Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Size: px
Start display at page:

Download "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer"

Transcription

1 Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011

2 Outline

3 Notation minimize a number of functions φ t (x) subject to the constraint x X. diameter of set in l 2 norm is D 2 sup x,y X x y 2 D = sup x X x x Π X (y) = argmin x y 2 2 x X

4 Online Convex Optimization Online convex optimization algorithm [Zinkevich, 2003]. projected gradient method takes steps g t φ t (x t ). the steps are x t+1 = Π X (x t ηg t ) (1)

5 Online Convex Optimization The regret of this algorithm is: R(T ) 2D T 2 g t 2 2 (2) t=1 This bound is tight [Abernethy et al., 2008].

6 Problem 1: l 1 regularization slow convergence rate means x t might not be sparse Regularized Dual Averaging and Mirror Descent are improved algorithms developed as optimization algorithms for offline(batch) problems

7 Problem 2: Adapting to Data sparse data, such as text classification gradient steps with fixed stepsize can take exponentially long for weights to update. adaptive method is like having a different learning rate for each feature.

8 Outline

9 Mirror Descent Projected gradient method is slow to converge Mirror descent [Beck and Teboulle, 2003] replaces the l 2 norm with a Bregman Divergence B ψ (w, v) = ψ(w) ψ(v) ψ(v), w v (3) The mirror descent update is: x t+1 = argmin x X converges faster (offline setting) B ψ (x, x t ) + η φ t(x t ), x x t (4)

10 Composite Objective Mirror Descent Usually minimize a function of the form: φ t = f t (x) + ϕ(x) (5) ϕ is the regularization term, which does not depend on t. the COMID modification [Duchi et al., 2010c] does not linearize around ϕ. g t f t (x t ) update rule: x t+1 = argmin x X η g t (x t ), x + B ψ (x, x t ) + ηϕ(x) (6)

11 COMID Regret This algorithm produces sparse solutions and the regret of COMID [Duchi et al., 2010c] is similar to the basic projected gradient algorithm. R φ (T ) 1 η B ψ(x, x 1 ) + η 2 T g t (x t ) 2 (7) t=1

12 Outline

13 RDA notation Regularized Dual Averaging [Xiao, 2010] keeps an average of gradients ḡ t = 1 2 t τ=1 we are minimizing (again) this function g τ φ t = f t (x) + ϕ(x) (8) RDA combines the loss f, a regularizer ϕ and a strongly convex term ψ.

14 Regularized Dual Averaging similarly to COMID, we separate out the regularizer so our solutions are sparse update for Regularized Dual Averaging (RDA) is: x t+1 = argmin x X η ḡ t, x + ηϕ(x) + 1 ψ(x) (9) t combine last two terms to perform a closed form update example: soft-thresholding for l 1 this update can be very aggressive

15 RDA The Regret of RDA [Xiao, 2010] is : R ϕ (T ) T ψ(x ) T T g t (x t ) 2 (10) t=1

16 Outline

17 Adaptive projections for projected gradient Before we had replace Π X with Π X (y) = argmin x y 2 2 (11) x X Π A X (y) = argmin x y, A(x y) (12) x X

18 Why Change the Norm? Slides are reproduced from [Boyd and Vandenberghe, 2004].

19

20

21

22 Regret Motivation COMID Regret R φ (T ) 1 η B ψ(x, x 1 ) + η 2 T g t (x t ) 2 (13) t=1 RDA Regret R φ (T ) T ψ(x ) T T g t (x t ) 2 (14) dominant term of each is the sum of previous gradients. t=1 make the sum smaller, we can lower regret

23 Notation for ADAGRAD collect all previous gradients g 1:t = [g 1, g 2,..., g t ] G = t τ=1 g τ g T τ A = G 1 2 or A = diag(g) 1 2 is a good choice[duchi et al., 2010a, Duchi et al., 2010b] focus on diagonal case g 1:t,i is the row corresponding a feature across all gradients d i=1 g 1:T,i 2 occurs in bound s t,i = g 1:t,i 2 H t = δi + diag(s t ) ψ t = 1 2 x, H tx

24 diagonal ADAGRAD The update for RDA becomes x t+1 = argmin x X x t+1 = argmin x X η ḡ t, x + ηϕ(x) + 1 ψ(x) (15) t η ḡ t, x + ηϕ(x) + 1 t ψ t(x) (16)

25 diagonal ADAGRAD For Mirror Descent x t+1 = argmin x X new update x t+1 = argmin x X η g t (x t ), x + B ψ (x, x t ) + ηϕ(x) (17) η g t (x t ), x + B ψt (x, x t ) + ηϕ(x) (18)

26 Lemma 5 bounds sum of gradient terms T d g t, diag(s t ) 1 g t 2 g 1:T,i 2 (19) t=1 i=1

27 Main Theorem δ max t g t regret of the primal-dual method is: R φ (T ) δ η x η x 2 regret of COMID is: R φ (T ) 1 2η max t T x x t 2 d g 1:T,i 2 + η i=1 d g 1:T,i 2 + η i=1 d g 1:T,i 2 i=1 (20) d g 1:T,i 2 i=1 (21)

28 Cleaning up theorem defining γ T = d g 1:T,i 2 (22) i=1 For primal-dual with η = x : R φ (T ) 2 x γ T + δ x 2 2 x 2 x γ T + δ x 1 (23) For composite mirror descent, with η = D 2 R φ (T ) d 2D g 1:T,i 2 = 2D γ T (24) i=1

29 Outline

30 Experiments comparisons are to Passive Aggressive and AROW algorithms these are adaptive, but arise from mistake bounds FOBOS is an earlier non-adaptive algorithm

31 Experiment 1 RCV1 RCV1 is a standard text dataset 4 categories documents 2 million features wordcounts (5000 features per vector) hinge loss, l 1 regularization

32 The important point here is that it not only performs well, but with far fewer features (sparser predictor vector).

33 Experiment 2: Image Ranking ranking hinge loss, l 1 regularization 2 million images 15,000 classes score is precision-at-k

34

35 Experiment 3: MNIST MNIST is standard digit recognition task 60,000 examples 30,000 features classifier is a Gaussian kernel machine

36

37

38 Experiment 4 Census UCI dataset, predict income level from features > $ features, binary features 199,523 training samples

39 Census

40

41 Conclusions RDA and COMID exploit regularizer better can derive adaptive version of these algorithms can achieve low regret good predictive accuracy better sparsity than comparable algorithms

42 Not Covered lowering regret for strongly convex functions regret bounds and algorithm for full matrix algorithm implementation details (Section 6 of tech report).

43 Abernethy, J., Bartlett, P., Rakhlin, A., and Tewari, A. (2008). Optimal strategies and minimax lower bounds for online convex games. In Proceedings of the Nineteenth Annual Conference on Computational Learning Theory. Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3): Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge Univ Pr. Duchi, J., Hazan, E., and Singer, Y. (2010a). Adaptive subgradient methods for online learning and stochastic optimization. UC Berkeley EECS Technical Report, 24:1 41.

44 Duchi, J., Hazan, E., and Singer, Y. (2010b). Adaptive subgradient methods for online learning and stochastic optimization. In Proceedings of the Twenty Third Annual Conference on Computational Learning Theory, number 1. Duchi, J., Shalev-Shwartz, S., Singer, Y., Tewari, A., and Chicago, T. (2010c). Composite objective mirror descent. In Proceedings of the Twenty Third Annual Conference on Computational Learning Theory, number 1. Xiao, L. (2010). Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization. Journal of Machine Learning Research, 11: Zinkevich, M. (2003). Online Convex Programming and Generalized Infinitesimal Gradient Ascent.

45 In International Conference on Machine Learning, pages

Composite Objective Mirror Descent

Composite Objective Mirror Descent Composite Objective Mirror Descent John C. Duchi 1,3 Shai Shalev-Shwartz 2 Yoram Singer 3 Ambuj Tewari 4 1 University of California, Berkeley 2 Hebrew University of Jerusalem, Israel 3 Google Research

More information

Notes on AdaGrad. Joseph Perla 2014

Notes on AdaGrad. Joseph Perla 2014 Notes on AdaGrad Joseph Perla 2014 1 Introduction Stochastic Gradient Descent (SGD) is a common online learning algorithm for optimizing convex (and often non-convex) functions in machine learning today.

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi Elad Hazan Yoram Singer Electrical Engineering and Computer Sciences University of California at Berkeley Technical

More information

Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization

Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization H. Brendan McMahan Google, Inc. Abstract We prove that many mirror descent algorithms for online conve optimization

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-4-2007 Adaptive Online Gradient Descent Peter Bartlett Elad Hazan Alexander Rakhlin University of Pennsylvania Follow

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

Adaptive Online Learning in Dynamic Environments

Adaptive Online Learning in Dynamic Environments Adaptive Online Learning in Dynamic Environments Lijun Zhang, Shiyin Lu, Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210023, China {zhanglj, lusy, zhouzh}@lamda.nju.edu.cn

More information

Accelerating Online Convex Optimization via Adaptive Prediction

Accelerating Online Convex Optimization via Adaptive Prediction Mehryar Mohri Courant Institute and Google Research New York, NY 10012 mohri@cims.nyu.edu Scott Yang Courant Institute New York, NY 10012 yangs@cims.nyu.edu Abstract We present a powerful general framework

More information

Adaptive Gradient Methods AdaGrad / Adam

Adaptive Gradient Methods AdaGrad / Adam Case Study 1: Estimating Click Probabilities Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 The Problem with GD (and SGD)

More information

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik Mirror Descent for Metric Learning Gautam Kunapuli Jude W. Shavlik And what do we have here? We have a metric learning algorithm that uses composite mirror descent (COMID): Unifying framework for metric

More information

No-Regret Algorithms for Unconstrained Online Convex Optimization

No-Regret Algorithms for Unconstrained Online Convex Optimization No-Regret Algorithms for Unconstrained Online Convex Optimization Matthew Streeter Duolingo, Inc. Pittsburgh, PA 153 matt@duolingo.com H. Brendan McMahan Google, Inc. Seattle, WA 98103 mcmahan@google.com

More information

The Online Approach to Machine Learning

The Online Approach to Machine Learning The Online Approach to Machine Learning Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Approach to ML 1 / 53 Summary 1 My beautiful regret 2 A supposedly fun game I

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

Convergence rate of SGD

Convergence rate of SGD Convergence rate of SGD heorem: (see Nemirovski et al 09 from readings) Let f be a strongly convex stochastic function Assume gradient of f is Lipschitz continuous and bounded hen, for step sizes: he expected

More information

Stochastic and Adversarial Online Learning without Hyperparameters

Stochastic and Adversarial Online Learning without Hyperparameters Stochastic and Adversarial Online Learning without Hyperparameters Ashok Cutkosky Department of Computer Science Stanford University ashokc@cs.stanford.edu Kwabena Boahen Department of Bioengineering Stanford

More information

The FTRL Algorithm with Strongly Convex Regularizers

The FTRL Algorithm with Strongly Convex Regularizers CSE599s, Spring 202, Online Learning Lecture 8-04/9/202 The FTRL Algorithm with Strongly Convex Regularizers Lecturer: Brandan McMahan Scribe: Tamara Bonaci Introduction In the last lecture, we talked

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Online Convex Optimization MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Online projected sub-gradient descent. Exponentiated Gradient (EG). Mirror descent.

More information

Stochastic Optimization Part I: Convex analysis and online stochastic optimization

Stochastic Optimization Part I: Convex analysis and online stochastic optimization Stochastic Optimization Part I: Convex analysis and online stochastic optimization Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Optimal Regularized Dual Averaging Methods for Stochastic Optimization

Optimal Regularized Dual Averaging Methods for Stochastic Optimization Optimal Regularized Dual Averaging Methods for Stochastic Optimization Xi Chen Machine Learning Department Carnegie Mellon University xichen@cs.cmu.edu Qihang Lin Javier Peña Tepper School of Business

More information

Composite Objective Mirror Descent

Composite Objective Mirror Descent Composite Objective Mirror Descent John C. Duchi UC Berkeley jduchi@cs.berkeley.edu Shai Shalev-Shartz Hebre University shais@cs.huji.ac.il Yoram Singer Google Research singer@google.com Ambuj Teari TTI

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

Online Passive-Aggressive Algorithms

Online Passive-Aggressive Algorithms Online Passive-Aggressive Algorithms Koby Crammer Ofer Dekel Shai Shalev-Shwartz Yoram Singer School of Computer Science & Engineering The Hebrew University, Jerusalem 91904, Israel {kobics,oferd,shais,singer}@cs.huji.ac.il

More information

Accelerating Stochastic Optimization

Accelerating Stochastic Optimization Accelerating Stochastic Optimization Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem and Mobileye Master Class at Tel-Aviv, Tel-Aviv University, November 2014 Shalev-Shwartz

More information

The Interplay Between Stability and Regret in Online Learning

The Interplay Between Stability and Regret in Online Learning The Interplay Between Stability and Regret in Online Learning Ankan Saha Department of Computer Science University of Chicago ankans@cs.uchicago.edu Prateek Jain Microsoft Research India prajain@microsoft.com

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Efficient Bandit Algorithms for Online Multiclass Prediction Sham Kakade, Shai Shalev-Shwartz and Ambuj Tewari Presented By: Nakul Verma Motivation In many learning applications, true class labels are

More information

Inverse Time Dependency in Convex Regularized Learning

Inverse Time Dependency in Convex Regularized Learning Inverse Time Dependency in Convex Regularized Learning Zeyuan Allen Zhu 2*, Weizhu Chen 2, Chenguang Zhu 23, Gang Wang 2, Haixun Wang 2, Zheng Chen 2 Fundamental Science Class, Department of Physics, Tsinghua

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

A survey: The convex optimization approach to regret minimization

A survey: The convex optimization approach to regret minimization A survey: The convex optimization approach to regret minimization Elad Hazan September 10, 2009 WORKING DRAFT Abstract A well studied and general setting for prediction and decision making is regret minimization

More information

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Zheng Qu University of Hong Kong CAM, 23-26 Aug 2016 Hong Kong based on joint work with Peter Richtarik and Dominique Cisba(University

More information

4.1 Online Convex Optimization

4.1 Online Convex Optimization CS/CNS/EE 53: Advanced Topics in Machine Learning Topic: Online Convex Optimization and Online SVM Lecturer: Daniel Golovin Scribe: Xiaodi Hou Date: Jan 3, 4. Online Convex Optimization Definition 4..

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Machine Learning Lecture 6 Note

Machine Learning Lecture 6 Note Machine Learning Lecture 6 Note Compiled by Abhi Ashutosh, Daniel Chen, and Yijun Xiao February 16, 2016 1 Pegasos Algorithm The Pegasos Algorithm looks very similar to the Perceptron Algorithm. In fact,

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

Advanced Topics in Machine Learning

Advanced Topics in Machine Learning Advanced Topics in Machine Learning 1. Learning SVMs / Primal Methods Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany 1 / 16 Outline 10. Linearization

More information

Online Passive-Aggressive Algorithms

Online Passive-Aggressive Algorithms Online Passive-Aggressive Algorithms Koby Crammer Ofer Dekel Shai Shalev-Shwartz Yoram Singer School of Computer Science & Engineering The Hebrew University, Jerusalem 91904, Israel {kobics,oferd,shais,singer}@cs.huji.ac.il

More information

Stochastic Optimization

Stochastic Optimization Introduction Related Work SGD Epoch-GD LM A DA NANJING UNIVERSITY Lijun Zhang Nanjing University, China May 26, 2017 Introduction Related Work SGD Epoch-GD Outline 1 Introduction 2 Related Work 3 Stochastic

More information

Stochastic Optimization: First order method

Stochastic Optimization: First order method Stochastic Optimization: First order method Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical and Computing Sciences JST, PRESTO

More information

Online Optimization with Gradual Variations

Online Optimization with Gradual Variations JMLR: Workshop and Conference Proceedings vol (0) 0 Online Optimization with Gradual Variations Chao-Kai Chiang, Tianbao Yang 3 Chia-Jung Lee Mehrdad Mahdavi 3 Chi-Jen Lu Rong Jin 3 Shenghuo Zhu 4 Institute

More information

Accelerated Gradient Method for Multi-Task Sparse Learning Problem

Accelerated Gradient Method for Multi-Task Sparse Learning Problem Accelerated Gradient Method for Multi-Task Sparse Learning Problem Xi Chen eike Pan James T. Kwok Jaime G. Carbonell School of Computer Science, Carnegie Mellon University Pittsburgh, U.S.A {xichen, jgc}@cs.cmu.edu

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Randomized Smoothing for Stochastic Optimization

Randomized Smoothing for Stochastic Optimization Randomized Smoothing for Stochastic Optimization John Duchi Peter Bartlett Martin Wainwright University of California, Berkeley NIPS Big Learn Workshop, December 2011 Duchi (UC Berkeley) Smoothing and

More information

On the Generalization Ability of Online Strongly Convex Programming Algorithms

On the Generalization Ability of Online Strongly Convex Programming Algorithms On the Generalization Ability of Online Strongly Convex Programming Algorithms Sham M. Kakade I Chicago Chicago, IL 60637 sham@tti-c.org Ambuj ewari I Chicago Chicago, IL 60637 tewari@tti-c.org Abstract

More information

Information geometry of mirror descent

Information geometry of mirror descent Information geometry of mirror descent Geometric Science of Information Anthea Monod Department of Statistical Science Duke University Information Initiative at Duke G. Raskutti (UW Madison) and S. Mukherjee

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

Stabilized Sparse Online Learning for Sparse Data

Stabilized Sparse Online Learning for Sparse Data Journal of Machine Learning Research 18 (2017) 1-36 Submitted 4/16; Revised 8/17; Published 12/17 Stabilized Sparse Online Learning for Sparse Data Yuting Ma Department of Statistics Columbia University

More information

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017 Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem

More information

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds

A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds Proceedings of Machine Learning Research 76: 40, 207 Algorithmic Learning Theory 207 A Modular Analysis of Adaptive (Non-)Convex Optimization: Optimism, Composite Objectives, and Variational Bounds Pooria

More information

Stochastic Methods for l 1 Regularized Loss Minimization

Stochastic Methods for l 1 Regularized Loss Minimization Shai Shalev-Shwartz Ambuj Tewari Toyota Technological Institute at Chicago, 6045 S Kenwood Ave, Chicago, IL 60637, USA SHAI@TTI-CORG TEWARI@TTI-CORG Abstract We describe and analyze two stochastic methods

More information

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent April 27, 2018 1 / 32 Outline 1) Moment and Nesterov s accelerated gradient descent 2) AdaGrad and RMSProp 4) Adam 5) Stochastic

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

Mini-Batch Primal and Dual Methods for SVMs

Mini-Batch Primal and Dual Methods for SVMs Mini-Batch Primal and Dual Methods for SVMs Peter Richtárik School of Mathematics The University of Edinburgh Coauthors: M. Takáč (Edinburgh), A. Bijral and N. Srebro (both TTI at Chicago) arxiv:1303.2314

More information

Multi-class classification via proximal mirror descent

Multi-class classification via proximal mirror descent Multi-class classification via proximal mirror descent Daria Reshetova Stanford EE department resh@stanford.edu Abstract We consider the problem of multi-class classification and a stochastic optimization

More information

One-Pass Multi-View Learning

One-Pass Multi-View Learning JMLR: Workshop and Conference Proceedings 45:407 422, 2015 ACML 2015 One-Pass Multi-View Learning Yue Zhu zhuy@lamda.nju.edu.cn Wei Gao gaow@lamda.nju.edu.cn Zhi-Hua Zhou zhouzh@lamda.nju.edu.cn National

More information

Simple Optimization, Bigger Models, and Faster Learning. Niao He

Simple Optimization, Bigger Models, and Faster Learning. Niao He Simple Optimization, Bigger Models, and Faster Learning Niao He Big Data Symposium, UIUC, 2016 Big Data, Big Picture Niao He (UIUC) 2/26 Big Data, Big Picture Niao He (UIUC) 3/26 Big Data, Big Picture

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Learning with stochastic proximal gradient

Learning with stochastic proximal gradient Learning with stochastic proximal gradient Lorenzo Rosasco DIBRIS, Università di Genova Via Dodecaneso, 35 16146 Genova, Italy lrosasco@mit.edu Silvia Villa, Băng Công Vũ Laboratory for Computational and

More information

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Jacob Steinhardt Percy Liang Stanford University {jsteinhardt,pliang}@cs.stanford.edu Jun 11, 2013 J. Steinhardt & P. Liang (Stanford)

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

Accelerating SVRG via second-order information

Accelerating SVRG via second-order information Accelerating via second-order information Ritesh Kolte Department of Electrical Engineering rkolte@stanford.edu Murat Erdogdu Department of Statistics erdogdu@stanford.edu Ayfer Özgür Department of Electrical

More information

Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms

Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms Pooria Joulani 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science, University of Alberta,

More information

Kernelized Perceptron Support Vector Machines

Kernelized Perceptron Support Vector Machines Kernelized Perceptron Support Vector Machines Emily Fox University of Washington February 13, 2017 What is the perceptron optimizing? 1 The perceptron algorithm [Rosenblatt 58, 62] Classification setting:

More information

Proximal and First-Order Methods for Convex Optimization

Proximal and First-Order Methods for Convex Optimization Proximal and First-Order Methods for Convex Optimization John C Duchi Yoram Singer January, 03 Abstract We describe the proximal method for minimization of convex functions We review classical results,

More information

Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning

Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning Francesco Orabona Yahoo! Labs New York, USA francesco@orabona.com Abstract Stochastic gradient descent algorithms

More information

Efficient Learning on Large Data Sets

Efficient Learning on Large Data Sets Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong Joint work with Mu Li, Chonghai Hu, Weike Pan, Bao-liang Lu Chinese Workshop on Machine Learning

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Tutorial: PART 2. Optimization for Machine Learning. Elad Hazan Princeton University. + help from Sanjeev Arora & Yoram Singer

Tutorial: PART 2. Optimization for Machine Learning. Elad Hazan Princeton University. + help from Sanjeev Arora & Yoram Singer Tutorial: PART 2 Optimization for Machine Learning Elad Hazan Princeton University + help from Sanjeev Arora & Yoram Singer Agenda 1. Learning as mathematical optimization Stochastic optimization, ERM,

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Bandits for Online Optimization

Bandits for Online Optimization Bandits for Online Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 1 / 16 The multiarmed bandit problem... K slot machines Each

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2013-14) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

Characterizing Implicit Bias in Terms of Optimization Geometry

Characterizing Implicit Bias in Terms of Optimization Geometry Suriya Gunasekar 1 Jason Lee Daniel Soudry 3 Nathan Srebro 1 Abstract We study the implicit bias of generic optimization methods, including mirror descent, natural gradient descent, and steepest descent

More information

Nostalgic Adam: Weighing more of the past gradients when designing the adaptive learning rate

Nostalgic Adam: Weighing more of the past gradients when designing the adaptive learning rate Nostalgic Adam: Weighing more of the past gradients when designing the adaptive learning rate Haiwen Huang School of Mathematical Sciences Peking University, Beijing, 100871 smshhw@pku.edu.cn Chang Wang

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Binary Classification / Perceptron

Binary Classification / Perceptron Binary Classification / Perceptron Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Supervised Learning Input: x 1, y 1,, (x n, y n ) x i is the i th data

More information

Online and Stochastic Learning with a Human Cognitive Bias

Online and Stochastic Learning with a Human Cognitive Bias Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Online and Stochastic Learning with a Human Cognitive Bias Hidekazu Oiwa The University of Tokyo and JSPS Research Fellow 7-3-1

More information

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization JMLR: Workshop and Conference Proceedings vol (2010) 1 16 24th Annual Conference on Learning heory Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization

More information

An Online Convex Optimization Approach to Blackwell s Approachability

An Online Convex Optimization Approach to Blackwell s Approachability Journal of Machine Learning Research 17 (2016) 1-23 Submitted 7/15; Revised 6/16; Published 8/16 An Online Convex Optimization Approach to Blackwell s Approachability Nahum Shimkin Faculty of Electrical

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

A simpler unified analysis of Budget Perceptrons

A simpler unified analysis of Budget Perceptrons Ilya Sutskever University of Toronto, 6 King s College Rd., Toronto, Ontario, M5S 3G4, Canada ILYA@CS.UTORONTO.CA Abstract The kernel Perceptron is an appealing online learning algorithm that has a drawback:

More information

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization Alexander Rakhlin University of Pennsylvania Ohad Shamir Microsoft Research New England Karthik Sridharan University of Pennsylvania

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

A Framework of Sparse Online Learning and Its Applications

A Framework of Sparse Online Learning and Its Applications A Framework of Sparse Online Learning and Its Applications Dayong Wang, Pengcheng Wu, Peilin Zhao, and Steven C.H. Hoi, arxiv:7.7v [cs.lg] 2 Jul Abstract The amount of data in our society has been exploding

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method

Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method aiji Suzuki s-taiji@stat.t.u-tokyo.ac.jp Department of Mathematical Informatics, he University of okyo, okyo

More information

Lecture 25: November 27

Lecture 25: November 27 10-725: Optimization Fall 2012 Lecture 25: November 27 Lecturer: Ryan Tibshirani Scribes: Matt Wytock, Supreeth Achar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Online Passive- Aggressive Algorithms

Online Passive- Aggressive Algorithms Online Passive- Aggressive Algorithms Jean-Baptiste Behuet 28/11/2007 Tutor: Eneldo Loza Mencía Seminar aus Maschinellem Lernen WS07/08 Overview Online algorithms Online Binary Classification Problem Perceptron

More information

Learnability, Stability, Regularization and Strong Convexity

Learnability, Stability, Regularization and Strong Convexity Learnability, Stability, Regularization and Strong Convexity Nati Srebro Shai Shalev-Shwartz HUJI Ohad Shamir Weizmann Karthik Sridharan Cornell Ambuj Tewari Michigan Toyota Technological Institute Chicago

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Zaiyi Chen * Yi Xu * Enhong Chen Tianbao Yang Abstract Although the convergence rates of existing variants of ADAGRAD have a better dependence on the number of iterations under the strong convexity condition,

More information

Sparsity Regularization

Sparsity Regularization Sparsity Regularization Bangti Jin Course Inverse Problems & Imaging 1 / 41 Outline 1 Motivation: sparsity? 2 Mathematical preliminaries 3 l 1 solvers 2 / 41 problem setup finite-dimensional formulation

More information