N N N N ( ) g N ( ) ( ) ( ) ( ) ( ) Σ g g g N N N N N N N ~ ~ b b ~

35 LDA Dervatos (3/4) [ ] If the trasform... s appled mlarl, the average betee-class varato ll be ~ b b r to fd optmal such that the follog obectve fucto s mamzed ~ b b J ( ) ~ A closed-form soluto: the colum vectors of a optmal matr are the geeralzed egevectors correspodg to the largest egevalues ' s hat s, are the egevectors correspodg to the largest egevalues of m b b b λ λ tatstcs-35

36 tatstcs-36 LDA Dervatos (4/4) Proof: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) b b b b b b b b b b b b J λ λ λ λ λ λ λ : soluto optmal form has qradtc he : that fd at to e of for each colum vector Or equvaletl, Q Q, arg ma ~ ~ arg ma arg ma ˆ ˆ ˆ ˆ G G F F G G F ( ) C C C + d d ) ( determat

37 LDA Eamples: Feature rasformato (/) Eample: Epermets o peech gal Processg Covarace Matr of the 8-Mel-flter-bak vectors Covarace Matr of the 8-cepstral vectors Calculated usg Year-99 s 547 fles Calculated usg Year-99 s 547 fles Σ N ( )( ) Σ N ( )( ) After Cose rasform tatstcs-37

38 LDA Eamples: Feature rasformato (/) Eample: Epermets o peech gal Processg (cot.) Covarace Matr of the 8-PCA-cepstral vectors Covarace Matr of the 8-LDA-cepstral vectors Calculated usg Year-99 s 547 fles Calculated usg Year-99 s 547 fles After PCA rasform MFCC LDA- LDA- Character Error Rate C G After LDA rasform tatstcs-38

39 PCA vs. LDA (/) PCA LDA tatstcs-39

40 Heteroscedastc Dscrmat Aalss (HDA) HDA: Heteroscedastc Dscrmat Aalss he dfferece the proectos obtaed from LDA ad HDA for -class case Clearl, the HDA provdes a much loer classfcato error tha LDA theoretcall Hoever, most statstcal modelg assume data samples are Gaussa ad have dagoal covarace matrces tatstcs-40

41 H: Feature rasformato (/4) Gve to data sets (MaleData, Female Data) hch each ro s a sample th 39 features, please perform the follog operatos:. Merge these to data sets ad fd/plot the covarace matr for the merged data set.. Appl PCA ad LDA trasformatos to the merged data set, respectvel. Also, fd/plot the covarace matrces for trasformatos, respectvel. Descrbe the pheomea that ou have observed. 3. Use the frst to prcpal compoets of PCA as ell as the frst to egevectors of LDA to represet the merged data set. electvel plot portos of samples from MaleData ad FemaleData, respectvel. Descrbe the pheomea that ou have observed. tatstcs-4

42 H: Feature rasformato (/4) tatstcs-4

43 H: Feature rasformato (3/4) Plot Covarace Matr CoVar[ ; ; ; ]; colormap('default'); surf(covar); Ege Decomposto %LDA IIv(I); AII*BE; %PCA ABE+I; % h?? ( Prove t! ) BE[ ]; I[ ]; ; ; ; ; ; ; [V,D]eg(A); [V,D]egs(A,3); fdfope('bass',''); for :3 % feature vector legth for :3 % bass umber fprtf(fd,'%0.0f ',V(,)); ed fprtf(fd,'\'); ed fclose(fd); tatstcs-43

44 Eamples H: Feature rasformato (4/4) 筆原始資料經 PCA 轉換後分布圖 筆原始資料經 LDA 轉換後分布圖 feature feature feature feature tatstcs-44

45 Latet ematc Aalss (LA) (/7) Also called Latet ematc Ideg (LI), Latet ematc Mappg (LM) A techque orgall proposed for Iformato Retreval (IR), hch proects queres ad docs to a space th latet sematc dmesos Co-occurrg terms are proected oto the same dmesos I the latet sematc space (th feer dmesos), a quer ad doc ca have hgh cose smlart eve f the do ot share a terms Dmesos of the reduced space correspod to the aes of greatest varato Closel related to Prcpal Compoet Aalss (PCA) tatstcs-45

46 LA (/7) Dmeso Reducto ad Feature Etracto PCA X φ X feature space Y k k φ Xˆ VD ( LA) φ φ k orthoormal bass φ m φ k Xˆ X for a gve k Σ V latet sematc k space A U A m k mr latet sematc space kk rr r r m(m,) m A A F for a gve m k tatstcs-46

47 LA (3/7) gular Value Decomposto (VD) used for the orddocumet matr A least-squares method for dmeso reducto Proecto of a Vector : ϕ φ ϕ ϕ cos θ ϕ φ, here φ tatstcs-47

48 LA (4/7) Frameorks to crcumvet vocabular msmatch Doc terms structure model Quer doc epaso lteral term matchg quer epaso terms latet sematc structure retreval structure model tatstcs-48

49 LA (5/7) tatstcs-49

50 LA (6/7) Quer: huma computer teracto A OOV ord tatstcs-50

51 m m LA (7/7) gular Value Decomposto (VD) d d d d d Σ r V rr A U mr m d m mr d d Σ k V kk A U mk m m mk d d rm r m(m,) km d r d k Ro A R Col A R m Both U ad V has orthoormal colum vectors U UI rxr V VI rxr K r A F A F m a F Docs ad queres are represeted a k-dmesoal space. he quattes of the aes ca be properl eghted accordg to the assocated dagoal values of Σ k A tatstcs-5

52 LA Dervatos (/7) gular Value Decomposto (VD) A A s smmetrc matr All egevalues λ are oegatve real umbers λ λ... Defe sgular values: λ All egevectors v are orthoormal ( R ) v v ( V V I ) [ v v v ] V... As the square roots of the egevalues of A A As the legths of the vectors Av, Av,., Av 0 ( λ λ,..., ) Σ dag, λ sgma σ λ,,..., For λ 0,, r, {Av, Av,., Av r } s a orthogoal bass of Col A σ σ... Av Av Av Av v A σ Av v λ v λ tatstcs-5

53 LA Dervatos (/7) {Av, Av,., Av r } s a orthogoal bass of Col A u: also a orthoormal matr (mr) Av ( Av ) Av v A Av λ v v 0 Av uppose that A (or A A) has rak r Defe a orthoormal bass {u, u,., u r } for Col A Eted to a orthoormal bass {u, u,, u m } of R m λ λ... λ r > 0, λ r + λ r +... λ u Av Av σ u Av σ [ u u... u ] Σ A[ v v v ] r r [ u u u... u ] Σ A[ v v... v v ] UΣ AV A UΣV r m UΣV Σ m Σr 0 0( ) ( ) ( ) m r r 0 m r r r r AVV I r ( r )? Av A A F 0 V : a orthoormal matr (r) Ko advace m a F σ + σ + + σ?... r tatstcs-53

54 LA Dervatos (3/7) v spas the ro space of A u spas the ro space of A A m V R R m U V U U V AX 0 UΣV U ( U U ) AV V A Σ V Σ 0 U Σ 0 V 0 V AV tatstcs-54

55 Addtoal Eplaatos LA Dervatos (4/7) Each ro of U s related to the proecto of a correspodg ro of A oto the bass formed b colums of V A UΣV AV UΣV V UΣ UΣ AV the -th etr of a ro of U s related to the proecto of a correspodg ro of A oto the -th colum of V Each ro of V s related to the proecto of a correspodg ro of A oto the bass formed b U A UΣV A U VΣ A ( UΣV ) U U VΣU VΣ the -th etr of a ro of s related to the proecto of a correspodg ro of A V oto the -th colum of U U tatstcs-55

56 LA Dervatos (5/7) Fudametal comparsos based o VD he orgal ord-documet matr (A) m d d A d m compare to terms dot product of to ros of A or a etr AA compare to docs dot product of to colums of A or a etr A A compare a term ad a doc each dvdual etr of A U U mk Σ Σ k V V k he e ord-documet matr (A ) compare to terms dot product of to ros of U Σ Irr compare to docs d dot product of to ros of V Σ s d k compare a quer ord ad a doc each dvdual etr of A A A (U Σ V ) (U Σ V ) U Σ V V Σ U (U Σ )(U Σ ) For stretchg or shrkg A A (U Σ V ) (U Σ V ) V Σ U U Σ V (V Σ )(V Σ ) tatstcs-56

57 LA Dervatos (6/7) Fold-: fd represetatos for pesudo-docs q For obects (e queres or docs) that dd ot appear the orgal aalss Fold- a e m quer (or doc) vector ( ) q U ˆ k m m k Σ k k q Just lke a ro of V Quer represeted b the eghted sum of t costtuet term vectors he separate dmesos are dfferetall eghted Cose measure betee the quer ad doc vectors the latet sematc space sm ( ) qˆ, dˆ coe ( qˆ Σ, dˆ Σ ) qˆ Σ qˆ Σ dˆ dˆ Σ ro vectors tatstcs-57

58 LA Dervatos (7/7) Fold- a e X term vector ˆ k t V k Σ k k t tatstcs-58

59 Epermetal results LA Eample HMM s cosstetl better tha VM at all recall levels LA s better tha VM at hgher recall levels Recall-Precso curve at stadard recall levels evaluated o D-3 D collecto. (Usg ord-level deg terms) tatstcs-59

60 Advatages LA: Coclusos A clea formal frameork ad a clearl defed optmzato crtero (least-squares) Coceptual smplct ad clart Hadle som problems ( heterogeeous vocabular ) Good results for hgh-recall search ake term co-occurrece to accout Dsadvatages Hgh computatoal complet LA offers ol a partal soluto to polsem E.g. bak, bass, tatstcs-60

61 LA oolkt: VDLIBC (/5) Doug Rohde's VD C Lbrar verso.3 s based o the VDPACKC lbrar Doload t at tatstcs-6

62 LA oolkt: VDLIBC (/5) Gve a sparse term-doc matr E.g., 4 terms ad 3 docs Doc erm Each etr s eghted b FIDF score Ro #em Col. Nozero # Doc etres ozero etres at Col 0 Col 0, Ro 0 Col 0, Ro ozero etr at Col Col, Ro 3 ozero etr at Col Col, Ro 0 Col, Ro Col, Ro Perform VD to obta correspodg term ad doc vectors represeted the latet sematc space Evaluate the formato retreval capablt of the LA approach b usg varg szes (e.g., 00, 00,..,600 etc.) of LA dmesoalt tatstcs-6

63 LA oolkt: VDLIBC (3/5) Eample: term-docmatr Ideg Nozero erm o. Doc o. etres VD commad (IR_svd.bat) svd -r st -o LA00 -d 00 erm-doc-matr sparse matr put pref of output fles No. of reserved egevectors output ame of sparse matr put LA00-Ut LA00- LA00-Vt tatstcs-63

64 LA00-Ut LA oolkt: VDLIBC (4/5) ords LA00- ord vector (u ): 00 LA00-Vt 65 docs egevalues doc vector (v ): 00 tatstcs-64

65 LA oolkt: VDLIBC (5/5) Fold- a e m quer vector ( ) q U ˆ k m m k Σ k k q Just lke a ro of V FIDF eghted beforehad Quer represeted b the eghted sum of t costtuet term vectors he separate dmesos are dfferetall eghted Cose measure betee the quer ad doc vectors the latet sematc space sm ( ) qˆ, dˆ coe ( qˆ Σ, dˆ Σ ) qˆ Σ qˆ Σ dˆ dˆ Σ tatstcs-65

Discriminative Feature Extraction and Dimension Reduction

Discriminative Feature Extraction and Dimension Reduction Dscrmatve Feature Etracto ad Dmeso Reducto - PCA, LDA ad LA Berl Che Graduate Isttute of Computer cece & Iformato Egeerg Natoal aa Normal Uverst Refereces:. Itroducto to Mache Learg, Chapter 6. Data Mg:

More information

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning Prcpal Compoets Aalss A Method of Self Orgazed Learg Prcpal Compoets Aalss Stadard techque for data reducto statstcal patter matchg ad sgal processg Usupervsed learg: lear from examples wthout a teacher

More information

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier Aoucemets Recogto II H3 exteded to toght H4 to be aouced today. Due Frday 2/8. Note wll take a whle to ru some thgs. Fal Exam: hursday 2/4 at 7pm-0pm CSE252A Lecture 7 Example: Face Detecto Evaluatg a

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 750 Mache Learg Lecture 3 Dmesoalty reducto Feature selecto Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 750 Mache Learg Dmesoalty reducto. Motvato. Classfcato problem eample: We have a put data

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

LECTURE 9: Principal Components Analysis

LECTURE 9: Principal Components Analysis LECURE 9: Prcpal Compoets Aalss he curse of dmesoalt Dmesoalt reducto Feature selecto vs. feature etracto Sal represetato vs. sal classfcato Prcpal Compoets Aalss Itroducto to Patter Aalss Rcardo Guterrez-Osua

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

CSE 5526: Introduction to Neural Networks Linear Regression

CSE 5526: Introduction to Neural Networks Linear Regression CSE 556: Itroducto to Neural Netorks Lear Regresso Part II 1 Problem statemet Part II Problem statemet Part II 3 Lear regresso th oe varable Gve a set of N pars of data , appromate d by a lear fucto

More information

An Improved Support Vector Machine Using Class-Median Vectors *

An Improved Support Vector Machine Using Class-Median Vectors * A Improved Support Vector Mache Usg Class-Meda Vectors Zhezhe Kou, Jahua Xu, Xuegog Zhag ad Lag J State Ke Laborator of Itellget Techolog ad Sstems Departmet of Automato, Tsghua Uverst, Bejg 100084, P.R.C.

More information

Chapter Two. An Introduction to Regression ( )

Chapter Two. An Introduction to Regression ( ) ubject: A Itroducto to Regresso Frst tage Chapter Two A Itroducto to Regresso (018-019) 1 pg. ubject: A Itroducto to Regresso Frst tage A Itroducto to Regresso Regresso aalss s a statstcal tool for the

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) BBM406 - Itroduc0o to ML Sprg 204 Prcpal Compoet Aalyss PCA Aykut Erdem Dept. of Computer Egeerg HaceDepe Uversty Today Mo0va0o PCA algorthms Applca0os PCA shortcomgs Kerel PCA Sldes adopted from Barabás

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Simple Linear Regression and Correlation.

Simple Linear Regression and Correlation. Smple Lear Regresso ad Correlato. Correspods to Chapter 0 Tamhae ad Dulop Sldes prepared b Elzabeth Newto (MIT) wth some sldes b Jacquele Telford (Johs Hopks Uverst) Smple lear regresso aalss estmates

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

A conic cutting surface method for linear-quadraticsemidefinite

A conic cutting surface method for linear-quadraticsemidefinite A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008 Outle: Secod-order coe: defto

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uverst Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Radial Basis Function Networks

Radial Basis Function Networks Radal Bass Fucto Netorks Radal Bass Fucto Netorks A specal types of ANN that have three layers Iput layer Hdde layer Output layer Mappg from put to hdde layer s olear Mappg from hdde to output layer s

More information

Multiscale principal component analysis

Multiscale principal component analysis Multscale prcpal compoet aalyss A A Aduo ad A N Gorba Mathematcs Departmet Uversty of ecester ecestershre E 7RH UK E-mal: aaa78@leacu ad ag53@leacu Abstract Prcpal compoet aalyss PCA s a mportat tool eplorg

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

Compressive sensing sparse sampling method based on principal component analysis

Compressive sensing sparse sampling method based on principal component analysis he 9th Iteratoal Symposum o ND Aerospace Compressve sesg sparse samplg method based o prcpal compoet aalyss More fo about ths artcle: http://www.dt.et/?d= Yaje SUN,,3, Fehog GU 3, Sa JI,,3, Lhua WANG 4

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares.

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares. Lecture 3 Optmzato Trt 04 P.H.S.Torr Least Squares Fttg Classc least squares Total least squares Robust Estmato Fttg: Cocepts ad recpes Least squares le fttg Data:,,,, Le equato: = m + b Fd m, b to mmze

More information

Eigen analysis The correlation matrix plays a large role in statistical characterization and processing. It was previously shown that R is Hermetian

Eigen analysis The correlation matrix plays a large role in statistical characterization and processing. It was previously shown that R is Hermetian ge aalss he orrelato matr plas a large role statstal haraterzato ad proessg It as preosl sho that s ermeta We ll o frther aalze the orrelato matr throgh ege aalss - egeales ad etors - matr dagoalzato -

More information

Matrix Algebra Tutorial With Examples in Matlab

Matrix Algebra Tutorial With Examples in Matlab Matr Algebra Tutoral Wth Eamples Matlab by Klaus Moelter Departmet of Agrcultural ad Appled Ecoomcs Vrga Tech emal: moelter@vt.edu web: http://faculty.ageco.vt.edu/moelter/ Specfcally desged as a / day

More information

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING CONVEX OPIMIZAION AND INERIOR POIN MEHODS FINAL PROJEC / INEGER PROGRAMMING AND SEMIDEFINE PROGRAMMING b Luca Buch ad Natala Vktorova CONENS:.Itroducto.Formulato.Applcato to Kapsack Problem 4.Cuttg Plaes

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Lecture 12: Multilayer perceptrons II

Lecture 12: Multilayer perceptrons II Lecture : Multlayer perceptros II Bayes dscrmats ad MLPs he role of hdde uts A eample Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty Bayes dscrmats ad MLPs ( As we have see throuhout

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Some Notes on the Probability Space of Statistical Surveys

Some Notes on the Probability Space of Statistical Surveys Metodološk zvezk, Vol. 7, No., 200, 7-2 ome Notes o the Probablty pace of tatstcal urveys George Petrakos Abstract Ths paper troduces a formal presetato of samplg process usg prcples ad cocepts from Probablty

More information

4. Standard Regression Model and Spatial Dependence Tests

4. Standard Regression Model and Spatial Dependence Tests 4. Stadard Regresso Model ad Spatal Depedece Tests Stadard regresso aalss fals the presece of spatal effects. I case of spatal depedeces ad/or spatal heterogeet a stadard regresso model wll be msspecfed.

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Line Fitting and Regression

Line Fitting and Regression Marquette Uverst MSCS6 Le Fttg ad Regresso Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 8 b Marquette Uverst Least Squares Regresso MSCS6 For LSR we have pots

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

FACE RECOGNITION BASED ON OPTIMAL KERNEL MINIMAX PROBABILITY MACHINE

FACE RECOGNITION BASED ON OPTIMAL KERNEL MINIMAX PROBABILITY MACHINE Joural of heoretcal ad Appled Iformato echolog 8 th Feruar 03. Vol. 48 No.3 005-03 JAI & LLS. All rghts reserved. ISSN: 99-8645.jatt.org E-ISSN: 87-395 FACE RECOGNIION BASED ON OPIMAL KERNEL MINIMAX PROBABILIY

More information

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S.

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S. Bg Data Aaltcs Data Fttg ad Samplg Ackowledgemet: Notes b Profs. R. Szelsk, S. Setz, S. Lazebk, K. Chaturved, ad S. Shah Fttg: Cocepts ad recpes A bag of techques If we kow whch pots belog to the le, how

More information

Lecture 1: Introduction to Regression

Lecture 1: Introduction to Regression Lecture : Itroducto to Regresso A Eample: Eplag State Homcde Rates What kds of varables mght we use to epla/predct state homcde rates? Let s cosder just oe predctor for ow: povert Igore omtted varables,

More information

A Supervised Combined Feature Extraction Method for Recognition

A Supervised Combined Feature Extraction Method for Recognition A Supervsed Combed Feature Etracto Method for Recogto gka Su, Sogca Che, Jgu Yag ad Pefe Sh Abstract Multmodal recogto s a emergg techque to overcome the o-robustess of the umodal recogto real applcatos.

More information

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Mache Learg CSE6740/CS764/ISYE6740, Fall 0 Itroducto to Regresso Le Sog Lecture 4, August 30, 0 Based o sldes from Erc g, CMU Readg: Chap. 3, CB Mache learg for apartmet hutg Suppose ou are to move to

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecto ad Estmato heory Joseph A. O Sullva Samuel C. Sachs Professor Electroc Systems ad Sgals Research Laboratory Electrcal ad Systems Egeerg Washgto Uversty Urbauer Hall 34-935-473 (Lyda aswers

More information

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer Baesa arameter Estmato Suppose we have some dea of the rage where parameters θ should be Should t we formalze such pror owledge hopes that t wll

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Overcoming Limitations of Sampling for Aggregation Queries

Overcoming Limitations of Sampling for Aggregation Queries CIS 6930 Approxmate Quer Processg Paper Presetato Sprg 2004 - Istructor: Dr Al Dobra Overcomg Lmtatos of Samplg for Aggregato Queres Authors: Surajt Chaudhur, Gautam Das, Maur Datar, Rajeev Motwa, ad Vvek

More information

A Novel Method of Combined Feature Extraction for Recognition

A Novel Method of Combined Feature Extraction for Recognition 008 Eghth IEEE Iteratoal Coferece o Data Mg A Novel Method of Combed Feature Etracto for Recogto gka Su, Sogca Che,3, Jgu Yag, Pegfe Sh 4 School of Computer Scece ad echolog, Nag Uverst of Scece ad echolog,

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation? Ca we tae the Mstcsm Out of the Pearso Coeffcet of Lear Correlato? Itroducto As the ttle of ths tutoral dcates, our purpose s to egeder a clear uderstadg of the Pearso coeffcet of lear correlato studets

More information

15-381: Artificial Intelligence. Regression and neural networks (NN)

15-381: Artificial Intelligence. Regression and neural networks (NN) 5-38: Artfcal Itellece Reresso ad eural etorks NN) Mmck the bra I the earl das of AI there as a lot of terest develop models that ca mmc huma thk. Whle o oe ke eactl ho the bra orks ad, eve thouh there

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 675 Itroucto to ache Learg Lecture Dmesoalty reucto Feature selecto los Hauskrecht mlos@cs.ptt.eu 539 Seott Square Dmesoalty reucto. otvato. L methos are sestve to the mesoalty of ata Questo: Is there

More information

Tema 5: Aprendizaje NO Supervisado: CLUSTERING Unsupervised Learning: CLUSTERING. Febrero-Mayo 2005

Tema 5: Aprendizaje NO Supervisado: CLUSTERING Unsupervised Learning: CLUSTERING. Febrero-Mayo 2005 Tema 5: Apredzae NO Supervsado: CLUSTERING Usupervsed Learg: CLUSTERING Febrero-Mayo 2005 SUPERVISED METHODS: LABELED Data Base Labeled Data Base Dvded to Tra ad Test Choose Algorthm: MAP, ML, K-Nearest

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

A handwritten signature recognition system based on LSVM. Chen jie ping

A handwritten signature recognition system based on LSVM. Chen jie ping Iteratoal Coferece o Computatoal Scece ad Egeerg (ICCSE 05) A hadrtte sgature recogto sstem based o LSVM Che je pg Guagx Vocatoal ad echcal College, departmet of computer ad electroc formato egeerg, ag,

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Dimensionality Reduction

Dimensionality Reduction Dmesoalty Reducto Sav Kumar, Google Research, NY EECS-6898, Columba Uversty - Fall, 010 Sav Kumar 11/16/010 EECS6898 Large Scale Mache Learg 1 Curse of Dmesoalty May learg techques scale poorly wth data

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials IOSR Joural of Mathematcs (IOSR-JM) e-issn: 78-78, p-issn: 19-76X. Volume 1, Issue Ver. II (Jul. - Aug.016), PP -0 www.osrjourals.org Bvarate Veta-Fboacc ad Bvarate Veta-Lucas Polomals E. Gokce KOCER 1

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Mache Learg Problem set Due Frday, September 9, rectato Please address all questos ad commets about ths problem set to 6.867-staff@a.mt.edu. You do ot eed to use MATLAB for ths problem set though

More information

Classification : Logistic regression. Generative classification model.

Classification : Logistic regression. Generative classification model. CS 75 Mache Lear Lecture 8 Classfcato : Lostc reresso. Geeratve classfcato model. Mlos Hausrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Lear Bar classfcato o classes Y {} Our oal s to lear to classf

More information

Algebraic-Geometric and Probabilistic Approaches for Clustering and Dimension Reduction of Mixtures of Principle Component Subspaces

Algebraic-Geometric and Probabilistic Approaches for Clustering and Dimension Reduction of Mixtures of Principle Component Subspaces Algebrac-Geometrc ad Probablstc Approaches for Clusterg ad Dmeso Reducto of Mxtures of Prcple Compoet Subspaces ECE842 Course Project Report Chagfag Zhu Dec. 4, 2004 Algebrac-Geometrc ad Probablstc Approach

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis *

Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis * JOURNAL OF INFORMAION SCIENCE AND ENGINEERING XX, XXX-XXX (20) Facal Epresso Recogto usg Spectral Supervsed Caocal Correlato Aalss * SONG GUO, QIUQI RUAN, ZHAN WANG AND SHUAI LIU Isttute of Iformato Scece

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

to the estimation of total sensitivity indices

to the estimation of total sensitivity indices Applcato of the cotrol o varate ate techque to the estmato of total sestvty dces S KUCHERENKO B DELPUECH Imperal College Lodo (UK) skuchereko@mperalacuk B IOOSS Electrcté de Frace (Frace) S TARANTOLA Jot

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Linear regression (cont.) Linear methods for classification

Linear regression (cont.) Linear methods for classification CS 75 Mache Lear Lecture 7 Lear reresso cot. Lear methods for classfcato Mlos Hausrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Lear Coeffcet shrae he least squares estmates ofte have lo bas but hh

More information