Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Size: px
Start display at page:

Download "Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett"

Transcription

1 Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding s inequality for sub-gaussian random variables. Upper confidence bound (UCB) algorithms. Compare upper bounds on means (based on sample averages and concentration inequalities) Analysis: bound ET j (n). Compare gap j to confidence interval width. 1

2 Recall: Concentration inequalities. Definition: function is For a random variable X, the moment-generating M X (λ) = Eexp(λX), the cumulant-generating function is Γ X (λ) = logm X (λ). 2

3 Recall: Concentration inequalities. Definition: For a random variable X, ψ : R R is a cumulant generating function upper bound if, for λ > 0, ψ(λ) max{γ X (λ),γ X (λ)}, ψ( λ) = ψ(λ). The Legendre transform (convex conjugate) ofψ is ψ (ǫ) = sup(λǫ ψ(λ)). λ R 3

4 Concentration Inequalities. Theorem: Γ X+c (λ) = λc+γ X (λ), Γ X+c(ǫ) = Γ X(ǫ c). (Easy to check.) 4

5 Recall: Concentration Inequalities. Theorem: For ǫ 0,P(X EX ǫ) exp ( ψ X EX (ǫ)). 5

6 Recall: Concentration Inequalities. Theorem: IfX 1,X 2,...,X n are mean zero, i.i.d. with cgf upper bound ψ, then X n = 1 n n i=1 X i has cgf bound ( ) λ ψ X n (λ) = nψ, n and hence, ψ X n (ǫ) = nψ (ǫ), P ( Xn ǫ ) exp( nψ (ǫ)), 6

7 Recall: Concentration Inequalities. And the exponent can t be improved. Theorem: [Cramér-Chernoff] If X 1,X 2,...,X n are iid and mean zero, and have cgf Γ, then for ǫ > 0 and X n = 1 n n i=1 X i, lim n 1 n logp( Xn ǫ ) = Γ (ǫ). (Lower bound is a change-of-measure argument plus central limit theorem.) 7

8 Example: Gaussian For X N(µ,σ 2 ), Γ X µ (λ) = λ2 σ 2 2, Γ X µ(ǫ) = ǫ2 2σ 2. For X 1,...,X n N(µ,σ 2 ), it s easy to check that the bound is tight: lim n 1 n lnp( X n µ t) = t2 2σ 2. 8

9 Example: Bounded Support Theorem: [Hoeffding s Inequality] For a random variable X [a,b] withex = µ and λ R, lnm X µ (λ) λ2 (b a) 2. 8 Note the resemblance to a Gaussian: λ 2 σ 2 2 vs λ2 (b a) 2 8 (And since P has support in[a,b], VarX (b a) 2 /4.). 9

10 Example: Hoeffding s Inequality Proof Define A(λ) = log ( Ee λx) ( = log ) e λx dp(x), where X P. Then A is the log normalization of the exponential family random variable X λ with reference measure P and sufficient statisticx. Since P has bounded support,a(λ) < for all λ, and we know that A (λ) = E(X λ ), A (λ) = Var(X λ ). Since P has support in[a,b], Var(X λ ) (b a) 2 /4. Then a Taylor expansion about λ = 0 (at this value of λ,x λ has the same distribution as X, hence the same expectation) gives A(λ) λex + λ2 2 (b a)

11 Sub-Gaussian Random Variables Definition: λ R, X is sub-gaussian with parameter σ 2 if, for all lnm X µ (λ) λ2 σ 2 2. Note: Gaussian is sub-gaussian. X sub-gaussian iff X sub-gaussian. X sub-gaussian impliesp(x µ t) exp( t 2 /(2σ 2 )). 11

12 Hoeffding Bound Theorem: For X 1,...,X n independent, EX i = µ, X i sub- Gaussian with parameter σ 2, then for all t > 0, ( ) 1 n ) P X i µ t exp ( nt2 n 2σ 2. i=1 12

13 Back to the stochastic bandit problem. k arms. Arm j has unknown reward distributionp θj, for θ j Θ. Reward: X j,t P θj. Mean reward: µ j = EX j,1. Best: µ = max j =1,...,kµ j. Gap: j = µ µ j. Number of plays: T j (s) = s t=1 1[I t = j]. Pseudo-regret: R n = nmax j =1,...,kµ j E n t=1 X I t,t = k j=1 ET j(n) j. 13

14 UCB strategy Define the sample averages ˆµ j (t) = 1 T j (t) t X Is,s1[I s = j]. s=1 If X j,s µ j has c.g.f. upper boundψ, ( ) 1 n Pr X j,s µ j ǫ n s=1 e nψ (ǫ), that is, Pr ( µ j < 1 n n s=1 X j,s +(ψ ) 1 ( log1/δ n ) ) 1 δ. 14

15 UCB strategy. Suppose X j,t µ j has c.g.f. upper boundψ. ψ-ucb Strategy: I t = arg max 1 j k ( ( )) 3logt ˆµ j,t 1 +(ψ ) 1. T j (t 1) e.g., X j,t sub-gaussian (with parameter σ 2 ), ( ) (ψ ) 1 3logt T j (t 1) ψ (ǫ) = ǫ2 2σ 2, = 6σ 2 logt T j (t 1). 15

16 UCB strategy. Theorem: If the reward distributions have cgf bound ψ, then the ψ-ucb Strategy satisfies R n ( ) 3 j logn ψ ( j /2) +o(1). j: j >0 Example: Rewards in[0,1] are sub-gaussian with σ 2 = 1/4, so R n ( ) 6logn +o(1). j: j >0 This is within a constant factor of optimal (µ (1 µ ) versus 6). j 16

17 UCB strategy: Proof ( ) (Drop t indices.) Define ǫ j = (ψ ) 1 3logt T j (t 1). So UCB chooses argmax j (ˆµ j +ǫ j ). If then so UCB will not choose I t = j. ˆµ j > µ j ǫ j, ˆµ j < µ j +ǫ j, j > 2ǫ j, ˆµ j +ǫ j > µ j = µ j + j > ˆµ j ǫ j + j > ˆµ j +ǫ j, 17

18 UCB strategy: Proof So {I t = j and j > 2ǫ j } {ˆµ j µ j ǫ j or ˆµ j µ j +ǫ j }. Note that j > 2ǫ j for T j (t 1) m := 3logn ψ ( j /2) 3logt ψ ( j /2). ET j (n) = E n 1[I t = j] t=1 m+e m+ n t=m+1 n t=m+1 1[I t = j and T j (t 1) m] (P(ˆµ j µ j ǫ j )+P(ˆµ j µ j +ǫ j )). 18

19 UCB strategy: Proof P(ˆµ j µ j ǫ j )l P ( s {1,...,t}ˆµ j,s +(ψ ) 1 ) (3lnt/s) µ j t s=1 P (ˆµ ) j,s +(ψ ) 1 (3lnt/s) µ j t t 3 = t 2. s=1 Similarly for P(ˆµ j µ j +ǫ j ). So ET j (n) 3logn ψ ( j /2) +O ( ) 1. logn 19

20 UCB strategy. Theorem: If the reward distributions have cgf bound ψ, then the ψ-ucb Strategy satisfies R n ( ) 3 j logn ψ ( j /2) +o(1). j: j >0 Hence, R n for rewards in[0,1]. ( 6logn j j: j >0 ) +o(1), 20

21 UCB strategy. This bound is on expected reward. Looking at the proof, the probability of bad behavior decays only polynomially withn(c.f. Hoeffding s inequality). This slow decay is not just an artefact of the analysis. For rewards in[0,1], the upper bound is R n ( 6logn j: j >0 j ) +o(1). However, the lower bound is smaller: the leading term is of the form j logn D KL (P θj,p θ ). This is achievable, by considering a better c.g.f. bound ψ: the Bernoulli c.g.f. 21

22 UCB strategy: Some history. Index strategies (which involve a comparison of the value of an index for each arm, which depends only on observations at that arm) were introduced by Gittins and collaborators (in a Bayesian context). The idea of UCB strategies, where the index has the interpretation of an upper confidence bound, goes back to Lai and Robbins. They gave strategies and analysis where the leading term is asymptotically optimal (including the constant). Agrawal (1995) considered simpler strategies based only on the sample mean, and used c.g.f. bounds and large deviations theory to give asymptotic results. Auer, Cesa-Bianchi and Fischer (2002) used Hoeffding s inequality to give a finite time analysis. 22

Stat 260/CS Learning in Sequential Decision Problems.

Stat 260/CS Learning in Sequential Decision Problems. Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Exponential families. Cumulant generating function. KL-divergence. KL-UCB for an exponential

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Adversarial bandits Definition: sequential game. Lower bounds on regret from the stochastic case. Exp3: exponential weights

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1 Bayesian bandit strategies

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Sandeep Juneja Tata Institute of Fundamental Research Mumbai, India joint work with Peter Glynn Applied

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

Ordinal Optimization and Multi Armed Bandit Techniques

Ordinal Optimization and Multi Armed Bandit Techniques Ordinal Optimization and Multi Armed Bandit Techniques Sandeep Juneja. with Peter Glynn September 10, 2014 The ordinal optimization problem Determining the best of d alternative designs for a system, on

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com Navin Goyal Microsoft Research India navingo@microsoft.com Abstract The multi-armed

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Chapter 2 Stochastic Multi-armed Bandit

Chapter 2 Stochastic Multi-armed Bandit Chapter 2 Stochastic Multi-armed Bandit Abstract In this chapter, we present the formulation, theoretical bound, and algorithms for the stochastic MAB problem. Several important variants of stochastic

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Multi armed bandit problem: some insights

Multi armed bandit problem: some insights Multi armed bandit problem: some insights July 4, 20 Introduction Multi Armed Bandit problems have been widely studied in the context of sequential analysis. The application areas include clinical trials,

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

Learning Algorithms for Minimizing Queue Length Regret

Learning Algorithms for Minimizing Queue Length Regret Learning Algorithms for Minimizing Queue Length Regret Thomas Stahlbuhk Massachusetts Institute of Technology Cambridge, MA Brooke Shrader MIT Lincoln Laboratory Lexington, MA Eytan Modiano Massachusetts

More information

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Hoeffding, Chernoff, Bennet, and Bernstein Bounds Stat 928: Statistical Learning Theory Lecture: 6 Hoeffding, Chernoff, Bennet, Bernstein Bounds Instructor: Sham Kakade 1 Hoeffding s Bound We say X is a sub-gaussian rom variable if it has quadratically

More information

arxiv: v2 [stat.ml] 19 Jul 2012

arxiv: v2 [stat.ml] 19 Jul 2012 Thompson Sampling: An Asymptotically Optimal Finite Time Analysis Emilie Kaufmann, Nathaniel Korda and Rémi Munos arxiv:105.417v [stat.ml] 19 Jul 01 Telecom Paristech UMR CNRS 5141 & INRIA Lille - Nord

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits An Experimental Evaluation of High-Dimensional Multi-Armed Bandits Naoki Egami Romain Ferrali Kosuke Imai Princeton University Talk at Political Data Science Conference Washington University, St. Louis

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Dynamic resource allocation: Bandit problems and extensions

Dynamic resource allocation: Bandit problems and extensions Dynamic resource allocation: Bandit problems and extensions Aurélien Garivier Institut de Mathématiques de Toulouse MAD Seminar, Université Toulouse 1 October 3rd, 2014 The Bandit Model Roadmap 1 The Bandit

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, joint work with Emilie Kaufmann CNRS, CRIStAL) to be presented at COLT 16, New York

More information

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Shweta Jain 1, Satyanath Bhat 1, Ganesh Ghalme 1, Divya Padmanabhan 1, and Y. Narahari 1 Department of Computer Science and Automation,

More information

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement Satyanath Bhat Joint work with: Shweta Jain, Sujit Gujar, Y. Narahari Department of Computer Science and Automation, Indian

More information

Finite-time Analysis of the Multiarmed Bandit Problem*

Finite-time Analysis of the Multiarmed Bandit Problem* Machine Learning, 47, 35 56, 00 c 00 Kluwer Academic Publishers. Manufactured in The Netherlands. Finite-time Analysis of the Multiarmed Bandit Problem* PETER AUER University of Technology Graz, A-8010

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

A. Notation. Attraction probability of item d. (d) Highest attraction probability, (1) A

A. Notation. Attraction probability of item d. (d) Highest attraction probability, (1) A A Notation Symbol Definition (d) Attraction probability of item d max Highest attraction probability, (1) A Binary attraction vector, where A(d) is the attraction indicator of item d P Distribution over

More information

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Junya Honda Akimichi Takemura The University of Tokyo {honda, takemura}@stat.t.u-tokyo.ac.jp Abstract In stochastic bandit problems,

More information

arxiv: v4 [cs.lg] 22 Jul 2014

arxiv: v4 [cs.lg] 22 Jul 2014 Learning to Optimize Via Information-Directed Sampling Daniel Russo and Benjamin Van Roy July 23, 2014 arxiv:1403.5556v4 cs.lg] 22 Jul 2014 Abstract We propose information-directed sampling a new algorithm

More information

The Moment Method; Convex Duality; and Large/Medium/Small Deviations

The Moment Method; Convex Duality; and Large/Medium/Small Deviations Stat 928: Statistical Learning Theory Lecture: 5 The Moment Method; Convex Duality; and Large/Medium/Small Deviations Instructor: Sham Kakade The Exponential Inequality and Convex Duality The exponential

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Pure Exploration Stochastic Multi-armed Bandits

Pure Exploration Stochastic Multi-armed Bandits C&A Workshop 2016, Hangzhou Pure Exploration Stochastic Multi-armed Bandits Jian Li Institute for Interdisciplinary Information Sciences Tsinghua University Outline Introduction 2 Arms Best Arm Identification

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini April 27, 2018 1 / 80 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Complex Bandit Problems and Thompson Sampling

Complex Bandit Problems and Thompson Sampling Complex Bandit Problems and Aditya Gopalan Department of Electrical Engineering Technion, Israel aditya@ee.technion.ac.il Shie Mannor Department of Electrical Engineering Technion, Israel shie@ee.technion.ac.il

More information

Introducing strategic measure actions in multi-armed bandits

Introducing strategic measure actions in multi-armed bandits 213 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Workshop on Cognitive Radio Medium Access Control and Network Solutions Introducing strategic measure actions

More information

Adaptive Shortest-Path Routing under Unknown and Stochastically Varying Link States

Adaptive Shortest-Path Routing under Unknown and Stochastically Varying Link States Adaptive Shortest-Path Routing under Unknown and Stochastically Varying Link States Keqin Liu, Qing Zhao To cite this version: Keqin Liu, Qing Zhao. Adaptive Shortest-Path Routing under Unknown and Stochastically

More information

A Structured Multiarmed Bandit Problem and the Greedy Policy

A Structured Multiarmed Bandit Problem and the Greedy Policy A Structured Multiarmed Bandit Problem and the Greedy Policy Adam J. Mersereau Kenan-Flagler Business School, University of North Carolina ajm@unc.edu Paat Rusmevichientong School of Operations Research

More information

Exploration and exploitation of scratch games

Exploration and exploitation of scratch games Mach Learn (2013) 92:377 401 DOI 10.1007/s10994-013-5359-2 Exploration and exploitation of scratch games Raphaël Féraud Tanguy Urvoy Received: 10 January 2013 / Accepted: 12 April 2013 / Published online:

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION Submitted to the Annals of Statistics arxiv: math.pr/0000000 KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION By Olivier Cappé 1, Aurélien Garivier 2, Odalric-Ambrym Maillard

More information

Adaptive Learning with Unknown Information Flows

Adaptive Learning with Unknown Information Flows Adaptive Learning with Unknown Information Flows Yonatan Gur Stanford University Ahmadreza Momeni Stanford University June 8, 018 Abstract An agent facing sequential decisions that are characterized by

More information

Adaptive Concentration Inequalities for Sequential Decision Problems

Adaptive Concentration Inequalities for Sequential Decision Problems Adaptive Concentration Inequalities for Sequential Decision Problems Shengjia Zhao Tsinghua University zhaosj12@stanford.edu Ashish Sabharwal Allen Institute for AI AshishS@allenai.org Enze Zhou Tsinghua

More information

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Tsinghua Machine Learning Guest Lecture, June 9,

Tsinghua Machine Learning Guest Lecture, June 9, Tsinghua Machine Learning Guest Lecture, June 9, 2015 1 Lecture Outline Introduction: motivations and definitions for online learning Multi-armed bandit: canonical example of online learning Combinatorial

More information

Lecture 4 January 23

Lecture 4 January 23 STAT 263/363: Experimental Design Winter 2016/17 Lecture 4 January 23 Lecturer: Art B. Owen Scribe: Zachary del Rosario 4.1 Bandits Bandits are a form of online (adaptive) experiments; i.e. samples are

More information

THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION

THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION Hock Peng Chan stachp@nus.edu.sg Department of Statistics and Applied Probability National University of Singapore Abstract Lai and

More information

Concentration Inequalities

Concentration Inequalities Chapter Concentration Inequalities I. Moment generating functions, the Chernoff method, and sub-gaussian and sub-exponential random variables a. Goal for this section: given a random variable X, how does

More information

Deterministic Sequencing of Exploration and Exploitation for Multi-Armed Bandit Problems

Deterministic Sequencing of Exploration and Exploitation for Multi-Armed Bandit Problems Deterministic Sequencing of Exploration and Exploitation for Multi-Armed Bandit Problems 1 Sattar Vakili, Keqin Liu, Qing Zhao arxiv:1106.6104v3 [math.oc] 9 Mar 2013 Abstract In the Multi-Armed Bandit

More information

Pure Exploration Stochastic Multi-armed Bandits

Pure Exploration Stochastic Multi-armed Bandits CAS2016 Pure Exploration Stochastic Multi-armed Bandits Jian Li Institute for Interdisciplinary Information Sciences Tsinghua University Outline Introduction Optimal PAC Algorithm (Best-Arm, Best-k-Arm):

More information

arxiv: v1 [cs.lg] 7 Sep 2018

arxiv: v1 [cs.lg] 7 Sep 2018 Analysis of Thompson Sampling for Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms Alihan Hüyük Bilkent University Cem Tekin Bilkent University arxiv:809.02707v [cs.lg] 7 Sep 208

More information

Piecewise-stationary Bandit Problems with Side Observations

Piecewise-stationary Bandit Problems with Side Observations Jia Yuan Yu jia.yu@mcgill.ca Department Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada. Shie Mannor shie.mannor@mcgill.ca; shie@ee.technion.ac.il Department Electrical

More information

Theoretical Statistics. Lecture 17.

Theoretical Statistics. Lecture 17. Theoretical Statistics. Lecture 17. Peter Bartlett 1. Asymptotic normality of Z-estimators: classical conditions. 2. Asymptotic equicontinuity. 1 Recall: Delta method Theorem: Supposeφ : R k R m is differentiable

More information

Improved Algorithms for Linear Stochastic Bandits

Improved Algorithms for Linear Stochastic Bandits Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-Yadkori abbasiya@ualberta.ca Dept. of Computing Science University of Alberta Dávid Pál dpal@google.com Dept. of Computing Science University

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 2: Introduction to statistical learning theory. 1 / 22 Goals of statistical learning theory SLT aims at studying the performance of

More information

Online Learning with Gaussian Payoffs and Side Observations

Online Learning with Gaussian Payoffs and Side Observations Online Learning with Gaussian Payoffs and Side Observations Yifan Wu 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science University of Alberta 2 Department of Electrical and Electronic

More information

Concentration inequalities and tail bounds

Concentration inequalities and tail bounds Concentration inequalities and tail bounds John Duchi Outline I Basics and motivation 1 Law of large numbers 2 Markov inequality 3 Cherno bounds II Sub-Gaussian random variables 1 Definitions 2 Examples

More information

Anytime optimal algorithms in stochastic multi-armed bandits

Anytime optimal algorithms in stochastic multi-armed bandits Rémy Degenne LPMA, Université Paris Diderot Vianney Perchet CREST, ENSAE REMYDEGENNE@MATHUNIV-PARIS-DIDEROTFR VIANNEYPERCHET@NORMALESUPORG Abstract We introduce an anytime algorithm for stochastic multi-armed

More information

The knowledge gradient method for multi-armed bandit problems

The knowledge gradient method for multi-armed bandit problems The knowledge gradient method for multi-armed bandit problems Moving beyond inde policies Ilya O. Ryzhov Warren Powell Peter Frazier Department of Operations Research and Financial Engineering Princeton

More information

Multi-armed bandit based policies for cognitive radio s decision making issues

Multi-armed bandit based policies for cognitive radio s decision making issues Multi-armed bandit based policies for cognitive radio s decision making issues Wassim Jouini SUPELEC/IETR wassim.jouini@supelec.fr Damien Ernst University of Liège dernst@ulg.ac.be Christophe Moy SUPELEC/IETR

More information

Optimistic Bayesian Sampling in Contextual-Bandit Problems

Optimistic Bayesian Sampling in Contextual-Bandit Problems Journal of Machine Learning Research volume (2012) 2069-2106 Submitted 7/11; Revised 5/12; Published 6/12 Optimistic Bayesian Sampling in Contextual-Bandit Problems Benedict C. May School of Mathematics

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Regret Bounds for Sleeping Experts and Bandits

Regret Bounds for Sleeping Experts and Bandits Regret Bounds for Sleeping Experts and Bandits Robert D. Kleinberg Department of Computer Science Cornell University Ithaca, NY 4853 rdk@cs.cornell.edu Alexandru Niculescu-Mizil Department of Computer

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Online Learning Repeated game: Aim: minimize ˆL n = Decision method plays a t World reveals l t L n l t (a

More information