INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

Size: px
Start display at page:

Download "INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from"

Transcription

1 INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 23 Sep / 50

2 Administrativa Ass t 2 to be posted tomorrow 24 Sep, due Sat 9 Oct, 1pm (late submission permitted until Sun 10 Oct at 11 p.m.) No class Tue 12 Oct (midterm break) The Midterm Examination is on Thu Oct 14 from 11:40 to 12:55, in Olin 165. It will be open book. Topics examined include assignments, lectures and discussion class readings before the midterm break. According to the registrar ( ), final exam is Fri 17 Dec 2:00-4:30 pm (location TBD). Early opportunity to take exam will be Mon 13 Dec, 2:00pm 2/ 50

3 Overview 1 Recap 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Discussion 2, cont d 5 SVD Intuition 3/ 50

4 Outline 1 Recap 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Discussion 2, cont d 5 SVD Intuition 4/ 50

5 How do we compute the top k in ranking? In many applications, we don t need a complete ranking. We just need the top k for a small k (e.g., k = 100). If we don t need a complete ranking, is there an efficient way of computing just the top k? Naive: Compute scores for all N documents Sort Return the top k What s bad about this? Alternative? 5/ 50

6 Cluster pruning Cluster docs in preprocessing step Pick N leaders For non-leaders, find nearest leader (expect N / leader) For query q, find closest leader L ( N computations) Rank L and followers or generalize: b 1 closest leaders, and then b 2 leaders closest to query 6/ 50

7 7/ 50

8 Non-docID ordering of postings lists So far: postings lists have been ordered according to docid. Alternative: a query-independent measure of goodness of a page. Example: PageRank g(d) of page d, a measure of how many good pages hyperlink to d Order documents in postings lists according to PageRank: g(d 1 ) > g(d 2 ) > g(d 3 ) >... Define composite score of a document: net-score(q,d) = g(d) + cos(q,d) This scheme supports early termination: We do not have to process postings lists in their entirety to find top k. 8/ 50

9 Precision and recall Precision (P) is the fraction of retrieved documents that are relevant Precision = #(relevant items retrieved) #(retrieved items) = P(relevant retrieved) Recall (R) is the fraction of relevant documents that are retrieved Recall = #(relevant items retrieved) #(relevant items) = P(retrieved relevant) 9/ 50

10 A precision-recall curve Precision Recall Each point corresponds to a result for the top k ranked hits (k = 1,2,3,4,...). Interpolation (in red): Take maximum of all future points Rationale for interpolation: The user is willing to look at more stuff if both precision and recall get better. Questions? 10/ 50

11 Averaged 11-point precision/recall graph Precision Recall Compute interpolated precision at recall levels 0.0, 0.1, 0.2,... Do this for each of the queries in the evaluation benchmark Average over queries This measure measures performance at all recall levels. The curve is typical of performance levels at TREC. Note that performance is not very good! 11/ 50

12 Outline 1 Recap 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Discussion 2, cont d 5 SVD Intuition 12/ 50

13 Precision/recall tradeoff You can increase recall by returning more docs. Recall is a non-decreasing function of the number of docs retrieved. A system that returns all docs has 100% recall! The converse is also true (usually): It s easy to get high precision for very low recall. Suppose the document with the largest score is relevant. How can we maximize precision? 13/ 50

14 A combined measure: F F allows us to trade off precision against recall. 1 F = α 1 P + (1 α) 1 R = (β2 + 1)PR β 2 P + R where β 2 = 1 α α α [0,1] and thus β 2 [0, ] Most frequently used: balanced F with β = 1 or α = 0.5 This is the harmonic mean of P and R: 1 F = 1 2 ( 1 P + 1 R ) What value range of β weights recall higher than precision? 14/ 50

15 F: Example relevant not relevant retrieved not retrieved 60 1,000,000 1,000, ,000,040 1,000,120 P = 20/( ) = 1/3 R = 20/( ) = 1/4 F 1 = = 2/ / 50

16 Accuracy Why do we use complex measures like precision, recall, and F? Why not something simple like accuracy? Accuracy is the fraction of decisions (relevant/nonrelevant) that are correct. In terms of the contingency table above, accuracy = (TP + TN)/(TP + FP + FN + TN). Why is accuracy not a useful measure for web information retrieval? 16/ 50

17 Exercise Compute precision, recall and F 1 for this result set: relevant not relevant retrieved 18 2 not retrieved 82 1,000,000,000 The snoogle search engine below always returns 0 results ( 0 matching results found ), regardless of the query. 17/ 50

18 Why accuracy is not a useful measure in IR Simple trick to maximize accuracy in IR: always say no and return nothing You then get 99.99% accuracy on most queries. Searchers on the web (and in IR in general) want to find something and have a certain tolerance for junk. It s better to return some bad hits as long as you return something. We use precision, recall, and F for evaluation, not accuracy. 18/ 50

19 F: Why harmonic mean? Why don t we use a different mean of P and R as a measure? e.g., the arithmetic mean The simple (arithmetic) mean is 50% for return-everything search engine, which is too high. Desideratum: Punish really bad performance on either precision or recall. Taking the minimum achieves this. But minimum is not smooth and hard to weight. F (harmonic mean) is a kind of smooth minimum. 19/ 50

20 Difficulties in using precision, recall and F We need relevance judgments for information-need-document pairs but they are expensive to produce. There are some alternatives to using precision/recall and having to produce relevance judgments 20/ 50

21 Variance of measures like precision/recall For a test collection, it is usual that a system does badly on some information needs (e.g., P = 0.2 at R = 0.1) and really well on others (e.g., P = 0.95 at R = 0.8). Indeed, it is usually the case that the variance of the same system across queries is much greater than the variance of different systems on the same query. That is, there are easy information needs and hard ones. 21/ 50

22 Outline 1 Recap 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Discussion 2, cont d 5 SVD Intuition 22/ 50

23 What we need for a benchmark A collection of documents Documents must be representative of the documents we expect to see in reality. A collection of information needs... incorrectly but necessarily called queries Information needs must be representative of the information needs we expect to see in reality. Human relevance assessments We need to hire/pay judges or assessors to do this. Expensive, time-consuming Judges must be representative of the users we expect to see in reality. 23/ 50

24 Standard relevance benchmark: Cranfield Pioneering: first testbed allowing precise quantitative measures of information retrieval effectiveness Late 1950s, UK 1398 abstracts of aerodynamics journal articles, a set of 225 queries, exhaustive relevance judgments of all query-document-pairs Too small, too untypical for serious IR evaluation today 24/ 50

25 Standard relevance benchmark: TREC TREC = Text Retrieval Conference (TREC) Organized by the U.S. National Institute of Standards and Technology (NIST) TREC is actually a set of several different relevance benchmarks. Best known: TREC Ad Hoc, used for first 8 TREC evaluations between 1992 and million documents, mainly newswire articles, 450 information needs No exhaustive relevance judgments too expensive Rather, NIST assessors relevance judgments are available only for the documents that were among the top k returned for some system which was entered in the TREC evaluation for which the information need was developed. 25/ 50

26 Standard relevance benchmarks: Others GOV2 Another TREC/NIST collection 25 million web pages Used to be largest collection that is easily available But still 3 orders of magnitude smaller than what Google/Yahoo/MSN index NTCIR East Asian language and cross-language information retrieval Cross Language Evaluation Forum (CLEF) This evaluation series has concentrated on European languages and cross-language information retrieval. Many others 26/ 50

27 Validity of relevance assessments Relevance assessments are only usable if they are consistent. If they are not consistent, then there is no truth and experiments are not repeatable. How can we measure this consistency or agreement among judges? Kappa measure 27/ 50

28 Kappa measure Kappa is measure of how much judges agree or disagree. Designed for categorical judgments Corrects for chance agreement P(A) = proportion of time judges agree P(E) = what agreement would we get by chance κ = P(A) P(E) 1 P(E) κ =? for (i) chance agreement (ii) total agreement 28/ 50

29 Kappa measure (2) Values of κ in the interval [2/3,1.0] are seen as acceptable. With smaller values: need to redesign relevance assessment methodology used etc. 29/ 50

30 Calculating the kappa statistic Judge 2 Relevance Yes No Total Judge 1 Yes Relevance No Total Observed proportion of the times the judges agreed P(A) = ( )/400 = 370/400 = Pooled marginals P(nonrelevant) = ( )/( ) = 170/800 = P(relevant) = ( )/( ) = 630/800 = Probability that the two judges agreed by chance P(E) = P(nonrelevant) 2 + P(relevant) 2 = = Kappa statistic κ = (P(A) P(E))/(1 P(E)) = ( )/( ) = (still in acceptable range) 30/ 50

31 Interjudge agreement at TREC information number of disagreements need docs judged fair range (.67.8 ) 31/ 50

32 Impact of interjudge disagreement Judges disagree a lot. Does that mean that the results of information retrieval experiments are meaningless? No. Large impact on absolute performance numbers Virtually no impact on ranking of systems Supposes we want to know if algorithm A is better than algorithm B An information retrieval experiment will give us a reliable answer to this question......even if there is a lot of disagreement between judges. 32/ 50

33 Evaluation at large search engines Recall is difficult to measure on the web Search engines often use precision at top k, e.g., k = or use measures that reward you more for getting rank 1 right than for getting rank 10 right. Search engines also use non-relevance-based measures. Example 1: clickthrough on first result Not very reliable if you look at a single clickthrough (you may realize after clicking that the summary was misleading and the document is nonrelevant) but pretty reliable in the aggregate. Example 2: Ongoing studies of user behavior in the lab recall last lecture Example 3: A/B testing 33/ 50

34 A/B testing Purpose: Test a single innovation Prerequisite: You have a large search engine up and running. Have most users use old system Divert a small proportion of traffic (e.g., 1%) to the new system that includes the innovation Evaluate with an automatic measure like clickthrough on first result Now we can directly see if the innovation does improve user happiness. Probably the evaluation methodology that large search engines trust most 34/ 50

35 Critique of pure relevance We ve defined relevance for an isolated query-document pair. Alternative definition: marginal relevance The marginal relevance of a document at position k in the result list is the additional information it contributes over and above the information that was contained in documents d 1...d k 1. Exercise Why is marginal relevance a more realistic measure of user happiness? Give an example where a non-marginal measure like precision or recall is a misleading measure of user happiness, but marginal relevance is a good measure. In a practical application, what is the difficulty of using marginal measures instead of non-marginal measures? 35/ 50

36 Outline 1 Recap 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Discussion 2, cont d 5 SVD Intuition 36/ 50

37 Discussion 2 K. Sparck Jones, A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28, 11-21, Letter by Stephen Robertson and reply by Karen Sparck Jones, Journal of Documentation 28, , / 50

38 Exhaustivity and specificity What are the semantic and statistical interpretations of specificity? Semantic: tea, coffee, cocoa (more specific, smaller # docs) beverage (less specific, larger # docs) Statistical: specificity a function of term usage, frequently used implies non-specific (even if has specific meaning). Exhaustivity of a document description is determined by the number of controlled vocabulary terms assigned. Reject frequently occurring terms? via conjunction (but according to item C table I, average number of matched terms smaller than request, so would reduce recall) remove them entirely (again hurts recall, needed for many relevant documents) What is graphed in figure 1 and what does it illustrate? (Why aren t axes labelled?) 38/ 50

39 idf weight Spärck Jones defines f (n) = m such that 2 m 1 < n <= 2 m (In other words f (n) = log 2 (n), where x denotes the smallest integer not less than x, equivalent to one plus the greatest integer less than x) and suggests weight = f (N) f (n) + 1 e.g. for N = 200 documents, f (N) = 8 (2 8 = 256) n = 90, f (n) = 7 (2 7 = 128), hence weight = = 2 n = 3, f (n) = 2 (2 2 = 4), hence weight = = 7 overall weight for query is then = 9 +1 so that terms occurring in more than roughly half the documents in the corpus not given zero weight (for N = 200, anything in more than 128 documents) 39/ 50

40 idf weight, modified Robertson: Spärck Jones weight f (N) f (n) + 1 log 2 (N/n) + 1 Note that n/n is the probability an item chosen (at random) will contain the term. Suppose an item contains a,b,c in common with query, and probabilities are p a, p b, p c. Then weight assigned to the document is log(1/p a ) + log(1/p b ) + log(1/p c ) = log(1/p a p b p c ) (probability that doc will randomly contain all three terms a,b,c under what assumption?) quantifies statement: less likely that given combination of terms occurs, more likely relevant to query (theoretical justification for logarithmic idf weights) 40/ 50

41 Outline 1 Recap 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Discussion 2, cont d 5 SVD Intuition 41/ 50

42 Netflix challenge, Next 9 slides adapted from ( Simon Funk = Brandyn Webb) simon/journal/ html See also popular article: Netflix provided 100M ratings (from 1 to 5) of 17K movies by 500K users. i.e., 100 million (User,Movie,Rating) s of the form (105932,14002,3) Predict (User,Movie,?) not in the database (how would the given User rate the given Movie?) $50k incentive to the best each year, and $1M to the first to beat a set target (10% better than Netflix) 42/ 50

43 User-Movie Rating Matrix R um Visualize as large sparse 500k 17k user-movie matrix R um, with (u,m) th matrix element containing rating (1 5) by user u for movie m. About 8.5B entries total, so data in only 1 of 85 = 1.2%. Certain specified? elements constitute a quiz: make best guess P um at missing ratings. Use mean squared error (mse) as measure of accuracy: guess 1.5 and actual is 2, penalty = (2 1.5) 2 = Then sum over penalties for all guesses (including optional sqrt): rmse E = (R um P um ) 2 u,m 43/ 50

44 Linear Dependencies If one had the full 8.5 billion ratings (and many weary users ), they would contains many regularities, i.e., not consist of 8.5B independent and unrelated ratings. Describe each movie in terms of some basic attributes such as overall quality action or comedy actors... Describe user preferences in terms of complementary attributes or preferences they rate high or low prefer action or comedy preferred actors... 44/ 50

45 Model the data Explain 8.5 billion ratings by far less than 8.5 billion numbers (e.g., a single number specifying movie s action content can explain the attraction to a few million action-buffs) Define model (for data with smaller number of parameters, infer parameters from the data, SVD ( = singular value decomposition) reduces in this case to the assumption that user s overall rating is composed of a sum of preferences over movie features 45/ 50

46 Example: Just one Feature Suppose only 1 feature, overall quality, and 1 corresponding user tendency to rate high/low. Three users: U u = (1,2,3) Five movies: V m = (1,1,3,2,1) Predicted rating matrix: P um = U u V m = Explain 15 data points with only 7 parameters (only one overall scale) 46/ 50

47 More Features Now suppose 40 features: Each movie described by 40 values, specifying for each feature degree to which contained in movie; Each user described by 40 values, specifying degree to which each feature preferred by user. To calculate rating, sum products of each user preference multiplied by the corresponding movie feature. E.g., movie Terminator might be (action=1.2, chickflick=-1,...), and user Joe might be (action=3, chickflick=-1,...). Combine to find Joe likes Terminator with rating ( 1) ( 1) +... = (Negative numbers OK: Terminator is anti-chickflick, Joe has aversion to chickflicks, so Terminator actively scores positive points with Joe for being decidedly un-chickflicky. ) 47/ 50

48 Concise Model Model requires roughly 40 (500K+17K) values, or about 20M: less than the original 8.5B by a factor of 400. Predicted ratings: P um = r Uu f Vm f f =1 Uu f is the preference of user u for feature f, V m f is the degree to which movie m contains feature f (up to r = 40). Original matrix has been decomposed into product of two rectangular matrices: the 500, user preference matrix U f u, and the 40 17,000 movie feature matrix V f m. (Matrix multiplication just performs the products and sums described above, resulting in an approximation to the original 500,000 17,000 rating matrix.) 48/ 50

49 ( ) }{{} P um = U u V m = 2 = }{{}}{{} P um = r f =1 Uf u Vm f = }{{} r m = }{{} } {{ 4 4 } n r n m 49/ 50

50 How to calculate model parameters Singular value decomposition (SVD) is the mathematical method for finding the two smaller matrices which minimize the resulting approximation error (rmse) to original matrix. The rank-40 SVD of the 8.5B matrix gives the best approximation within framework of 40 feature user-movie-rating model. Difficult to calculate SVD of large matrix. Moreover don t have all 8.5B entries (instead have 100M entries and 8.4B empty cells) But can train parameters by following derivative of the approximation error (steepest descent). (also means the unknown error on the 8.4B empty matrix elements can be ignored for a fully known matrix, end result coincides exactly with the SVD) 50/ 50

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 9: Collaborative Filtering, SVD, and Linear Algebra Review Paul Ginsparg

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 20 Sep 2011

More information

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review INFO 4300 / CS4300 Information Retrieval IR 9: Linear Algebra Review Paul Ginsparg Cornell University, Ithaca, NY 24 Sep 2009 1/ 23 Overview 1 Recap 2 Matrix basics 3 Matrix Decompositions 4 Discussion

More information

Information Retrieval Tutorial 6: Evaluation

Information Retrieval Tutorial 6: Evaluation Information Retrieval Tutorial 6: Evaluation Professor: Michel Schellekens TA: Ang Gao University College Cork 2012-11-30 IR Evaluation 1 / 19 Overview IR Evaluation 2 / 19 Precision and recall Precision

More information

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting Outline for today Information Retrieval Efficient Scoring and Ranking Recap on ranked retrieval Jörg Tiedemann jorg.tiedemann@lingfil.uu.se Department of Linguistics and Philology Uppsala University Efficient

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 26/26: Feature Selection and Exam Overview Paul Ginsparg Cornell University,

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 5: Scoring, Term Weighting, The Vector Space Model II Paul Ginsparg Cornell

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 12: Latent Semantic Indexing and Relevance Feedback Paul Ginsparg Cornell

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Information Retrieval

Information Retrieval Introduction to Information CS276: Information and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing Ch. 18 Today s topic Latent Semantic Indexing Term-document matrices

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 13: Query Expansion and Probabilistic Retrieval Paul Ginsparg Cornell University,

More information

1 Information retrieval fundamentals

1 Information retrieval fundamentals CS 630 Lecture 1: 01/26/2006 Lecturer: Lillian Lee Scribes: Asif-ul Haque, Benyah Shaparenko This lecture focuses on the following topics Information retrieval fundamentals Vector Space Model (VSM) Deriving

More information

Data Mining Recitation Notes Week 3

Data Mining Recitation Notes Week 3 Data Mining Recitation Notes Week 3 Jack Rae January 28, 2013 1 Information Retrieval Given a set of documents, pull the (k) most similar document(s) to a given query. 1.1 Setup Say we have D documents

More information

Ranked Retrieval (2)

Ranked Retrieval (2) Text Technologies for Data Science INFR11145 Ranked Retrieval (2) Instructor: Walid Magdy 31-Oct-2017 Lecture Objectives Learn about Probabilistic models BM25 Learn about LM for IR 2 1 Recall: VSM & TFIDF

More information

Linear Algebra Background

Linear Algebra Background CS76A Text Retrieval and Mining Lecture 5 Recap: Clustering Hierarchical clustering Agglomerative clustering techniques Evaluation Term vs. document space clustering Multi-lingual docs Feature selection

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 11: Topic Models Acknowledgments: Some slides were adapted from Chris Manning, and from Thomas Hoffman 1 Plan for next few weeks Project 1: done (submit by Friday).

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Chap 2: Classical models for information retrieval

Chap 2: Classical models for information retrieval Chap 2: Classical models for information retrieval Jean-Pierre Chevallet & Philippe Mulhem LIG-MRIM Sept 2016 Jean-Pierre Chevallet & Philippe Mulhem Models of IR 1 / 81 Outline Basic IR Models 1 Basic

More information

Evaluation Metrics. Jaime Arguello INLS 509: Information Retrieval March 25, Monday, March 25, 13

Evaluation Metrics. Jaime Arguello INLS 509: Information Retrieval March 25, Monday, March 25, 13 Evaluation Metrics Jaime Arguello INLS 509: Information Retrieval jarguell@email.unc.edu March 25, 2013 1 Batch Evaluation evaluation metrics At this point, we have a set of queries, with identified relevant

More information

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides CSE 494/598 Lecture-6: Latent Semantic Indexing LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Homework-1 and Quiz-1 Project part-2 released

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Fall 2016 CS646: Information Retrieval Lecture 6 Boolean Search and Vector Space Model Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Outline Today Boolean Retrieval Vector Space Model Latent

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 11: Probabilistic Information Retrieval Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 3 Modeling Introduction to IR Models Basic Concepts The Boolean Model Term Weighting The Vector Model Probabilistic Model Retrieval Evaluation, Modern Information Retrieval,

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 18: Latent Semantic Indexing Hinrich Schütze Center for Information and Language Processing, University of Munich 2013-07-10 1/43

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Midterm Examination Practice

Midterm Examination Practice University of Illinois at Urbana-Champaign Midterm Examination Practice CS598CXZ Advanced Topics in Information Retrieval (Fall 2013) Professor ChengXiang Zhai 1. Basic IR evaluation measures: The following

More information

Gaussian Models

Gaussian Models Gaussian Models ddebarr@uw.edu 2016-04-28 Agenda Introduction Gaussian Discriminant Analysis Inference Linear Gaussian Systems The Wishart Distribution Inferring Parameters Introduction Gaussian Density

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University 2 Often, our data can be represented by an m-by-n matrix. And this matrix can be closely approximated by the product of two matrices that share a small common dimension

More information

Behavioral Data Mining. Lecture 2

Behavioral Data Mining. Lecture 2 Behavioral Data Mining Lecture 2 Autonomy Corp Bayes Theorem Bayes Theorem P(A B) = probability of A given that B is true. P(A B) = P(B A)P(A) P(B) In practice we are most interested in dealing with events

More information

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2017

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2017 CPSC 340: Machine Learning and Data Mining Regularization Fall 2017 Assignment 2 Admin 2 late days to hand in tonight, answers posted tomorrow morning. Extra office hours Thursday at 4pm (ICICS 246). Midterm

More information

Boolean and Vector Space Retrieval Models

Boolean and Vector Space Retrieval Models Boolean and Vector Space Retrieval Models Many slides in this section are adapted from Prof. Joydeep Ghosh (UT ECE) who in turn adapted them from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) 1

More information

Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Information Retrieval and Web Search Engines Lecture 4: Probabilistic Retrieval Models April 29, 2010 Wolf-Tilo Balke and Joachim Selke Institut für Informationssysteme Technische Universität Braunschweig

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture; IIR Sections

More information

CS 188: Artificial Intelligence Spring Today

CS 188: Artificial Intelligence Spring Today CS 188: Artificial Intelligence Spring 2006 Lecture 9: Naïve Bayes 2/14/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Bayes rule Today Expectations and utilities Naïve

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Words vs. Terms. Words vs. Terms. Words vs. Terms. Information Retrieval cares about terms You search for em, Google indexes em Query:

Words vs. Terms. Words vs. Terms. Words vs. Terms. Information Retrieval cares about terms You search for em, Google indexes em Query: Words vs. Terms Words vs. Terms Information Retrieval cares about You search for em, Google indexes em Query: What kind of monkeys live in Costa Rica? 600.465 - Intro to NLP - J. Eisner 1 600.465 - Intro

More information

IR: Information Retrieval

IR: Information Retrieval / 44 IR: Information Retrieval FIB, Master in Innovation and Research in Informatics Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá Department of Computer Science, UPC

More information

University of Illinois at Urbana-Champaign. Midterm Examination

University of Illinois at Urbana-Champaign. Midterm Examination University of Illinois at Urbana-Champaign Midterm Examination CS410 Introduction to Text Information Systems Professor ChengXiang Zhai TA: Azadeh Shakery Time: 2:00 3:15pm, Mar. 14, 2007 Place: Room 1105,

More information

Lecture 3: Pivoted Document Length Normalization

Lecture 3: Pivoted Document Length Normalization CS 6740: Advanced Language Technologies February 4, 2010 Lecture 3: Pivoted Document Length Normalization Lecturer: Lillian Lee Scribes: Lakshmi Ganesh, Navin Sivakumar Abstract In this lecture, we examine

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Ranked retrieval Thus far, our queries have all been Boolean. Documents either

More information

CS246 Final Exam, Winter 2011

CS246 Final Exam, Winter 2011 CS246 Final Exam, Winter 2011 1. Your name and student ID. Name:... Student ID:... 2. I agree to comply with Stanford Honor Code. Signature:... 3. There should be 17 numbered pages in this exam (including

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Naive Bayes Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Introduction Classification = supervised method for

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002 CS276A Text Information Retrieval, Mining, and Exploitation Lecture 4 15 Oct 2002 Recap of last time Index size Index construction techniques Dynamic indices Real world considerations 2 Back of the envelope

More information

Evaluation. Brian Thompson slides by Philipp Koehn. 25 September 2018

Evaluation. Brian Thompson slides by Philipp Koehn. 25 September 2018 Evaluation Brian Thompson slides by Philipp Koehn 25 September 2018 Evaluation 1 How good is a given machine translation system? Hard problem, since many different translations acceptable semantic equivalence

More information

Lecture 3: Probabilistic Retrieval Models

Lecture 3: Probabilistic Retrieval Models Probabilistic Retrieval Models Information Retrieval and Web Search Engines Lecture 3: Probabilistic Retrieval Models November 5 th, 2013 Wolf-Tilo Balke and Kinda El Maarry Institut für Informationssysteme

More information

Course Staff. Textbook

Course Staff. Textbook Course Staff CS311H: Discrete Mathematics Intro and Propositional Logic Instructor: Işıl Dillig Instructor: Prof. Işıl Dillig TAs: Jacob Van Geffen, Varun Adiga, Akshay Gupta Class meets every Monday,

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Sample Examination Questions Denis Helic KTI, TU Graz Jan 16, 2014 Denis Helic (KTI, TU Graz) KDDM1 Jan 16, 2014 1 / 22 Exercise Suppose we have a utility

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 IIR 18: Latent Semantic Indexing Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

How Latent Semantic Indexing Solves the Pachyderm Problem

How Latent Semantic Indexing Solves the Pachyderm Problem How Latent Semantic Indexing Solves the Pachyderm Problem Michael A. Covington Institute for Artificial Intelligence The University of Georgia 2011 1 Introduction Here I present a brief mathematical demonstration

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

naive bayes document classification

naive bayes document classification naive bayes document classification October 31, 2018 naive bayes document classification 1 / 50 Overview 1 Text classification 2 Naive Bayes 3 NB theory 4 Evaluation of TC naive bayes document classification

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan Term Weighting and the Vector Space Model borrowing from: Pandu Nayak and Prabhakar Raghavan IIR Sections 6.2 6.4.3 Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes

More information

More Smoothing, Tuning, and Evaluation

More Smoothing, Tuning, and Evaluation More Smoothing, Tuning, and Evaluation Nathan Schneider (slides adapted from Henry Thompson, Alex Lascarides, Chris Dyer, Noah Smith, et al.) ENLP 21 September 2016 1 Review: 2 Naïve Bayes Classifier w

More information

13 Searching the Web with the SVD

13 Searching the Web with the SVD 13 Searching the Web with the SVD 13.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

9 Searching the Internet with the SVD

9 Searching the Internet with the SVD 9 Searching the Internet with the SVD 9.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

Dimensionality Reduction

Dimensionality Reduction 394 Chapter 11 Dimensionality Reduction There are many sources of data that can be viewed as a large matrix. We saw in Chapter 5 how the Web can be represented as a transition matrix. In Chapter 9, the

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018 From Binary to Multiclass Classification CS 6961: Structured Prediction Spring 2018 1 So far: Binary Classification We have seen linear models Learning algorithms Perceptron SVM Logistic Regression Prediction

More information

Linear Systems. Carlo Tomasi

Linear Systems. Carlo Tomasi Linear Systems Carlo Tomasi Section 1 characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix and of

More information

CS425: Algorithms for Web Scale Data

CS425: Algorithms for Web Scale Data CS: Algorithms for Web Scale Data Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS. The original slides can be accessed at: www.mmds.org Customer

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 11 Oct, 3, 2016 CPSC 422, Lecture 11 Slide 1 422 big picture: Where are we? Query Planning Deterministic Logics First Order Logics Ontologies

More information

Lecture 5: Web Searching using the SVD

Lecture 5: Web Searching using the SVD Lecture 5: Web Searching using the SVD Information Retrieval Over the last 2 years the number of internet users has grown exponentially with time; see Figure. Trying to extract information from this exponentially

More information

Lecture 5: Introduction to (Robertson/Spärck Jones) Probabilistic Retrieval

Lecture 5: Introduction to (Robertson/Spärck Jones) Probabilistic Retrieval Lecture 5: Introduction to (Robertson/Spärck Jones) Probabilistic Retrieval Scribes: Ellis Weng, Andrew Owens February 11, 2010 1 Introduction In this lecture, we will introduce our second paradigm for

More information

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1 Retrieval by Content Part 2: Text Retrieval Term Frequency and Inverse Document Frequency Srihari: CSE 626 1 Text Retrieval Retrieval of text-based information is referred to as Information Retrieval (IR)

More information

ˆ The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

ˆ The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Summer 2015 Introduction to Artificial Intelligence Midterm 2 ˆ You have approximately 80 minutes. ˆ The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

Generic Text Summarization

Generic Text Summarization June 27, 2012 Outline Introduction 1 Introduction Notation and Terminology 2 3 4 5 6 Text Summarization Introduction Notation and Terminology Two Types of Text Summarization Query-Relevant Summarization:

More information

Stat 406: Algorithms for classification and prediction. Lecture 1: Introduction. Kevin Murphy. Mon 7 January,

Stat 406: Algorithms for classification and prediction. Lecture 1: Introduction. Kevin Murphy. Mon 7 January, 1 Stat 406: Algorithms for classification and prediction Lecture 1: Introduction Kevin Murphy Mon 7 January, 2008 1 1 Slides last updated on January 7, 2008 Outline 2 Administrivia Some basic definitions.

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Information Retrieval and Organisation Chapter 13 Text Classification and Naïve Bayes Dell Zhang Birkbeck, University of London Motivation Relevance Feedback revisited The user marks a number of documents

More information

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions CS246: Mining Massive Data Sets Winter 2017 Problem Set 2 Due 11:59pm February 9, 2017 Only one late period is allowed for this homework (11:59pm 2/14). General Instructions Submission instructions: These

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Midterm II. Introduction to Artificial Intelligence. CS 188 Spring ˆ You have approximately 1 hour and 50 minutes.

Midterm II. Introduction to Artificial Intelligence. CS 188 Spring ˆ You have approximately 1 hour and 50 minutes. CS 188 Spring 2013 Introduction to Artificial Intelligence Midterm II ˆ You have approximately 1 hour and 50 minutes. ˆ The exam is closed book, closed notes except a one-page crib sheet. ˆ Please use

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Information Retrieval. Lecture 6

Information Retrieval. Lecture 6 Information Retrieval Lecture 6 Recap of the last lecture Parametric and field searches Zones in documents Scoring documents: zone weighting Index support for scoring tf idf and vector spaces This lecture

More information

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Latent Semantic Models Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 Vector Space Model: Pros Automatic selection of index terms Partial matching of queries

More information

Performance Evaluation

Performance Evaluation Performance Evaluation David S. Rosenberg Bloomberg ML EDU October 26, 2017 David S. Rosenberg (Bloomberg ML EDU) October 26, 2017 1 / 36 Baseline Models David S. Rosenberg (Bloomberg ML EDU) October 26,

More information

Day 6: Classification and Machine Learning

Day 6: Classification and Machine Learning Day 6: Classification and Machine Learning Kenneth Benoit Essex Summer School 2014 July 30, 2013 Today s Road Map The Naive Bayes Classifier The k-nearest Neighbour Classifier Support Vector Machines (SVMs)

More information

CSE 241 Class 1. Jeremy Buhler. August 24,

CSE 241 Class 1. Jeremy Buhler. August 24, CSE 41 Class 1 Jeremy Buhler August 4, 015 Before class, write URL on board: http://classes.engineering.wustl.edu/cse41/. Also: Jeremy Buhler, Office: Jolley 506, 314-935-6180 1 Welcome and Introduction

More information

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK).

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). Boolean and Vector Space Retrieval Models 2013 CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). 1 Table of Content Boolean model Statistical vector space model Retrieval

More information

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan Ensemble Methods NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan How do you make a decision? What do you want for lunch today?! What did you have last night?! What are your favorite

More information

Performance Evaluation

Performance Evaluation Performance Evaluation Confusion Matrix: Detected Positive Negative Actual Positive A: True Positive B: False Negative Negative C: False Positive D: True Negative Recall or Sensitivity or True Positive

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 12: Probability 3/2/2011 Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. 1 Announcements P3 due on Monday (3/7) at 4:59pm W3 going out

More information

Leverage Sparse Information in Predictive Modeling

Leverage Sparse Information in Predictive Modeling Leverage Sparse Information in Predictive Modeling Liang Xie Countrywide Home Loans, Countrywide Bank, FSB August 29, 2008 Abstract This paper examines an innovative method to leverage information from

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Probabilistic Information Retrieval

Probabilistic Information Retrieval Probabilistic Information Retrieval Sumit Bhatia July 16, 2009 Sumit Bhatia Probabilistic Information Retrieval 1/23 Overview 1 Information Retrieval IR Models Probability Basics 2 Document Ranking Problem

More information