Applications of on-line prediction. in telecommunication problems

Size: px
Start display at page:

Download "Applications of on-line prediction. in telecommunication problems"

Transcription

1 Applications of on-line prediction in telecommunication problems Gábor Lugosi Pompeu Fabra University, Barcelona based on joint work with András György and Tamás Linder 1

2 Outline On-line prediction; Some algorithmic issues; An application to lossy data compression without delay; An application to a routing problem. 2

3 Randomized prediction A game between forecaster and environment. At each round t, the forecaster chooses an action I t {1,..., N}; the environment chooses an action y t Y; the forecaster suffers loss l(i t, y t ) [0, 1]. The goal is to minimize the cumulative excess loss ( n ) 1 n l(i t, y t ) min l(i, y t ) n i N The forecaster may randomize. At time t chooses a probability distribution p t = (p 1,t,..., p N,t ) and plays action i with probability p i,t. Actions are often called experts.. 3

4 Randomized prediction This and related models have been studied in game theory: playing repeated games; information theory: gambling and data compression; statistics: sequential decisions; statistical learning theory: on-line learning; The simplest model assumes that after each round, the losses l(i, y t ) (i = 1,..., N) are revealed (full information). In this model Hannan (1957) showed that the forecaster has a strategy such that ( n ) 1 n l(i t, y t ) min l(i, y t ) 0 a.s. n i N 4

5 Hannan consistency: basic ideas Obviously, the forecaster must randomize. l(p t, y t ) = N p i,t l(i, y t ) = E t l(i t, y t ) i=1 denotes the expected loss of the forecaster. By martingale convergence, ( 1 n l(i t, y t ) n so it suffices to study ( 1 n n ) n l(p t, y t ) = O P (n 1/2 ) l(p t, y t ) min i N ) n l(i, y t ) 5

6 Weighted average prediction Idea: assign a higher probability to better-performing actions. A popular choice is ( exp η ) t s=1 l(i, y s) p i,t = N k=1 ( η exp ) i = 1,..., N. t s=1 l(k, y s) where η > 0. Then, with η = 8 ln N/n, ( n ) 1 n l(p n t, y t ) min l(i, y t ) i N = ln N nη + η 8 ln N 2n If N is large, the algorithm is not feasible. There is hope for structured classes of experts. 6

7 The shortest path problem v PSfrag replacements u v u Given a dag (V, E) and vertices u and v, a path from u to v is identified by a binary vector i {0, 1} E. For each t = 1,..., n, the forecaster chooses a path I t. A loss l e,t [0, 1] is assigned to each e E. The loss of a path i is the sum of losses over the edges l(i, Y t ) = i l t. 7

8 Efficient implementation The number of paths (experts) is exponentially large. However, the weighted average forecaster can be computed efficiently. For each path i, we write p i,t = P t [I t = i] = K i k=1 It can be seen that, if (ŵ, w) E, P t [v It,k = v ik v It,k 1 = v i,k 1,..., v It,0 = u]. P t [v It,k = w v It,k 1 = ŵ,..., v It,0 = u] = e ηl ( bw,w),t 1 G t 1(w) G t 1 (ŵ) where, for any vertex w, G t (w) = i P w e η P e i L e,t. 8

9 The algorithm computes the weighted average forecaster over all paths such that it requires O( E ) operations at each time. The expected regret is bounded by n l(p t, Y t ) min i n n ln M l(i, Y t ) K 2 where M is the number of paths from u to v and K is the length of the longest path. 9

10 Lossy source coding problem Asymptotically optimal coding of a source sequence with zero delay (sequential encoding and decoding); no probabilistic assumptions on the source; asymptotically the same performance as the best scalar quantizer matched to the entire source sequence (for any sequence). Goals: solve the above problem with low complexity; determine the achievable rate of convergence (also for probabilistic sources) 10

11 Zero-Delay Sequential Source Coding x i encoder y i {1,..., M} decoder ˆx i Ui Source sequence: x i [0, 1], i = 1, 2,...; rate R = log M code: Encoder: f i : [0, 1] i {1, 2..., M}; Decoder: g i : {1, 2,..., M} i [0, 1]; y i = f i (x i ) = f i (x i, U i ) ˆx i = g i (y i ) Randomizing sequence: U i, i.i.d. uniform on [0, 1]; 11

12 Performance Expected normalized cumulative squared distortion: [ ] 1 n E (x i ˆx i ) 2 n i=1 Goal: Perform (essentially) as well as the best scalar quantizer matched to the entire sequence x n = (x 1,..., x n ). Expected distortion redundancy with respect to the class of scalar quantizers: ( [ ] ) 1 n ρ n = sup E (x i ˆx i ) 2 1 n min (x i Q(x i )) 2 x n n Q Q n i=1 where Q is the set of M-level scalar quantizers. i=1 12

13 A scheme based on on-line prediction n {}}{ }{{} (k + 1)st block l {}}{}{{}}{{} 1 R log ( M) K transmitting Q k (x i ) describing Q k the source sequence is divided into blocks of length l at the end of the kth block a quantizer Q k is chosen randomly from a given family of ( K M) quantizers in the first 1 R log ( K M) time instants of the (k + 1)st block the index of Q k is transmitted in the rest of the block, at time instants i, Q k (x i ) is transmitted 13

14 Choosing Q k Let Q K (K n 1/3 for minimum distortion) be the set of M-level nearest neighbor scalar quantizers with code points in the set C (K) = {1/(2K), 3/(2K),..., (2K 1)/(2K)}. Q k is chosen randomly from Q K according to the probabilities p k (Q) = P{Q k = Q} = e η P kl (x t Q(x t )) 2 b Q QK e η P kl (x t bq(x t )) 2 l log K log K Performance: ρ n C 1 + C 2 n l where C 1, C 2 > 0 are constants depending only on M. + 1 K Straightforward implementation: need to compute the cumulative distortion for all Q Q K, i.e., for about K M n M/3 quantizers. 14

15 Efficient implementation The shortest path algorithm can be used to construct a zero-delay coding scheme of rate R = log M such that for any sequence x n [0, 1] n ρ n C 1 l log K n + C 2 log K l + 3 K where C 1, C 2 > 0 are constants depending only on M, with O(MK 2 n/l) computational complexity; and O(K 2 ) memory requirement. Linear computational complexity O(M) per time instant and O(n 1/2 ) memory requirement with O(n 1/4 log n) distortion redundancy 15

16 Tracking the best expert (Herbster and Warmuth, 1998). Given any sequence i 1,..., i n of actions from {1,..., N}, define size(i 1,..., i n ) = n t=2 I i t 1 i t. The tracking regret is ( n ) n max l(p t, Y t ) l(i t, Y t ) over all sequences with size(i 1,..., i n ) m. ( n 1 k The number of meta experts is m k=0 weighted average would give a regret bounded by n 2 ( (m + 1) ln N + m ln ) N(N 1) k. Simple ) e(n 1) m 16

17 Fixed share forecaster Parameters: Real numbers η > 0 and 0 α = m/(n 1). Initialization: w 0 = (1/N,..., 1/N). For each round t = 1, 2,... (1) draw an action I t from {1,..., N} according to the distribution p i,t = w i,t 1 N j=1 w j,t 1 i = 1,..., N (2) obtain Y t and compute v i,t = w i,t 1 e η l(i,y t) for each i = 1,..., N (3) let w i,t = α W t N + (1 α)v i,t where W t = v 1,t + + v N,t. for each i = 1,..., N 17

18 Tracking the shortest path Goal: predict as well as the best path that can change m times. m ( n 1 ) k=0 k M(M 1) k meta experts. (M is the number of paths.) The fixed share forecaster requires computation proportional to M. We need efficient computation of the fixed share algorithm. 18

19 Fixed share forecaster revisited Initialization: For t = 1, choose I 1 uniformly from the set {1,..., N}. For each round t = 2,..., n (1) Draw τ t randomly according to the distribution (1 α) t 1 Z 1,t 1 NW t 1 for t = 1 P t [τ t = t ] = where we define Z t,t 1 = N. P t [I t = i τ t = t ] = α(1 α) t t W t 1 Z t,t 1 NW t 1 for t = 2,..., t (2) Given τ t = t, choose I t randomly according to the probabilities e η P t 1 s=t l(i,y s) Z for t = 1,..., t 1 t,t 1 1 N for t = t 19

20 Tracking the shortest path The alternative fixed share algorithm can be implemented such that, at time t, computing the prediction I t requires time O(tK E + t 2 ). The expected tracking regret of the algorithm satisfies K n 2 ( (m + 1) ln M + m ln e n ) m for all sequences of paths i 1,..., i n such that size(i 1,..., i n ) m where M is the number of all paths in the graph between vertices u and v and K is the length of the longest path. 20

21 Application to zero-delay coding An efficiently computable (O(M) computations per time instant) zero-delay coding scheme can be constructed whose average distortion is at most as large as the best code that can change scalar quantizers at most m times plus a redundancy of the order of mn 1/6. 21

22 Multi-armed bandit problem (Auer, Cesa-Bianchi, Freund, and Schapire, 2002.) The forecaster only observes his/her own loss. Losses of experts have to be estimated. Let g(i, Y t ) = 1 l(i, Y t ). Gains are estimated by g(i, Y t )/p i,t if I t = i g(i, Y t ) = i = 1,..., N. 0 otherwise Note that E[ g(i, Y t ) I 1,..., I t 1 ] = g(i, Y t ), and therefore g(i, Y t ) is an unbiased estimate of g(i, Y t ). 22

23 A strategy for the multi-armed bandit problem Initialization: w i,0 = 1 and p i,1 = 1/N for i = 1,..., N. (1) Select an action I t {1,..., N} according to the probability distribution p t. (2) Calculate the estimated gains g (i, Y t ) = g(i, Y t ) + β p i,t = ( g(i, Yt ) + β ) /p i,t if I t = i β/p i,t otherwise (3) Update the weights w i,t = w i,t 1 e ηg (i,y t ) (4) Calculate the updated probability distribution w i,t p i,t+1 = (1 γ) N j=1 w j,t + γ N, i = 1,..., N. 23

24 Performance bound The regret of the algorithm satisfies, with probability 1 δ, L n min i=1,...,n L i,n 11 2 nn ln(n/δ) + ln N 2 Bound depends badly on the number of actions. Cannot be improved, in general.. 24

25 Bandit version of shortest path: a routing problem A packet is sent through a network (graph), and at each edge the transmission suffers a delay that can vary arbitrarily. We want to choose the route such that the total delay is not much larger than that of the best constant route. We only receive information about the delays of the packets sent, but don t know anything about the other edges. 25

26 The general bandit algorithm needs to be modified to exploit the special structure of the class of experts of all paths. The probability of certain paths needs to be kept large. We obtain an algorithm, computable in time quadratic in E whose regret is, with probability 1 δ, n l(i t, Y t ) min i n l(i, Y t ) nk 3 E ln(m/δ). 26

The on-line shortest path problem under partial monitoring

The on-line shortest path problem under partial monitoring The on-line shortest path problem under partial monitoring András György Machine Learning Research Group Computer and Automation Research Institute Hungarian Academy of Sciences Kende u. 11-13, Budapest,

More information

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

Prediction and Playing Games

Prediction and Playing Games Prediction and Playing Games Vineel Pratap vineel@eng.ucsd.edu February 20, 204 Chapter 7 : Prediction, Learning and Games - Cesa Binachi & Lugosi K-Person Normal Form Games Each player k (k =,..., K)

More information

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University THE BANDIT PROBLEM Play for T rounds attempting to maximize rewards THE BANDIT PROBLEM Play

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Adversarial bandits Definition: sequential game. Lower bounds on regret from the stochastic case. Exp3: exponential weights

More information

Internal Regret in On-line Portfolio Selection

Internal Regret in On-line Portfolio Selection Internal Regret in On-line Portfolio Selection Gilles Stoltz (gilles.stoltz@ens.fr) Département de Mathématiques et Applications, Ecole Normale Supérieure, 75005 Paris, France Gábor Lugosi (lugosi@upf.es)

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Efficient On-line Schemes for Encoding Individual Sequences with Side Information at the Decoder

Efficient On-line Schemes for Encoding Individual Sequences with Side Information at the Decoder Efficient On-line Schemes for Encoding Individual Sequences with Side Information at the Decoder Avraham Reani and Neri Merhav Department of Electrical Engineering Technion - Israel Institute of Technology

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

Efficient Tracking of Large Classes of Experts

Efficient Tracking of Large Classes of Experts IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012 6709 Efficient Tracking of Large Classes of Experts András György, Member, IEEE, Tamás Linder, Senior Member, IEEE, and Gábor Lugosi

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

A Second-order Bound with Excess Losses

A Second-order Bound with Excess Losses A Second-order Bound with Excess Losses Pierre Gaillard 12 Gilles Stoltz 2 Tim van Erven 3 1 EDF R&D, Clamart, France 2 GREGHEC: HEC Paris CNRS, Jouy-en-Josas, France 3 Leiden University, the Netherlands

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Multimedia Communications. Scalar Quantization

Multimedia Communications. Scalar Quantization Multimedia Communications Scalar Quantization Scalar Quantization In many lossy compression applications we want to represent source outputs using a small number of code words. Process of representing

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Nicolò Cesa-Bianchi Università degli Studi di Milano Joint work with: Noga Alon (Tel-Aviv University) Ofer Dekel (Microsoft Research) Tomer Koren (Technion and Microsoft

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Gambling in a rigged casino: The adversarial multi-armed bandit problem

Gambling in a rigged casino: The adversarial multi-armed bandit problem Gambling in a rigged casino: The adversarial multi-armed bandit problem Peter Auer Institute for Theoretical Computer Science University of Technology Graz A-8010 Graz (Austria) pauer@igi.tu-graz.ac.at

More information

Internal Regret in On-line Portfolio Selection

Internal Regret in On-line Portfolio Selection Internal Regret in On-line Portfolio Selection Gilles Stoltz gilles.stoltz@ens.fr) Département de Mathématiques et Applications, Ecole Normale Supérieure, 75005 Paris, France Gábor Lugosi lugosi@upf.es)

More information

Combinatorial Bandits

Combinatorial Bandits Combinatorial Bandits Nicolò Cesa-Bianchi Università degli Studi di Milano, Italy Gábor Lugosi 1 ICREA and Pompeu Fabra University, Spain Abstract We study sequential prediction problems in which, at each

More information

Online learning CMPUT 654. October 20, 2011

Online learning CMPUT 654. October 20, 2011 Online learning CMPUT 654 Gábor Bartók Dávid Pál Csaba Szepesvári István Szita October 20, 2011 Contents 1 Shooting Game 4 1.1 Exercises...................................... 6 2 Weighted Majority Algorithm

More information

Learning with Large Number of Experts: Component Hedge Algorithm

Learning with Large Number of Experts: Component Hedge Algorithm Learning with Large Number of Experts: Component Hedge Algorithm Giulia DeSalvo and Vitaly Kuznetsov Courant Institute March 24th, 215 1 / 3 Learning with Large Number of Experts Regret of RWM is O( T

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

Minimax Policies for Combinatorial Prediction Games

Minimax Policies for Combinatorial Prediction Games Minimax Policies for Combinatorial Prediction Games Jean-Yves Audibert Imagine, Univ. Paris Est, and Sierra, CNRS/ENS/INRIA, Paris, France audibert@imagine.enpc.fr Sébastien Bubeck Centre de Recerca Matemàtica

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Adaptive Online Prediction by Following the Perturbed Leader

Adaptive Online Prediction by Following the Perturbed Leader Journal of Machine Learning Research 6 (2005) 639 660 Submitted 10/04; Revised 3/05; Published 4/05 Adaptive Online Prediction by Following the Perturbed Leader Marcus Hutter Jan Poland IDSIA, Galleria

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

The Online Approach to Machine Learning

The Online Approach to Machine Learning The Online Approach to Machine Learning Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Approach to ML 1 / 53 Summary 1 My beautiful regret 2 A supposedly fun game I

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Toward a Classification of Finite Partial-Monitoring Games

Toward a Classification of Finite Partial-Monitoring Games Toward a Classification of Finite Partial-Monitoring Games Gábor Bartók ( *student* ), Dávid Pál, and Csaba Szepesvári Department of Computing Science, University of Alberta, Canada {bartok,dpal,szepesva}@cs.ualberta.ca

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Learning with Large Expert Spaces MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Problem Learning guarantees: R T = O( p T log N). informative even for N very large.

More information

THE WEIGHTED MAJORITY ALGORITHM

THE WEIGHTED MAJORITY ALGORITHM THE WEIGHTED MAJORITY ALGORITHM Csaba Szepesvári University of Alberta CMPUT 654 E-mail: szepesva@ualberta.ca UofA, October 3, 2006 OUTLINE 1 PREDICTION WITH EXPERT ADVICE 2 HALVING: FIND THE PERFECT EXPERT!

More information

Coding into a source: an inverse rate-distortion theorem

Coding into a source: an inverse rate-distortion theorem Coding into a source: an inverse rate-distortion theorem Anant Sahai joint work with: Mukul Agarwal Sanjoy K. Mitter Wireless Foundations Department of Electrical Engineering and Computer Sciences University

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Online Learning Repeated game: Aim: minimize ˆL n = Decision method plays a t World reveals l t L n l t (a

More information

Importance Weighting Without Importance Weights: An Efficient Algorithm for Combinatorial Semi-Bandits

Importance Weighting Without Importance Weights: An Efficient Algorithm for Combinatorial Semi-Bandits Journal of Machine Learning Research 17 (2016 1-21 Submitted 3/15; Revised 7/16; Published 8/16 Importance Weighting Without Importance Weights: An Efficient Algorithm for Combinatorial Semi-Bandits Gergely

More information

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING 5 0 DPCM (Differential Pulse Code Modulation) Making scalar quantization work for a correlated source -- a sequential approach. Consider quantizing a slowly varying source (AR, Gauss, ρ =.95, σ 2 = 3.2).

More information

Regret in Online Combinatorial Optimization

Regret in Online Combinatorial Optimization Regret in Online Combinatorial Optimization Jean-Yves Audibert Imagine, Université Paris Est, and Sierra, CNRS/ENS/INRIA audibert@imagine.enpc.fr Sébastien Bubeck Department of Operations Research and

More information

Explore no more: Improved high-probability regret bounds for non-stochastic bandits

Explore no more: Improved high-probability regret bounds for non-stochastic bandits Explore no more: Improved high-probability regret bounds for non-stochastic bandits Gergely Neu SequeL team INRIA Lille Nord Europe gergely.neu@gmail.com Abstract This work addresses the problem of regret

More information

Strategies for Prediction Under Imperfect Monitoring

Strategies for Prediction Under Imperfect Monitoring MATHEMATICS OF OPERATIONS RESEARCH Vol. 33, No. 3, August 008, pp. 53 58 issn 0364-765X eissn 56-547 08 3303 053 informs doi 0.87/moor.080.03 008 INFORMS Strategies for Prediction Under Imperfect Monitoring

More information

Online Forest Density Estimation

Online Forest Density Estimation Online Forest Density Estimation Frédéric Koriche CRIL - CNRS UMR 8188, Univ. Artois koriche@cril.fr UAI 16 1 Outline 1 Probabilistic Graphical Models 2 Online Density Estimation 3 Online Forest Density

More information

Online prediction with expert advise

Online prediction with expert advise Online prediction with expert advise Jyrki Kivinen Australian National University http://axiom.anu.edu.au/~kivinen Contents 1. Online prediction: introductory example, basic setting 2. Classification with

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Lecture 3: Lower Bounds for Bandit Algorithms

Lecture 3: Lower Bounds for Bandit Algorithms CMSC 858G: Bandits, Experts and Games 09/19/16 Lecture 3: Lower Bounds for Bandit Algorithms Instructor: Alex Slivkins Scribed by: Soham De & Karthik A Sankararaman 1 Lower Bounds In this lecture (and

More information

Time Series Prediction & Online Learning

Time Series Prediction & Online Learning Time Series Prediction & Online Learning Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values. earthquakes.

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo!

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo! Theory and Applications of A Repeated Game Playing Algorithm Rob Schapire Princeton University [currently visiting Yahoo! Research] Learning Is (Often) Just a Game some learning problems: learn from training

More information

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for MARKOV CHAINS A finite state Markov chain is a sequence S 0,S 1,... of discrete cv s from a finite alphabet S where q 0 (s) is a pmf on S 0 and for n 1, Q(s s ) = Pr(S n =s S n 1 =s ) = Pr(S n =s S n 1

More information

Online Learning with Costly Features and Labels

Online Learning with Costly Features and Labels Online Learning with Costly Features and Labels Navid Zolghadr Department of Computing Science University of Alberta zolghadr@ualberta.ca Gábor Bartók Department of Computer Science TH Zürich bartok@inf.ethz.ch

More information

Exponentiated Gradient Descent

Exponentiated Gradient Descent CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity,

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Follow-he-Perturbed Leader MEHRYAR MOHRI MOHRI@ COURAN INSIUE & GOOGLE RESEARCH. General Ideas Linear loss: decomposition as a sum along substructures. sum of edge losses in a

More information

Game-Theoretic Learning:

Game-Theoretic Learning: Game-Theoretic Learning: Regret Minimization vs. Utility Maximization Amy Greenwald with David Gondek, Amir Jafari, and Casey Marks Brown University University of Pennsylvania November 17, 2004 Background

More information

Online Learning of Non-stationary Sequences

Online Learning of Non-stationary Sequences Online Learning of Non-stationary Sequences Claire Monteleoni and Tommi Jaakkola MIT Computer Science and Artificial Intelligence Laboratory 200 Technology Square Cambridge, MA 02139 {cmontel,tommi}@ai.mit.edu

More information

Online Prediction: Bayes versus Experts

Online Prediction: Bayes versus Experts Marcus Hutter - 1 - Online Prediction Bayes versus Experts Online Prediction: Bayes versus Experts Marcus Hutter Istituto Dalle Molle di Studi sull Intelligenza Artificiale IDSIA, Galleria 2, CH-6928 Manno-Lugano,

More information

Vector Quantization. Institut Mines-Telecom. Marco Cagnazzo, MN910 Advanced Compression

Vector Quantization. Institut Mines-Telecom. Marco Cagnazzo, MN910 Advanced Compression Institut Mines-Telecom Vector Quantization Marco Cagnazzo, cagnazzo@telecom-paristech.fr MN910 Advanced Compression 2/66 19.01.18 Institut Mines-Telecom Vector Quantization Outline Gain-shape VQ 3/66 19.01.18

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Sequential prediction with coded side information under logarithmic loss

Sequential prediction with coded side information under logarithmic loss under logarithmic loss Yanina Shkel Department of Electrical Engineering Princeton University Princeton, NJ 08544, USA Maxim Raginsky Department of Electrical and Computer Engineering Coordinated Science

More information

Downloaded 11/11/14 to Redistribution subject to SIAM license or copyright; see

Downloaded 11/11/14 to Redistribution subject to SIAM license or copyright; see SIAM J. COMPUT. Vol. 32, No. 1, pp. 48 77 c 2002 Society for Industrial and Applied Mathematics THE NONSTOCHASTIC MULTIARMED BANDIT PROBLEM PETER AUER, NICOLÒ CESA-BIANCHI, YOAV FREUND, AND ROBERT E. SCHAPIRE

More information

Online Prediction Peter Bartlett

Online Prediction Peter Bartlett Online Prediction Peter Bartlett Statistics and EECS UC Berkeley and Mathematical Sciences Queensland University of Technology Online Prediction Repeated game: Cumulative loss: ˆL n = Decision method plays

More information

Minimax strategy for prediction with expert advice under stochastic assumptions

Minimax strategy for prediction with expert advice under stochastic assumptions Minimax strategy for prediction ith expert advice under stochastic assumptions Wojciech Kotłosi Poznań University of Technology, Poland otlosi@cs.put.poznan.pl Abstract We consider the setting of prediction

More information

Optimality of Walrand-Varaiya Type Policies and. Approximation Results for Zero-Delay Coding of. Markov Sources. Richard G. Wood

Optimality of Walrand-Varaiya Type Policies and. Approximation Results for Zero-Delay Coding of. Markov Sources. Richard G. Wood Optimality of Walrand-Varaiya Type Policies and Approximation Results for Zero-Delay Coding of Markov Sources by Richard G. Wood A thesis submitted to the Department of Mathematics & Statistics in conformity

More information

Regret to the Best vs. Regret to the Average

Regret to the Best vs. Regret to the Average Regret to the Best vs. Regret to the Average Eyal Even-Dar 1, Michael Kearns 1, Yishay Mansour 2, Jennifer Wortman 1 1 Department of Computer and Information Science, University of Pennsylvania 2 School

More information

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting On Minimaxity of Follow the Leader Strategy in the Stochastic Setting Wojciech Kot lowsi Poznań University of Technology, Poland wotlowsi@cs.put.poznan.pl Abstract. We consider the setting of prediction

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Online Learning for Time Series Prediction

Online Learning for Time Series Prediction Online Learning for Time Series Prediction Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values.

More information

arxiv: v3 [cs.lg] 30 Jun 2012

arxiv: v3 [cs.lg] 30 Jun 2012 arxiv:05874v3 [cslg] 30 Jun 0 Orly Avner Shie Mannor Department of Electrical Engineering, Technion Ohad Shamir Microsoft Research New England Abstract We consider a multi-armed bandit problem where the

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

Online learning with feedback graphs and switching costs

Online learning with feedback graphs and switching costs Online learning with feedback graphs and switching costs A Proof of Theorem Proof. Without loss of generality let the independent sequence set I(G :T ) formed of actions (or arms ) from to. Given the sequence

More information

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System Ashutosh Nayyar, Student

More information

Online combinatorial optimization with stochastic decision sets and adversarial losses

Online combinatorial optimization with stochastic decision sets and adversarial losses Online combinatorial optimization with stochastic decision sets and adversarial losses Gergely Neu Michal Valko SequeL team, INRIA Lille Nord urope, France {gergely.neu,michal.valko}@inria.fr Abstract

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

Efficient learning by implicit exploration in bandit problems with side observations

Efficient learning by implicit exploration in bandit problems with side observations Efficient learning by implicit exploration in bandit problems with side observations omáš Kocák Gergely Neu Michal Valko Rémi Munos SequeL team, INRIA Lille Nord Europe, France {tomas.kocak,gergely.neu,michal.valko,remi.munos}@inria.fr

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm he Algorithmic Foundations of Adaptive Data Analysis November, 207 Lecture 5-6 Lecturer: Aaron Roth Scribe: Aaron Roth he Multiplicative Weights Algorithm In this lecture, we define and analyze a classic,

More information

Digital communication system. Shannon s separation principle

Digital communication system. Shannon s separation principle Digital communication system Representation of the source signal by a stream of (binary) symbols Adaptation to the properties of the transmission channel information source source coder channel coder modulation

More information

Piecewise-stationary Bandit Problems with Side Observations

Piecewise-stationary Bandit Problems with Side Observations Jia Yuan Yu jia.yu@mcgill.ca Department Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada. Shie Mannor shie.mannor@mcgill.ca; shie@ee.technion.ac.il Department Electrical

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Notes from Week 8: Multi-Armed Bandit Problems

Notes from Week 8: Multi-Armed Bandit Problems CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 8: Multi-Armed Bandit Problems Instructor: Robert Kleinberg 2-6 Mar 2007 The multi-armed bandit problem The multi-armed bandit

More information

Defensive forecasting for optimal prediction with expert advice

Defensive forecasting for optimal prediction with expert advice Defensive forecasting for optimal prediction with expert advice Vladimir Vovk $25 Peter Paul $0 $50 Peter $0 Paul $100 The Game-Theoretic Probability and Finance Project Working Paper #20 August 11, 2007

More information

Fundamental rate delay tradeoffs in multipath routed and network coded networks

Fundamental rate delay tradeoffs in multipath routed and network coded networks Fundamental rate delay tradeoffs in multipath routed and network coded networks John Walsh and Steven Weber Drexel University, Dept of ECE Philadelphia, PA 94 {jwalsh,sweber}@ecedrexeledu IP networks subject

More information

Introducing strategic measure actions in multi-armed bandits

Introducing strategic measure actions in multi-armed bandits 213 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Workshop on Cognitive Radio Medium Access Control and Network Solutions Introducing strategic measure actions

More information