Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Size: px
Start display at page:

Download "Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning"

Transcription

1 Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research

2 Exploiting curvature: logarithmic regret

3 Logarithmic regret Some natural problems admit better regret: Least squares linear regression Soft- margin SVM Portfolio selection α- strong convexity: (e.g. f x = x & ) r 2 f(x) I α- exp- concavity: (e.g. f x = log a, x) r 2 f(x) rf(x)rf(x) >

4 Online Soft- Margin SVM Features a R /, labels b { 1, 1} Hypothesis class H is a set of linear predictors: Parameters: weight vectors x R / Prediction of weight vector x for feature vector a is a T x Loss f 5 x = max 0, 1 b 5 a 5, x + λ x & Convex, non- smooth strongly- convex Thm [Hazan, Agarwal, Kale 2007]: OGD with step sizes η 5 > 5 has O(log T) regret

5 Universal Portfolio Selection Loss function f 5 x = log(r 5, x) Convex, but no strongly convex component But exp- concave: exp( f 5 x ) = r 5, x (concave function: actually, linear) Definition: f is called α- exp- concave if exp αf x is concave Theorem [Hazan, Agarwal, Kale 2007]: For exp- concave losses, there is an algorithm, Online Newton Step, that obtains O(log T) regret

6 Online Newton Step algorithm Use x 1 = arbitrary point in K in round 1 For t > 1: use x t defined by following equations cumulative gradient step Newton update r t 1 = rf t 1 (x t 1 ) C t 1 = g t 1 = Xt 1 =1 Xt 1 =1 r r > r r > x y t = C 1 t 1 g t 1 cumulative Hessian cr c is a constant depending on α, other bounds x t = arg min(x y t ) > C t 1 (x y t ) >

7 Regularization follow the regularized leader, online mirror descent

8 Follow- the- leader Most natural: Regret = X t f t (x t ) x t = arg min min x 2K X f t (x ) Be- the- leader algorithm has zero regret [Kalai- Vempala, 2005]: t P t 1 i=1 f i(x) x 0 t = arg min P t i=1 f i(x) =x t+1 So if f 5 x 5 f 5 (x 5K> ), we get a regret bound Unstability: f 5 x 5 f 5 (x 5K> ) can be large!

9 Fixing FTL: Follow- The- Regularized- Leader (FTRL) First, suffices to use replace f t by a linear function, f 5 x 5, x Next, add regularization: x t = arg min P t 1 i=1 rf i(x i ) > x + 1 R(x) R(x) is a strongly convex function, η is a regularization constant Under certain conditions, this ensures stability: rf t (x t ) x t rf t (x t ) x t+1 O( )

10 Specific instances of FTRL R x = x & P t 1 x t = arg min i=1 rf i(x i ) > x + 1 R(x) = Q K P t 1 i=1 rf i(x i ) Here, Q K (y) = arg min ky xk Almost like OGD: starting with y 1 = 0, for t = 1, 2, x t = Q K (y t) y t+1 = y t rf t (x t )

11 Specific instances of FTRL Experts setting: K = Δ / distributions over experts f 5 x = c 5, x, where c t is the vector of losses R x = R x R log x R : negative entropy Entrywise exponential P t 1 x t = arg min i=1 rf i(x i ) > x + 1 R(x) =exp P t 1 i=1 c i /Z t Normalization constant Exactly RWM! Starting with y 1 = uniform distribution, for t = 1, 2, Entrywise product with entrywise exponential x t = eq K (y t) y t+1 = y t exp( c t ) Projection = Normalization

12 FTRL Online Mirror Descent x t = arg min Bregman Projection: Q R K (y) = arg min B R (xky) B R (xky) :=R(x) R(y) rr(y) > (x y) P t 1 i=1 rf i(x i ) > x + 1 R(x) x t = Q R K (y t) y t+1 =(rr) 1 (rr(y t ) rf t (x t ))

13 Advanced regularization follow the perturbed leader, AdaGrad

14 Randomized regularization: Follow- The- Perturbed- Leader Special case of OCO, Online Linear Optimization: f 5 x = c 5, x Follow- The- Perturbed- Leader [Kalai- Vempala 2005]: x t = arg min P t 1 i=1 c> i x + p> x Regularization p T x: vector p drawn u.a.r. from [ T, T] Expected regret is the same if p is chosen afresh every round Re- randomizing every round x 5 = x 5K> w.p. at least 1 1/ T regret = O( T)

15 Follow- The- Perturbed- Leader Algorithm: p is random vector with entries in [ T, x t = arg min P t 1 i=1 c> i x + p> x T] Implementation requires only linear optimization over K, easier than projections needed by OMD O T regret bound holds for arbitrary sets K: convexity unnecessary! Can be extended to convex losses using gradient trick + using expected perturbed leader in each round

16 Adaptive Regularization: AdaGrad Consider use of OGD in learning a generalized linear model For parameter x R / and example a, b R / R, prediction is some function of a, x Thus, f 5 x = ll a 5, b 5, x a 5 OGD update: x 5K> = x 5 η f 5 x 5 = x 5 ηll a 5, b 5, x a 5 Thus, features treated equally in updating parameter vector In typical text classification tasks, feature vectors a t are very sparse Slow learning! Adaptive regularization: implements per- feature learning rates

17 AdaGrad (diagonal form) [Duchi, Hazan, Singer 10] Set x > K arbitrarily For t = 1, 2,, 1. use x 5 obtain f t 2. compute x 5K> as follows: G t = diag( P t i=1 rf i(x i )rf i (x i ) > ) y t+1 = x t G 1/2 t rf t (x t ) x t+1 = arg min(y t+1 x) > G t (y t+1 x) Regret bound: O R 5 f 5 x 5 R Infrequently occurring, or small- scale, features have small influence on regret (and therefore, convergence to optimal parameter) &

18 Bandit Convex Optimization

19 Bandit Optimization Motivating example: ad selection on websites Simplest form: in each round t Choose one ad i t out of n Simultaneously, user chooses loss vector c t Observe loss of chosen ad, c t (i t ) c t (i) = - revenue if ad i would be clicked if shown, 0 otherwise TX TX Regret = t=1 c t (i t ) min i t=1 c t (i) Essentially, experts problem with partial feedback Modeled as online linear optimization over n- simplex of distributions Available choices are usually called arms (from multi- armed bandits) Randomization necessary, so consider expected regret

20 Constructing cost estimators e 1 Exploration: Choose arm i t from 1, 2,, n u.a.r. Observe c t (i t ) c t = nc t (i t )e it e 2 e n E[ c t ]=c t Exploitation: x t = arg min Xt 1 i=1 c i > x + 1 R(x)

21 Separate explore- exploit template Algorithm: 1. w.p. q explore (as before), create estimator 2. o/w exploit x t = arg min Xt 1 i=1 c i > x + 1 R(x) E[ c t ]=c t Regret is essentially (ignoring dependence on n) bounded by q T +(1 q) 1 p! T q Regret FTRL = O q + q = O(T 2/3 ) Can we do better?

22 Simultaneous exploration- exploitation [Auer, Cesa- Bianchi, Freund, Schapire 2002] e 1 Exploration+Exploitation: Choose arm i t from distributionx t Observe c t (i t ) c t = c t(i t ) x t (i t ) e i t e 2 x t = arg min Xt 1 i=1 e n E[ c t ]=c t c i > x + 1 R(x) With R = negative entropy, this alg (called EXP3) has O T regret

23 Bandit Linear Optimization Generalize from multi- armed bandits K: convex set in R / Linear cost functions: f 5 x = c 5, x Approach: 1. (Exploration) construct unbiased estimators 2. (Exploitation) Plug into FTRL: t 1 x t = arg min X i=1 E[ c t ]=c t c i > x + 1 R(x)

24 Bandit Linear Optimization K: convex set in R /, linear cost functions: f 5 x = c 5, x Assume K contains e 1, e 2,, e n In round t: x t = arg min Xt 1 i=1 exploration basis 1. W.p. q choose i 5 1, 2,, n and use e R 5. Observe c 5 i 5 and set c t = c t(i t ) q/n e i t 2. W.p. 1 q use x t obtained from FTRL and set cb 5 = 0 Gives regret bound of O(T 2/3 ) E[ c t ]=c t c i > x + 1 R(x)

25 Geometric regularization via barriers [Abernethy, Hazan, Rakhlin 2008] R = self- concordant barrier for K. Dikin ellipsoid at any point x lies in K: y y x, & R x y x 1} Algorithm: use random endpoint of axes of ellipsoid at x t using x t in expectation (exploitation) 2n endpoints suffice to construct cb 5 (exploration) Thm: Regret = O( T) x t = arg min Xt 1 i=1 c i > x + 1 R(x)

26 Bandit Online Convex Optimization [Flaxman, Kalai, McMahan 2005] f t arbitrary convex functions Approach: 1. Construct estimator cb 5 of f 5 x 5 2. Plug into FTRL x t = arg min Xt 1 i=1 Near boundary, estimators have large variance Hence, x t and x t+1 can be very different Regret bound = O(T 3/4 ) Recent developments: O c i > x + 1 R(x) rf(x) 1 E u2s n T regret possible! 1 [f(x + u)u]

27 Projection- free algorithms

28 Matrix completion In round t: Obtain (user, movie) pair, and output a recommended rating Then observe true rating, and suffer square loss Comparison class: all matrices with bounded trace norm

29 Bounded trace norm matrices Trace norm of a matrix = sum of singular values K = { X X is a matrix with trace norm at most D } Optimizing over K promotes low rank solutions Online Matrix Completion problem is an OCO problem over K FTRL, OMD etc require computing projections on K Expensive! Requires computing eigendecomposition of matrix to be projected: O(n 3 ) operation But: linear optimization over K is easier Requires computing top eigenvector; can be done in O(sparsity) time typically

30 Projections à linear optimization 1. Matrix completion (K = bounded trace norm matrices) eigen decomposition largest singular vector computation 2. Online routing (K = flow polytope) conic optimization over flow polytope shortest path computation 3. Rotations (K = rotation matrices) conic optimization over rotations set Wahba s algorithm linear time 4. Matroids (K = matroid polytope) convex opt. via ellipsoid method greedy algorithm nearly linear time!

31 Projection- Free Online Learning Is online learning possible given access to linear optimization oracle rather than projection oracle? Yes: projection can be implemented via polynomially many linear optimizations But for efficiency, would like only a few (1 or 2) calls to linear optimization oracle per round Follow- The- Perturbed- Leader does the job for linear loss functions What about general convex loss functions? Is OCO possible with only 1 or 2 calls to a linear optimization oracle per round?

32 Conditional Gradient algorithm [Frank, Wolfe 56] Convex opt problem: min h i f(x) Assume: f is smooth, convex linear opt over K is easy v t = arg min rf(x t ) > x x t+1 = x t + t (v t x t ) 1. At iteration t: convex comb. of at most t vertices (sparsity) 2. No learning rate. η 5 > 5 (independent of diameter, gradients etc.)

33 Online Conditional Gradient [Hazan, Kale 12] Set x > K arbitrarily For t = 1, 2,, 1. Use x 5, obtain f t 2. Compute x 5K> as follows v t = arg min Pt i=1 rf i(x i )+ t x t >x x t+1 (1 t )x t + t v t P t i=1 rf i(x i )+ t x t v t x t+1 x t Theorem: Regret = O(T 3/4 )

34 Linearly- convergence CG [Garber, Hazan 2013] x t Theorem: For polytopes, strongly- convex and smooth losses: 1. Offline: gap after t steps: 2. Online: Regret = O( p exp( T ) ct)

35 Directions for future research 1. Efficient algorithms & optimal dependency on dimension for bandit OCO 2. Faster online matrix algorithms 3. Optimal regret /running time tradeoffs 4. Optimal regret and projection- free algorithm for general convex sets 5. Time series/dependence/adaptivity (vs. static regret) 6. Adding state / online Reinforcement Learning / MDPs / stochastic games [lots of existing work ] 7. Tensor/spectral learning in the online setting 8. Game theoretic aspect stronger notions, approachability,

36 Bibliography & more information, see: Thank you!

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Tutorial: PART 2. Optimization for Machine Learning. Elad Hazan Princeton University. + help from Sanjeev Arora & Yoram Singer

Tutorial: PART 2. Optimization for Machine Learning. Elad Hazan Princeton University. + help from Sanjeev Arora & Yoram Singer Tutorial: PART 2 Optimization for Machine Learning Elad Hazan Princeton University + help from Sanjeev Arora & Yoram Singer Agenda 1. Learning as mathematical optimization Stochastic optimization, ERM,

More information

Bandits for Online Optimization

Bandits for Online Optimization Bandits for Online Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 1 / 16 The multiarmed bandit problem... K slot machines Each

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-4-2007 Adaptive Online Gradient Descent Peter Bartlett Elad Hazan Alexander Rakhlin University of Pennsylvania Follow

More information

The Online Approach to Machine Learning

The Online Approach to Machine Learning The Online Approach to Machine Learning Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Approach to ML 1 / 53 Summary 1 My beautiful regret 2 A supposedly fun game I

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

A survey: The convex optimization approach to regret minimization

A survey: The convex optimization approach to regret minimization A survey: The convex optimization approach to regret minimization Elad Hazan September 10, 2009 WORKING DRAFT Abstract A well studied and general setting for prediction and decision making is regret minimization

More information

Adaptive Online Learning in Dynamic Environments

Adaptive Online Learning in Dynamic Environments Adaptive Online Learning in Dynamic Environments Lijun Zhang, Shiyin Lu, Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210023, China {zhanglj, lusy, zhouzh}@lamda.nju.edu.cn

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 Online Convex Optimization Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 The General Setting The General Setting (Cover) Given only the above, learning isn't always possible Some Natural

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

No-Regret Algorithms for Unconstrained Online Convex Optimization

No-Regret Algorithms for Unconstrained Online Convex Optimization No-Regret Algorithms for Unconstrained Online Convex Optimization Matthew Streeter Duolingo, Inc. Pittsburgh, PA 153 matt@duolingo.com H. Brendan McMahan Google, Inc. Seattle, WA 98103 mcmahan@google.com

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Better Algorithms for Benign Bandits

Better Algorithms for Benign Bandits Better Algorithms for Benign Bandits Elad Hazan IBM Almaden 650 Harry Rd, San Jose, CA 95120 ehazan@cs.princeton.edu Satyen Kale Microsoft Research One Microsoft Way, Redmond, WA 98052 satyen.kale@microsoft.com

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Logarithmic Regret Algorithms for Online Convex Optimization

Logarithmic Regret Algorithms for Online Convex Optimization Logarithmic Regret Algorithms for Online Convex Optimization Elad Hazan 1, Adam Kalai 2, Satyen Kale 1, and Amit Agarwal 1 1 Princeton University {ehazan,satyen,aagarwal}@princeton.edu 2 TTI-Chicago kalai@tti-c.org

More information

Optimistic Bandit Convex Optimization

Optimistic Bandit Convex Optimization Optimistic Bandit Convex Optimization Mehryar Mohri Courant Institute and Google 25 Mercer Street New York, NY 002 mohri@cims.nyu.edu Scott Yang Courant Institute 25 Mercer Street New York, NY 002 yangs@cims.nyu.edu

More information

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Elad Hazan IBM Almaden Research Center 650 Harry Rd San Jose, CA 95120 ehazan@cs.princeton.edu Satyen Kale Yahoo! Research 4301

More information

Better Algorithms for Benign Bandits

Better Algorithms for Benign Bandits Better Algorithms for Benign Bandits Elad Hazan IBM Almaden 650 Harry Rd, San Jose, CA 95120 hazan@us.ibm.com Satyen Kale Microsoft Research One Microsoft Way, Redmond, WA 98052 satyen.kale@microsoft.com

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning Editors: Suvrit Sra suvrit@gmail.com Max Planck Insitute for Biological Cybernetics 72076 Tübingen, Germany Sebastian Nowozin Microsoft Research Cambridge, CB3 0FB, United

More information

The convex optimization approach to regret minimization

The convex optimization approach to regret minimization The convex optimization approach to regret minimization Elad Hazan Technion - Israel Institute of Technology ehazan@ie.technion.ac.il Abstract A well studied and general setting for prediction and decision

More information

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University THE BANDIT PROBLEM Play for T rounds attempting to maximize rewards THE BANDIT PROBLEM Play

More information

Bandit Convex Optimization

Bandit Convex Optimization March 7, 2017 Table of Contents 1 (BCO) 2 Projection Methods 3 Barrier Methods 4 Variance reduction 5 Other methods 6 Conclusion Learning scenario Compact convex action set K R d. For t = 1 to T : Predict

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Convergence rate of SGD

Convergence rate of SGD Convergence rate of SGD heorem: (see Nemirovski et al 09 from readings) Let f be a strongly convex stochastic function Assume gradient of f is Lipschitz continuous and bounded hen, for step sizes: he expected

More information

Optimization, Learning, and Games with Predictable Sequences

Optimization, Learning, and Games with Predictable Sequences Optimization, Learning, and Games with Predictable Sequences Alexander Rakhlin University of Pennsylvania Karthik Sridharan University of Pennsylvania Abstract We provide several applications of Optimistic

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Online Convex Optimization MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Online projected sub-gradient descent. Exponentiated Gradient (EG). Mirror descent.

More information

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Jacob Steinhardt Percy Liang Stanford University {jsteinhardt,pliang}@cs.stanford.edu Jun 11, 2013 J. Steinhardt & P. Liang (Stanford)

More information

Sublinear Time Algorithms for Approximate Semidefinite Programming

Sublinear Time Algorithms for Approximate Semidefinite Programming Noname manuscript No. (will be inserted by the editor) Sublinear Time Algorithms for Approximate Semidefinite Programming Dan Garber Elad Hazan Received: date / Accepted: date Abstract We consider semidefinite

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

Notes on AdaGrad. Joseph Perla 2014

Notes on AdaGrad. Joseph Perla 2014 Notes on AdaGrad Joseph Perla 2014 1 Introduction Stochastic Gradient Descent (SGD) is a common online learning algorithm for optimizing convex (and often non-convex) functions in machine learning today.

More information

Adaptive Gradient Methods AdaGrad / Adam

Adaptive Gradient Methods AdaGrad / Adam Case Study 1: Estimating Click Probabilities Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 The Problem with GD (and SGD)

More information

Near-Optimal Algorithms for Online Matrix Prediction

Near-Optimal Algorithms for Online Matrix Prediction JMLR: Workshop and Conference Proceedings vol 23 (2012) 38.1 38.13 25th Annual Conference on Learning Theory Near-Optimal Algorithms for Online Matrix Prediction Elad Hazan Technion - Israel Inst. of Tech.

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Learnability, Stability, Regularization and Strong Convexity

Learnability, Stability, Regularization and Strong Convexity Learnability, Stability, Regularization and Strong Convexity Nati Srebro Shai Shalev-Shwartz HUJI Ohad Shamir Weizmann Karthik Sridharan Cornell Ambuj Tewari Michigan Toyota Technological Institute Chicago

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Efficient Bandit Algorithms for Online Multiclass Prediction Sham Kakade, Shai Shalev-Shwartz and Ambuj Tewari Presented By: Nakul Verma Motivation In many learning applications, true class labels are

More information

Hybrid Machine Learning Algorithms

Hybrid Machine Learning Algorithms Hybrid Machine Learning Algorithms Umar Syed Princeton University Includes joint work with: Rob Schapire (Princeton) Nina Mishra, Alex Slivkins (Microsoft) Common Approaches to Machine Learning!! Supervised

More information

Regret bounded by gradual variation for online convex optimization

Regret bounded by gradual variation for online convex optimization Noname manuscript No. will be inserted by the editor Regret bounded by gradual variation for online convex optimization Tianbao Yang Mehrdad Mahdavi Rong Jin Shenghuo Zhu Received: date / Accepted: date

More information

Online Optimization with Gradual Variations

Online Optimization with Gradual Variations JMLR: Workshop and Conference Proceedings vol (0) 0 Online Optimization with Gradual Variations Chao-Kai Chiang, Tianbao Yang 3 Chia-Jung Lee Mehrdad Mahdavi 3 Chi-Jen Lu Rong Jin 3 Shenghuo Zhu 4 Institute

More information

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Elad Hazan IBM Almaden 650 Harry Rd, San Jose, CA 95120 hazan@us.ibm.com Satyen Kale Microsoft Research 1 Microsoft Way, Redmond,

More information

arxiv: v1 [cs.lg] 8 Feb 2018

arxiv: v1 [cs.lg] 8 Feb 2018 Online Learning: A Comprehensive Survey Steven C.H. Hoi, Doyen Sahoo, Jing Lu, Peilin Zhao School of Information Systems, Singapore Management University, Singapore School of Software Engineering, South

More information

Online Learning with Predictable Sequences

Online Learning with Predictable Sequences JMLR: Workshop and Conference Proceedings vol (2013) 1 27 Online Learning with Predictable Sequences Alexander Rakhlin Karthik Sridharan rakhlin@wharton.upenn.edu skarthik@wharton.upenn.edu Abstract We

More information

Quasi-Newton Algorithms for Non-smooth Online Strongly Convex Optimization. Mark Franklin Godwin

Quasi-Newton Algorithms for Non-smooth Online Strongly Convex Optimization. Mark Franklin Godwin Quasi-Newton Algorithms for Non-smooth Online Strongly Convex Optimization by Mark Franklin Godwin A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

Minimax Policies for Combinatorial Prediction Games

Minimax Policies for Combinatorial Prediction Games Minimax Policies for Combinatorial Prediction Games Jean-Yves Audibert Imagine, Univ. Paris Est, and Sierra, CNRS/ENS/INRIA, Paris, France audibert@imagine.enpc.fr Sébastien Bubeck Centre de Recerca Matemàtica

More information

The FTRL Algorithm with Strongly Convex Regularizers

The FTRL Algorithm with Strongly Convex Regularizers CSE599s, Spring 202, Online Learning Lecture 8-04/9/202 The FTRL Algorithm with Strongly Convex Regularizers Lecturer: Brandan McMahan Scribe: Tamara Bonaci Introduction In the last lecture, we talked

More information

On-line Variance Minimization

On-line Variance Minimization On-line Variance Minimization Manfred Warmuth Dima Kuzmin University of California - Santa Cruz 19th Annual Conference on Learning Theory M. Warmuth, D. Kuzmin (UCSC) On-line Variance Minimization COLT06

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Online Submodular Minimization

Online Submodular Minimization Online Submodular Minimization Elad Hazan IBM Almaden Research Center 650 Harry Rd, San Jose, CA 95120 hazan@us.ibm.com Satyen Kale Yahoo! Research 4301 Great America Parkway, Santa Clara, CA 95054 skale@yahoo-inc.com

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Stochastic Gradient Descent with Only One Projection

Stochastic Gradient Descent with Only One Projection Stochastic Gradient Descent with Only One Projection Mehrdad Mahdavi, ianbao Yang, Rong Jin, Shenghuo Zhu, and Jinfeng Yi Dept. of Computer Science and Engineering, Michigan State University, MI, USA Machine

More information

Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms

Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms Pooria Joulani 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science, University of Alberta,

More information

A Linearly Convergent Conditional Gradient Algorithm with Applications to Online and Stochastic Optimization

A Linearly Convergent Conditional Gradient Algorithm with Applications to Online and Stochastic Optimization A Linearly Convergent Conditional Gradient Algorithm with Applications to Online and Stochastic Optimization Dan Garber Technion - Israel Inst. of Tech. dangar@tx.technion.ac.il Elad Hazan Technion - Israel

More information

Stochastic and Adversarial Online Learning without Hyperparameters

Stochastic and Adversarial Online Learning without Hyperparameters Stochastic and Adversarial Online Learning without Hyperparameters Ashok Cutkosky Department of Computer Science Stanford University ashokc@cs.stanford.edu Kwabena Boahen Department of Bioengineering Stanford

More information

Lecture: Adaptive Filtering

Lecture: Adaptive Filtering ECE 830 Spring 2013 Statistical Signal Processing instructors: K. Jamieson and R. Nowak Lecture: Adaptive Filtering Adaptive filters are commonly used for online filtering of signals. The goal is to estimate

More information

Accelerating Online Convex Optimization via Adaptive Prediction

Accelerating Online Convex Optimization via Adaptive Prediction Mehryar Mohri Courant Institute and Google Research New York, NY 10012 mohri@cims.nyu.edu Scott Yang Courant Institute New York, NY 10012 yangs@cims.nyu.edu Abstract We present a powerful general framework

More information

Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization

Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization Jacob Abernethy Computer Science Division UC Berkeley jake@cs.berkeley.edu (eligible for best student paper award Elad Hazan

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

Lecture 19: Follow The Regulerized Leader

Lecture 19: Follow The Regulerized Leader COS-511: Learning heory Spring 2017 Lecturer: Roi Livni Lecture 19: Follow he Regulerized Leader Disclaimer: hese notes have not been subjected to the usual scrutiny reserved for formal publications. hey

More information

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint Regret Bounds for Online Portfolio Selection with a Cardinality Constraint Shinji Ito NEC Corporation Daisuke Hatano RIKEN AIP Hanna Sumita okyo Metropolitan University Akihiro Yabe NEC Corporation akuro

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Proximal and First-Order Methods for Convex Optimization

Proximal and First-Order Methods for Convex Optimization Proximal and First-Order Methods for Convex Optimization John C Duchi Yoram Singer January, 03 Abstract We describe the proximal method for minimization of convex functions We review classical results,

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

A Drifting-Games Analysis for Online Learning and Applications to Boosting

A Drifting-Games Analysis for Online Learning and Applications to Boosting A Drifting-Games Analysis for Online Learning and Applications to Boosting Haipeng Luo Department of Computer Science Princeton University Princeton, NJ 08540 haipengl@cs.princeton.edu Robert E. Schapire

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Southern California Optimization Day UC San

More information

Exponentiated Gradient Descent

Exponentiated Gradient Descent CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity,

More information

arxiv: v2 [stat.ml] 7 Sep 2018

arxiv: v2 [stat.ml] 7 Sep 2018 Projection-Free Bandit Convex Optimization Lin Chen 1, Mingrui Zhang 3 Amin Karbasi 1, 1 Yale Institute for Network Science, Department of Electrical Engineering, 3 Department of Statistics and Data Science,

More information

Learning with Large Number of Experts: Component Hedge Algorithm

Learning with Large Number of Experts: Component Hedge Algorithm Learning with Large Number of Experts: Component Hedge Algorithm Giulia DeSalvo and Vitaly Kuznetsov Courant Institute March 24th, 215 1 / 3 Learning with Large Number of Experts Regret of RWM is O( T

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Mathematical Theory of Networks and Systems

More information

A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints

A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints Hao Yu and Michael J. Neely Department of Electrical Engineering

More information

Logarithmic regret algorithms for online convex optimization

Logarithmic regret algorithms for online convex optimization Mach Learn (2007) 69: 169 192 DOI 10.1007/s10994-007-5016-8 Logarithmic regret algorithms for online convex optimization Elad Hazan Amit Agarwal Satyen Kale Received: 3 October 2006 / Revised: 8 May 2007

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Sham M. Kakade Shai Shalev-Shwartz Ambuj Tewari Toyota Technological Institute, 427 East 60th Street, Chicago, Illinois 60637, USA sham@tti-c.org shai@tti-c.org tewari@tti-c.org Keywords: Online learning,

More information

Regret in Online Combinatorial Optimization

Regret in Online Combinatorial Optimization Regret in Online Combinatorial Optimization Jean-Yves Audibert Imagine, Université Paris Est, and Sierra, CNRS/ENS/INRIA audibert@imagine.enpc.fr Sébastien Bubeck Department of Operations Research and

More information

Learning with Exploration

Learning with Exploration Learning with Exploration John Langford (Yahoo!) { With help from many } Austin, March 24, 2011 Yahoo! wants to interactively choose content and use the observed feedback to improve future content choices.

More information

Bandit Online Convex Optimization

Bandit Online Convex Optimization March 31, 2015 Outline 1 OCO vs Bandit OCO 2 Gradient Estimates 3 Oblivious Adversary 4 Reshaping for Improved Rates 5 Adaptive Adversary 6 Concluding Remarks Review of (Online) Convex Optimization Set-up

More information

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm he Algorithmic Foundations of Adaptive Data Analysis November, 207 Lecture 5-6 Lecturer: Aaron Roth Scribe: Aaron Roth he Multiplicative Weights Algorithm In this lecture, we define and analyze a classic,

More information

Online Kernel PCA with Entropic Matrix Updates

Online Kernel PCA with Entropic Matrix Updates Online Kernel PCA with Entropic Matrix Updates Dima Kuzmin Manfred K. Warmuth University of California - Santa Cruz ICML 2007, Corvallis, Oregon April 23, 2008 D. Kuzmin, M. Warmuth (UCSC) Online Kernel

More information

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds Proceedings of Machine Learning Research 76: 40, 207 Algorithmic Learning Theory 207 A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds Pooria

More information

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 Updated: March 23, 2010 Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 ICML 2009 Tutorial Survey of Boosting from an Optimization Perspective Part I: Entropy Regularized LPBoost Part II: Boosting from

More information

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

The Frank-Wolfe Algorithm:

The Frank-Wolfe Algorithm: The Frank-Wolfe Algorithm: New Results, and Connections to Statistical Boosting Paul Grigas, Robert Freund, and Rahul Mazumder http://web.mit.edu/rfreund/www/talks.html Massachusetts Institute of Technology

More information

A LINEARLY CONVERGENT CONDITIONAL GRADIENT ALGORITHM WITH APPLICATIONS TO ONLINE AND STOCHASTIC OPTIMIZATION

A LINEARLY CONVERGENT CONDITIONAL GRADIENT ALGORITHM WITH APPLICATIONS TO ONLINE AND STOCHASTIC OPTIMIZATION A LINEARLY CONVERGENT CONDITIONAL GRADIENT ALGORITHM WITH APPLICATIONS TO ONLINE AND STOCHASTIC OPTIMIZATION DAN GARBER AND ELAD HAZAN Abstract. Linear optimization is many times algorithmically simpler

More information

Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization

Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization H. Brendan McMahan Google, Inc. Abstract We prove that many mirror descent algorithms for online conve optimization

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Bandit Convex Optimization: T Regret in One Dimension

Bandit Convex Optimization: T Regret in One Dimension Bandit Convex Optimization: T Regret in One Dimension arxiv:1502.06398v1 [cs.lg 23 Feb 2015 Sébastien Bubeck Microsoft Research sebubeck@microsoft.com Tomer Koren Technion tomerk@technion.ac.il February

More information

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization JMLR: Workshop and Conference Proceedings vol (2010) 1 16 24th Annual Conference on Learning heory Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization

More information

Online Sparse Linear Regression

Online Sparse Linear Regression JMLR: Workshop and Conference Proceedings vol 49:1 11, 2016 Online Sparse Linear Regression Dean Foster Amazon DEAN@FOSTER.NET Satyen Kale Yahoo Research SATYEN@YAHOO-INC.COM Howard Karloff HOWARD@CC.GATECH.EDU

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Perceptron Mistake Bounds

Perceptron Mistake Bounds Perceptron Mistake Bounds Mehryar Mohri, and Afshin Rostamizadeh Google Research Courant Institute of Mathematical Sciences Abstract. We present a brief survey of existing mistake bounds and introduce

More information

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik Mirror Descent for Metric Learning Gautam Kunapuli Jude W. Shavlik And what do we have here? We have a metric learning algorithm that uses composite mirror descent (COMID): Unifying framework for metric

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

A Greedy Framework for First-Order Optimization

A Greedy Framework for First-Order Optimization A Greedy Framework for First-Order Optimization Jacob Steinhardt Department of Computer Science Stanford University Stanford, CA 94305 jsteinhardt@cs.stanford.edu Jonathan Huggins Department of EECS Massachusetts

More information

Logistic Regression Logistic

Logistic Regression Logistic Case Study 1: Estimating Click Probabilities L2 Regularization for Logistic Regression Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10 th,

More information

Logarithmic Regret Algorithms for Strongly Convex Repeated Games

Logarithmic Regret Algorithms for Strongly Convex Repeated Games Logarithmic Regret Algorithms for Strongly Convex Repeated Games Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci & Eng, The Hebrew University, Jerusalem 91904, Israel 2 Google Inc 1600

More information