The Polynomial Roots Repartition and Minimum Roots Separation

Size: px
Start display at page:

Download "The Polynomial Roots Repartition and Minimum Roots Separation"

Transcription

1 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues The Polyoml Roots Retto d Mmum Roots Seto CĂLIN ALEXE MUREŞAN Detmet of Mthemtcs Fculty of Lettes d Scece Uvesty Petoleum d Gs of Ploest B-dul Bucuest No39 Ploest Phov ROMANIA cmues@ug-loesto cmues@yhoocom Abstct: It s ow tht f ll the oots of olyoml e el they c be loclsed usg set of tevls whch cot the thmetc vege of the oots The m of ths e s to eset ogl method fo gvg othe dstbutos of the oots/ modules of the oots o el xs method fo evlutg d movg the olyoml mmum oot seto esults method fo the comlex olyomls d fo olyomls hvg ll oots el We use the dscmt Hdmd s equlty Mhle s mesue d ew ogl equltes Also we wll me some cosdetos bout the cost fo solte the olyoml el oots Ou method s bsed o the successve slttg fo the tevl whch cot ll oots Key-Wods: Roots etto Isoltg the oots Mhle s mesue Itoducto The oots etto of comlex olyoml o el xs mes to gve el tevls ot ecessly dsuctve fo evey olyoml oot o module of the olyoml oot Pe-soltg esectvely soltg the comlex oots of olyoml wth comlex coeffcets mes to comute setg boxes the comlex le whch cots t most oe esectvely exct oe comlex oot of the olyoml The exct lgothms fo soltg the oots e bsed o: Stum s sequeces see []; dffeetto techque see [] d Vcet s theoem see [3] Othe oot fdg methods e the umecl methods These methods wo wth get vety of oxmto eos Recetly esults whch geelze the uvte Hemte teolto fomul c be foud [4] [5] [6] The umecl lgothms comute oxmto fo ll the comlex oots of olyoml u to desed ccucy d f tht s smlle th mmum oots seto the the lgothms c be tued o the solto lgothms Fo the sme oxmto eo the costs of the fstest soltg lgothms d umecl lgothms e comble The m of ths tcle s to gve ogl esults egdg the oots etto o el xs the mmum oots seto fo comlex olyomls d fo the olyomls wth ll el oots These esults e ecessly exct lgothms fo soltg the oots bsed o successve slttg (see [] d [] d c be useful lso umecl lgothms I ths secto we toduce the bss ottos d otos d eset the elmy esults ths feld We deote comlex olyoml wth P( x = x + x + + x+ x x d ts oots wth Defto Let be P( x C[ x] We defe: = ( x x b se( P = m{ x x / x x } the mmum oots setos c P = the olyoml om d L( P = the olyoml legth x e + x + + x x= the vege of the oots Defto The dscmt of olyoml P C[ x] wth ledg coeffcet d oots x x s defed s: ISSN: Issue 8 Volume 7 August 8

2 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues - dsc(p= ( x x Π < Poosto Let be P C[ x] The exesso of D= Π ( ( / D= ( b dsc(p= - D Defto 3 Let be m < x x s x x K x x x K x M M M x x K x m m P= P( x = x + x + + x+ d m Q= Q( x = b x + b x + + b x+ b m m b Sylveste's mtx of P d Q s the mtx S: m m K K m m K K M O O O K O O M M O O O K O M K m m K S= b b K b K b b K b K M O O O K O O M M O O O K O M b b b K K whee thee e ows of the followed by m ows of the S= s s mtx wth m + ows d m + colums hvg the elemets: s = fo d s = b b m fo m Defto 4 The esultt of P d Q s the detemt of Sylveste's mtx es (P; Q=det(S Poosto dsc( P = es( P; P See [7] o [8] Obsevto The dscmt dsc(p c be exessed oly by the degee d the olyoml coeffcets See Defto 3 d 4 d Poosto Fo my othes esults ths e see [9] Theoem ([7] Let be P( x = + x+ x + + x + x ; C; ; wth the oots x x x C; f = mx{ x x x } the: m x = b + mx { } c If λ λ ; + such tht + + λ = the λ / { ( λ } mx mx { } { } / d mx mx e Fo ; { } we hve: mx{ } f / / mx {( g ( } C Coolly Let be P( x = x + x + + x+ P R[ x] the R el such tht x R Poof: Obvously esults fom the Theoem elcg wth fo { } Fo R {} we c te: L( P R = d > = L( P < Fo othes useful bouds see [] d [] Defto 5 The Mhle Mesue of the olyoml P deoted by M(P s: = M[ P( x] = mx{ x } Theoem = Let P( x = x + x + + x+ P( x C[ x] the: π θ l[ ] = l P( e dθ π ISSN: Issue 8 Volume 7 August 8

3 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues See [] [3] Poosto 3 ([7] Wth the otto fom Theoem we hve = = m{ x } b M[ x P] = M[ P( x] x c M ( P Q = M ( Q ( P Q C[ x] d M[ P( x ] = M[ P( x] e + P P Theoem 3 ([4] Let P( x = x + x + + x+ d P( x C[ x] o P( x = ( x x = wth the oots x x x C; ot ecessly dstct Itoducg the olyomls m m Pm x =± ( x x ; m = we c clculte Pm Method tht s: P ( x = P( x If * m N we c obt m ccodg to Geffe's G x H x P x C x fom the { m m m+ } [ ] eltos: Pm ( x = Gm ( x x Hm( x Pm+ ( x = Gm ( x x Hm ( x Sttg to the evous ots we fd fom ecuso method: Pm ( x fo m Theoem 4 ([4] If P( x C[ x]; deg( P d Pm m the olyoml sees ssocted to the Geffe s Method the: m m m Pm Pm m d lm Pm = Theoem 5 = f{ P Q / Q C[ x] s moc olyoml} Q Fo ovg see [5] d [6] Obsevto The Mhle mesue M(P c be oxmted usg oly the degee d the olyoml coeffcets See Defto 5 Theoem 3 d 4 Defto 6 A e-soltg/soltg tevl fo comlex olyoml eeset oe tevl ( b hvg s lmts two tol umbes betwee whch thee s t most/ecsely oe oot (modules of the oot of the olyoml Fo soltg tevl we hve: ( N such tht { x x x} ( b = { x} fo el oots of the olyoml d N such tht x x x b = x { } { } fo comlex oots of the olyoml b Pe-soltg/soltg the el oots cossts fdg fo ll the olyoml s oots dsuctve e-soltg/soltg tevls Defto 7 Fo gve fucto g(x g : R R we deote by O(g(x the set of fuctos: O(g (x ={f(x / f : R R ( c x R such tht f(x c g( x ( x x } I ths cse fo evey f(x we deote: O(g(x=f(x We e syg tht f gows t the sme te o t my gow moe slowly th g whe x s vey lge Defto 8 Fo gve fucto g(x g : R R we deote by (g(x the set of fuctos: Θ(g(x= { f(x / f : R R O(g(x=f(x d O(f(x=g(x} I ths cse fo evey f(x we deote: Θ(g(x=f(x We e syg tht f gows t the sme te th g whe x s vey lge Fo moe detls see [7] d [8] Polyoml oots dstbuto Ceteed tevls etto method fo olyomls wth ll el oots Defto Let be b b el umbes We deote by P ( b b R [ x ] the set of ll olyomls hvg the fom: P( x = x + b x + b x + + b N wth ll el oots d the followg equltes hold betwee the oots: x x x x Poosto If P( x P ( b b the: = x ( x ; = = b b = ( b b ; c x= See [9] d [] Theoem Let be P ( x = x - x+ x x ( { } the P ( x P ( b b ISSN: Issue 8 Volume 7 August 8

4 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues See [9] d [] Theoem Let be P( x P ( b b the: x+ x x+ ( b x ( x x ( c x x x+ + ( 3 { } If we deoted by {( y ( y ( y3 ( y } the oots of P ( x fo fxed { -} to the Theoem the the evous delmttos e otml the set P ( b b so the exst tul umbe such tht: m{ x } = ( y m{ x } = ( y ; P P ( b b P P ( b b mx{ x } = ( y mx{ x } = ( y ; P P ( b b P P ( b b See [9] d [] A dffeet dstbuto fo the olyomls P( x P ( b b oots Theoem Let be P( x P ( b b Be t: α= ; = ( ; α = ( ; = ; α = ; = + = I = [ α ] fo = The we hve: Fo = x I = [ x+ α x + ] b Fo {3 }: + = α + I I [ ] c Fo {3 }: α = + d α = α= d α < > α < α e x [ x+ α x+ ] {3 } { x α } { x } { x } { x } I I = { φ} I I = + α = + - I I = + = + I I esectvely I - we c foud ll the olyoml oots but x esectvely x c be oly t the lmts of the tevls f I the tevl [ x+ x+ ] esectvely the tevl [ x+ α x+ α( ] we c foud t most the oots { x x x x } esectvely { x x x x } tht s t most oots fo + + { } 3 Poof: x I = [ x+ α x+ ] = s obvous fom evous theoem b Fo {3 }: > + + > / ( + > + α > α + > + < / ( + ( > + The both eltos e tue c α = = obvous α = = obvous + α = + = lso s obvous fom the theoem ottos α < d ( ( > ( > > Also we c ove tht: α = ( < α = e Fom the ot b d d: α > α+ > + fo {3 } Now the fst elto s mmedtely The othes esult fom ot c f We c obseve tht x x d oly these oots c be [ x+ x+ ] The x x d x 3 d oly these oots c be [ x+ 3 x+ ] d fom the sme oceed we obseve tht { x x x x } d oly these oots c be [ x+ x+ ] Smlly { x x x + x ( } d oly these oots c be the tevl [ x+ α x + α( ] ISSN: Issue 8 Volume 7 August 8

5 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues Theoem If P( x P ( b b fo x x x x the oots of P we hve: 3 se( P the equlty s elsed fo + 3 P( x = x x = b x x + See [9] d [] fom Refeeces Theoem 3 ( {3 } the legth of the tevl [ x x ] + + o [ x+ α x+ α( ] s = d < + b Fo 3 s ossble tht se( P c A suffcetly codto fo hvg t most oe oot the tevl [ x+ x+ ] s: + se( P Poof: + = ; = ( {3 } the: + = -+ ; ; - ; - fo 3 Hece { } + < ( + ( ( = So < Fom the evous theoem ot d [ x x ] + + esectvely + α + α e the sme legth [ x x ( ] b If se( P the fom Theoem 3 we hve se( P Fom the evous ot we hve : < Suosg 3 we c obt 3 c If se( P the the tevl [ x x ] + + we c hve t most oe of the olyoml oots The fom evous ot the esult s mmedtely Theoem 4 Let be P( x P ( b b the we c toduce the olyoml Q( x = P( x+ x d H ( x = x Q( x > tul d we hve: H( x P + c c ( whee c c R b If ( y {3 + } e the oots of H(x such tht: y+ y+ y+ y y the: y= x s the vege of the oots of H The b = ( + b ( + b dscmt of H s =+( b o c If we deote: α = ; = ( + ; α = ( + ; = ; α = = ; = the + the oots of the olyoml H: y [ α ] + d I the tevl [ x+ x+ ] esectvely tevl [ x+ α x+ α( ] we foud t most the oots { x x x x } esectvely { x x x x } so oots fo ( {3 +} Poof: b Obvous c d See Theoem e fo x P( x P+ ( c c Theoem 5 Wth evous ottos fo {3 +-}: < d < > d < ISSN: Issue 8 Volume 7 August 8

6 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues > d > fo {3 } v Fo < < tul > Fo > f exst {3 + } fxed such tht ( x [ ] the: { x } [ ] [ ] v Fo {3 + } < + suosg fxed d ot deedg t the: lm = b b Poof: < + < Sml evous theoem obvous < We obseve the logy wth + + > > + + > + b b But = ( > d s eough to ove tht: ( + ( + ( + > + ( + Fo smlcty we deote +=x d we obt: x ( x ( + > x x ( x x ( > x x ( + 3 x x ( x + x( + x 3 ( > x ( x ( 3 x + x ( + x( + > 3 But x x ( + = x [ x ( + ] > becuse x= + > + {3 } d x( > ( x > fo x> < s mmedtely fom < elcg wth - > + > ( + ( + ( + > + ( + If we deote +=x we obt: x x ( + > x x The ext elto s esy to ove whe we obseve the ostvty of the deomtos ( b ( b ( b ( b + + = = + + ( x b ( x b x = < ( x b xb x The suffcetly elto fo ove become: x x ( + x > x ( x x x x ( + > > x x Now > s obvous fom evous elto elcg wth - v Fom > > d fom fo < < The ( ( { φ} - - < The fom hyothess we hve x [ ] Suosg x [ ] we hve cotdcto wth: x [ α ] d the suosto s flse v Results fom Theoem 4 b c: =+( b b = ( + b ( + b α = = ; = the + + < = + + ISSN: Issue 8 Volume 7 August 8

7 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues Suosg fxed we obt: lm + = lm + ( + b ( + b = b b b lm = b Obsevto Fom the lst theoem we obseve the dstbuto fo umbes c see fg: s we - fg Obsevto If we fd oe of the tevls of Theoem 4 d sgle oot of the olyoml we c edefe the tevl usg the elto { x } [ ] [ ] ( > ( > tuls d tg lge ; see Theoem 5 v Alcto Fo olyoml wth ll el oots d wth degee =3 x I = [ x+ α x+ ] = 3 d the tevls e soltg tevls The oof s esy to me sttg to the Theoem I the geel cse fo el olyoml f P α P > the { 3} such tht olyoml wll hve oly oe el oot d P( α P( < { 3} so tht Theefoe we deteme the tevl whch cots the oot x I I both cses we c edefe the tevls cotg oots smly by dvdg them d usg cotuous oety fuctos o usg lst Theoem 4 v d toducg the olyomls Q( x = P( x+ x d H ( x = x Q( x whee > tul My ctce ocesses use o c be modelled wth the hel of the el oots of the olyomls wth smll degee see fo exmle elto (7 [] 3 A oots dstbuto fo comlex olyomls Theoem 3 Fo bty comlex olyoml P( x = x + x + + x+ wth d fo { } such tht x x x x x the + / / P x fo d + + x P fo + Poof: Fom Defto 5 d Poosto 3: mx{ x } = P = P ( m { x } The x x x = ( Becuse x fo the x Suosg x > the x x > But x x d the x x x x x > cotdcto wth ( The the suosto s flse d Usg the ducto method the x x (3 Sttg fo (: x+ x = Becuse x fo + the x Suosg ISSN: Issue 8 Volume 7 August 8

8 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues x < the x x+ < d the x x < d x+ x x x x < cotdcto wth ( The suosto s flse d By ducto we c ove tht x x + fo o + x fo + (4 Now becuse P we hve the esult Coolly 3 If > x x the = fo : + + / x < = P Poof: = mx{ x } = = We c eet the ocedue bove d the + + = x < fo Poosto 3 Fo l + < < l + γ + whee γ γ 577 s Eule costt (5 Poof: It s well ow see fo tht d fo othe sml equltes [] tht lm l + c = γ whee ( c el = lm c = γ 577 s Eule costt (6 u = l γ v = l γ e obted fom the elto bove (7 + The u+ u = + l ( + + v+ v = + l (8 + + x+ x Fo the fuctos u( x = + l ( x+ x x+ x v( x = + l x> x+ x+ u '( x = < v'( x = > ( x+ x x ( x+ Becuse lm u( x = lm v( x = Fo > x x the u = u+ u > v = v+ v < ( u s stctly cesg u < γ ( v s stctly decesg v (9 > Fom (7 d (9 we hve the esult Obsevto 3 I the evous esults we geelse the equlty: ( / / x P γ fo see [3] fom efeeces Theoem 3 Fo bty comlex olyoml wth degee d the ledg coeffcet fo { } so tht x x x x+ x the: l l + γ + ( l l + l whee γ 577 s Eule costt Poof: Fom theoem 3 we hve: + + = x x x = + ( But l + γ < < l + γ + whee γ 577 s Eule costt ( ISSN: Issue 8 Volume 7 August 8

9 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues = < l( + γ ( = <l + γ + l + ( >l + (3 + The fom ( ( d (3 we hve the esult Obsevto 3 The evous theoem c be useful whe we ty to evlute N the umbe of the oots wth modules bgge o equl wth oe Aothe sml theoem s the ext oe Theoem 33 Fo comlex olyoml P( x = x + x + + x+ wth * ; whee N such tht: x x x x+ x > the L( P l see [4] [5] 3 Mmum Roots Seto Theoem 3 If P( x = + x+ x + + x ; P C[ x] s sque fee the: + / se( P > dsc P P + d fo P Z[ x] : se( P > P / 3 / b Fo P Z[ x] : se( P > e P (l + c se( P > m( dsc( P l( 3 { + L P } + se( P > { [ L( P + ] } To ove see [7] fo b see [6] fo c see [3] fom efeeces Fo othes equltes ths e see [4] Poosto 3 Let be f g h : + + f ( x = + x+ x + + x g( x = + x+ 3 x + ( x γ f ( x h( x = The f g e mootoclly g( x cesg fuctos g x x f ( x x x f ( x = x x= = ' ' d + + x ( x + 3 ( x x x g( x = + fo x 3 ( x ( ( fo x= 6 The oof c be doe fom clculto Coolly 3 Wth the evous ottos: h( x h( = 6 ( ( ( Poof: We c obseve tht: f g h : x+ x + x h( x = (4 + x + 3 x + ( x + x+ x + x h( x ( + ( x+ + ( x f ( 6 h( x h( = = ( g( ( Theoem 3 Fo P( x = + x+ + x ; R el umbes such tht x R d fo < x x el fo ( c R the [ ] such tht: l= ( = = dsc( P h( c se( P + + l (5 Poof: Suosg x x x d usg the fuctos f g h the Hdmd s equlty d Poosto we c obt: ISSN: Issue 8 Volume 7 August 8

10 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues ( / D= ( K x x x x x K x M M M x x K x D S T whee S= x x d = T = x (6 = = S= x x ( + x + x x + x x + x x + x Fo < x x d x + x x d usg the tgle equlty we c wte: f ( x ( x S x x g x T = = (7 f Fom (6 d (7: ( ( x h x D x x (8 f h( x s cotuous fucto o exst c [ R ] so tht: ( = ( R ] d m h x / = h c (9 The becuse x { } = ( = = ( x ( x f = ( x ( Usg the Vete s eltos we c obseve tht ( x = ( x ( x + ( x = ( x ( x + ( = = ( x ( x = ( x x x x + = + x + + = < < { } ( + x + x + x + ( = ( ( x x x + x + = < { } ( x + + l whee l= (3 Fom ( ( (3: + + l f ( x ( (4 = = Fom (8 (9 (4: ( = = D h( c + + l x x whee < (5 - dsc P = D (see Poosto Usg (5 we obt the esult Theoem 33 Fo P x = x + x + + x + C[ x] ISSN: Issue 8 Volume 7 August 8

11 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues f exst { } such tht x x x x x the: + l ( dsc( P γ+ + se( P P b If P( x P ( b b the ( dsc( P se( P γ whee γ = mx{ + α + } Poof : Fom the evous theoem elto (: f ( x D x x f ( x (6 g( x D f ( x The x x (7 g( x f ( x f ( x h( c h( c = m{ h( x / } (8 g( x Fom Coolly 3 h( x h( c ( dsc P The - (9 = D (3 f ( x = f ( x f ( x + + f ( x x f ( f x x (3 Now usg Theoem 3 we obt: f ( x ( f ( x ( f ( x γ+ l + ( f ( x (3 The fom (7 (9 (3 d (3 we obt the esult b f x x + f ( x x γ fo γ α = mx + + (33 see Theoem Relcg (3 wth (33 the demostto to the fst ot we hve the esult Theoem 34 Fo P x = x + x + + x+ C[ x] If x x x x x x > the dsc( P se( P ( Poof: We follow the stes to the evous theoem elcg (3 wth the elto f ( x (34 Obsevto 3 I the evous theoems we c use the elto: dsc( P fo P Z[ x] we obt sml esults fo teges olyomls 4 Isoltg the oots Coclusos Rem 4 If we come the esults fom the sectos wth ou esult fom oe of the dvtge of the secod och s we c see Theoem f s tht we c edct the oots d the mxmum umbe of the oots whch c be the tevls [ x+ x+ ] esectvely the tevls [ x+ α x+ α( ] d we c gve the legths of the tevls Also we c edefe the tevls cotg oots See Theoem 5 v v cetg othe olyoml d owg tht fo Q( x = P( x+ x d ISSN: Issue 8 Volume 7 August 8

12 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues H ( x = x Q( x > tul exst > tul so [ ] The we hve: tht x > { x } [ ] [ ] Ou esults Theoem 3 usg Mhle s Mesue eeset tul equltes fo boudg evey module s oot of the olyoml d gvg the oots etto fo comlex olyomls Usg these tul wy we obt ew theoem wth the best equltes fom the method eseted Theoem 3 bout the umbes of the oots tht e outsde of the ut ccle We c come the theoem wth oe of Szego s theoem Rem 4 Fo comg ou esult fom Theoem 3 of the mmum oots seto fo the olyoml hvg the oots < x fo wth the othes we c te s we c see Coolly 3 h( c (35 The ( = = C C = + + l L( P L( P l= C> tcully coveet (36 Fom the theoem we c ove fo tul get umbe: C dsc( P se P (37 L P 3/ Ou esult cots whle ll the othes s es e whee s(x s el cotuous fucto But the olyoml hve ll < x R oots el d ostve d To obt esult whee the oots e ot ostve we c ly the theoem fo the olyoml Q( x = P( R x R> x whee se (Q=se(P b Now we c obseve fom the evous elto Fo the tege olyomls we hve dsc( P tg d R s we c see Coolly the R O log = O( l L( P (38 se( P s the ode fo the umbe of successve slttg of the tevl [ R ] [ R] utl we ccomlsh the oot e-solto We c ecse the evluto ow the geel cse fo the successve umbe of slttg: R O log = O( l [ L( P ] (39 se( P fo moe detls see [8] [7] [8] [9] c The cost fo soltg the oots the cse of the comlex olyomls whch s the umbe of the thmetc oetos eeded s domted to the umbe of successve dvsos multled by the cost of Stum s sees ssessmet see [] [8] [7] [9] [3] o by the cost of olyoml evluto ot see [8] o by othes umbes of oetos see [] Fo the olyomls wth ll oots el we me the dvsos of the tevls: [ x+ x+ ] d [ x+ α x+ α( ] to the evous secto d we obt the mmum oetos of slttg the we ly Stum s Theoem o othe methods fo soltg the oots Rem 43 I Theoem 33 Theoem 34 we gve ew esults bout mmum oots seto fo comlex olyomls d fo olyomls wth ll el oots Oe of de s to use the bouds fo modules of the oots gve Theoem 3 Refeeces: [] Hedel LE Itege Athmetc Algothms fo Polyoml Rel Zeo Detemto Jou ACM Vol 8 No 4 Oct [] Colls GE d Loos R Polyoml el oot solto by dffeetto Poceedgs of the thd ACM symosum o Symbolc d lgebc comutto SYMSAC [3] Ats A A mlemetto of Vcet's theoem Numesche Mthemt [4] Boo C d Ro A O the eo multvte olyoml teolto Mth Z 99-3 [5] Sm D O some Hemte Bvte Iteolto Schemes Wses Tsctos o Mthemtcs Issue Vol 5 Dec [6] Sm D A Geelzto of the Remde Multvte Polyoml Iteolto Wses Tsctos o Mthemtcs Issue Vol 3 J 4-6 [7] Mgotte M Itoducto to Comuttol Algeb d Le Pogmmg Ed Uv Bucuest 77-8; 3-35; 49 [8] Dveot J H Comute Algeb fo Cyldcl Algebc Decomosto Techcl Reot 88 School of ISSN: Issue 8 Volume 7 August 8

13 WSEAS TRANSACTIONS o MATHEMATICS Cl Alexe Mues Mthemtcl Sceces Uvesty of Bth Egld 3-5 [9] Bost A Flolet P Slvy B d Schost E Fst comutto wth two lgebc umbes Resech Reot 4579 Isttut Ntol de Recheche e Ifomtque et e Automtque Oct g [] Stefescu D New bouds fo the ostve oots of olyomls J Uv ComSc [] Stefescu D Iequltes o Ue Bouds fo Rel Polyoml Root I: Gzh VG My EW Voozhtsov EV (eds CASC 6 LNCS vol 494 Sge Hedelbeg [] Psolov V V Polyomls Moscow Cete fo Cotuous Mth Educto [3] Mueş CA The Aoxmto of Polyoml s Mesue wth Alctos towds Jese s Theoem Geel Mthemtcs Vol 5 o4 Ed by Detmet of Mthemtcs of the Uvesty "Luc Blg" Sbu Rom [4] Celeco L Mgotte M Ps F Comutg the mesue of olyoml Joul of Symbolc Comutto Vol4 Issue Acdemc Pess Ic Duluth MN USA [5] Mgotte M Some Useful Bouds Comutg Sulemetum 4 (ed B Buchege Colls GE &RGK Loos Sge-Velg We-New Yo [6] Dégot J Fte-Dmesol Mhle Mesue of Polyoml d Szegö's Theoem Joul of Numbe Theoy vol 6 Issue Febuy 997 Elseve 4-47 [7] Kuth Dold E The At of Comute ogmmg vol I Fudmetl Algothms secod edto - Ed: Addso Wesley 98 [8] Come Thoms H Leseso Chles E Rvest Rold L Itoducto To Algothms The MIT Pess McGw-Hll Boo [9] Lus A Metode Numece Ed Costt-Sbu [] Lguee EN Oeuves- I Ps -898 [] Assmbo C Bb A Dozo R d Bue M J Detemto of the Pmetes of the S-Electode Imedce Model fo ECG Mesuemet Poceedgs of the 6th WSEAS It Cof o Electocs Hdwe Weless d Otcl Commuctos Cofu Isld Geece Febuy [] Rum SM Polyoml Mmum Root Seto Mthemtcs Of Comuttos Vol33 N45 J [3] Veescu A O the Sml Ode of Covegece of two Adcet Sequeces Relted to ζ(/ Wses Tsctos o Mthemtcs Issue Vol 5 Decembe [4] Szego G Othogol Polyomls Ame Mth SocColloq Publ Volume XXIII New Yo959 [5] Mueş CA Szego s Theoem Sttg Fom Jese s Theoem UPB Scece Bull Sees A Vol 7 No 4 Ed by Uvesty Poltehc of Buchest [6] Colls G E Hoowtz E The Mmum Root Seto of Polyoml Jsto Mthemtcs of Comuttos Vol 8 No [7] Mueş CA Bucu A The cost of the tol olyoml's oots'seto Studes d scetfc esech mthemtcs sees Vol 7 sulemetum Ed by Detmet of Mthemtcs of the Uvesty Bcǎu Rom [8] Mueş CA The cotuous fuctos techques fo soltg the oots of tege olyomls Studes d scetfc esech mth sees Vol 8 Ed by Detmet of Mthemtcs of the Uvesty Bcǎu Rom [9] Ems Ios Z Tsgds Els P A ote o the comlexty of uvte oot solto Isttut tol de echeche e fomtque et e utomtque No 643 Novembe 6 g 5 [3] Du Z Shm V d Y CK Amotzed boud fo oot solto v Stum sequeces It Wosho o Smbolc Numec Comutg edtos I D Wg d L Zh School of Scece Behg Uvesty Beg Ch ISSN: Issue 8 Volume 7 August 8

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu Itetol Joul of Resech (IJR) e-issn: 2348-6848, - ISSN: 2348-795X Volume 3, Issue 5, Mch 26 Avlble t htt://tetoljoulofesechog Studyg the Poblems of Multle Itegls wth Mle Ch-Hue Yu Detmet of Ifomto Techology,

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

Chapter 17. Least Square Regression

Chapter 17. Least Square Regression The Islmc Uvest of Gz Fcult of Egeeg Cvl Egeeg Deptmet Numecl Alss ECIV 336 Chpte 7 Lest que Regesso Assocte Pof. Mze Abultef Cvl Egeeg Deptmet, The Islmc Uvest of Gz Pt 5 - CURVE FITTING Descbes techques

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS FORMULA BOOKLET Fom Septembe 07 Issued 07 Mesuto Pue Mthemtcs Sufce e of sphee = 4 Ae of cuved sufce of coe = slt heght Athmetc Sees S l d

More information

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates.

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates. CURVE FITTING Descbes techques to ft cuves (cuve fttg) to dscete dt to obt temedte estmtes. Thee e two geel ppoches fo cuve fttg: Regesso: Dt ehbt sgfct degee of sctte. The stteg s to deve sgle cuve tht

More information

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS VOL. 5 NO. JULY ISSN 89-8 RN Joul of Egeeg d ppled Sceces - s Resech ulshg Netok RN. ll ghts eseved..pouls.com SETIC -SLINE COLLOCTION METHOD FOR SIXTH ORDER OUNDRY VLUE ROLEMS K.N.S. Ks Vsdhm d. Mul Ksh

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

#A42 INTEGERS 16 (2016) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION

#A42 INTEGERS 16 (2016) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION #A4 INTEGERS 1 (01) THE SUM OF BINOMIAL COEFFICIENTS AND INTEGER FACTORIZATION Ygu Deg Key Laboatoy of Mathematcs Mechazato, NCMIS, Academy of Mathematcs ad Systems Scece, Chese Academy of Sceces, Bejg,

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge ccog to the ut whch the e fst touce. Thus cte sttg ut m e eque to use the fomule tht wee touce peceg ut e.g. ctes sttg C mght e epecte to use

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

Equidistribution in Sharing Games

Equidistribution in Sharing Games Ope Joul of Dscete Mthemtcs, 4, 4, 9-8 Publshed Ole Juy 4 (http://wwwscpog/oul/odm http://dxdoog/436/odm443 Equdstbuto Shg Gmes Clos D Ade, Emlo Gómez Deptmet d Àlgeb Geomet, Uvestt de Bcelo, Bcelo, Sp

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Spectral Continuity: (p, r) - Α P And (p, k) - Q

Spectral Continuity: (p, r) - Α P And (p, k) - Q IOSR Joul of Mthemtcs (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 11, Issue 1 Ve 1 (J - Feb 215), PP 13-18 wwwosjoulsog Spectl Cotuty: (p, ) - Α P Ad (p, k) - Q D Sethl Kum 1 d P Mhesw Nk 2 1

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

8. SIMPLE LINEAR REGRESSION. Stupid is forever, ignorance can be fixed.

8. SIMPLE LINEAR REGRESSION. Stupid is forever, ignorance can be fixed. CIVL 33 Appomto d Ucett J.W. Hule, R.W. Mee 8. IMPLE LINEAR REGREION tupd s foeve, goce c be fed. Do Wood uppose we e gve set of obsevtos (, ) tht we beleve to be elted s f(): Lookg t the plot t ppes tht

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

A Unified Formula for The nth Derivative and The nth Anti-Derivative of the Bessel Function of Real Orders

A Unified Formula for The nth Derivative and The nth Anti-Derivative of the Bessel Function of Real Orders Aec Joul of Aled Mthetc d Stttc 5 Vol 3 No 3-4 Avlble ole t htt://ubceubco/j/3/3/3 Scece d Educto Publhg DOI:69/j-3-3-3 A Ufed Foul fo The th Devtve d The th At-Devtve of the eel Fucto of Rel Ode Mhe M

More information

On The Circulant K Fibonacci Matrices

On The Circulant K Fibonacci Matrices IOSR Jou of Mthetcs (IOSR-JM) e-issn: 78-578 p-issn: 39-765X. Voue 3 Issue Ve. II (M. - Ap. 07) PP 38-4 www.osous.og O he Ccut K bocc Mtces Sego co (Deptet of Mthetcs Uvesty of Ls Ps de G C Sp) Abstct:

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

COMPUTERISED ALGEBRA USED TO CALCULATE X n COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM

COMPUTERISED ALGEBRA USED TO CALCULATE X n COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM U.P.B. Sc. Bull., Seres A, Vol. 68, No. 3, 6 COMPUTERISED ALGEBRA USED TO CALCULATE X COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM Z AND Q C.A. MURESAN Autorul

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property

Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property Appled Mthemtcs 4: -5 DOI: 59/m4 Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety N Sthumoothy K Pydhs Rmu Isttute fo Advced study Mthemtcs Uvesty of Mds Che 6 5 Id Astct I ths ppe complete

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Transmuted Generalized Lindley Distribution

Transmuted Generalized Lindley Distribution Itetol Joul of Memtcs Teds d Techology- olume9 Numbe Juy 06 Tsmuted Geelzed Ldley Dstbuto M. Elghy, M.Rshed d A.W.Shwk 3, Buydh colleges, Deptmet of Memtcl Sttstcs, KSA.,, 3 Isttute of Sttstcl Studes d

More information

AS and A Level Further Mathematics B (MEI)

AS and A Level Further Mathematics B (MEI) fod Cmbdge d RSA *3369600* AS d A evel Futhe Mthemtcs B (MEI) The fomto ths booklet s fo the use of cddtes followg the Advced Subsd Futhe Mthemtcs B (MEI)(H635) o the Advced GCE Futhe Mthemtcs B (MEI)

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Moments of Generalized Order Statistics from a General Class of Distributions

Moments of Generalized Order Statistics from a General Class of Distributions ISSN 684-843 Jol of Sttt Vole 5 28. 36-43 Moet of Geelzed Ode Sttt fo Geel l of Dtto Att Mhd Fz d Hee Ath Ode ttt eod le d eel othe odel of odeed do le e ewed el e of geelzed ode ttt go K 995. I th e exlt

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd. GCE AS d A Level MATHEMATICS FORMULA BOOKLET Fom Septeme 07 Issued 07 Pue Mthemtcs Mesuto Suce e o sphee = 4 Ae o cuved suce o coe = heght slt Athmetc Sees S = + l = [ + d] Geometc Sees S = S = o < Summtos

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Sees A, OF THE ROMANIAN ACADEMY Volume 8, Numbe 3/27,. - L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

More information

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function vlle t htt:vu.edu l. l. Mth. ISSN: 93-9466 Vol. 3 Iue Jue 8. 8 36 Pevouly Vol. 3 No. lcto d led Mthetc: Itetol Joul M Cet Exo Foule Ivolvg c logue o Fox -Fucto S.. Puoht etet o c-scece Mthetc College o

More information

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials Poceedgs of The Natoa Cofeece O Udegaduate Reseach (NCUR) 00 The Uvesty of Noth Caoa at Asheve Asheve, Noth Caoa Ap -, 00 Pemutatos that Decompose Cyces of Legth ad ae Gve y Moomas Lous J Cuz Depatmet

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

A Deterministic Model for Channel Capacity with Utility

A Deterministic Model for Channel Capacity with Utility CAPTER 6 A Detestc Model fo Chel Cct wth tlt 6. todcto Chel cct s tl oeto ssocted wth elble cocto d defed s the hghest te t whch foto c be set ove the chel wth btl sll obblt of eo. Chel codg theoes d the

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

SGN Audio and Speech Processing. Linear Prediction

SGN Audio and Speech Processing. Linear Prediction SGN-46 Audo d Seech Poceg Le Pedcto Slde fo th lectue e bed o thoe ceted by Kt Mhoe fo TUT coue Puheeättely meetelmät Sg 3. Othe ouce: K. Koe: Puheeättely meetelmät, lectue mtel, TUT, htt://www.c.tut.f/coue/sgn-4/g4.df

More information

An Analysis of Brand Selection

An Analysis of Brand Selection (IJCS) Itetol Joul of dvced Comute Scece d lctos Vol. o. 8 lss of Bd Selecto Kuho Tkesu College of Busess dmstto Tokoh Uvest 5 Oouch Fuj Ct Shuok -8 J uk Hguch Fcult of Busess dmstto Setsu Uvest -8 Iked-kmch

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

Fredholm Type Integral Equations with Aleph-Function. and General Polynomials

Fredholm Type Integral Equations with Aleph-Function. and General Polynomials Iteto Mthetc Fou Vo. 8 3 o. 989-999 HIKI Ltd.-h.co Fedho Te Iteg uto th eh-fucto d Gee Poo u J K.J. o Ittute o Mgeet tude & eech Mu Id u5@g.co Kt e K.J. o Ittute o Mgeet tude & eech Mu Id dehuh_3@hoo.co

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

For use in Edexcel Advanced Subsidiary GCE and Advanced GCE examinations

For use in Edexcel Advanced Subsidiary GCE and Advanced GCE examinations GCE Edecel GCE Mthemtcs Mthemtcl Fomule d Sttstcl Tles Fo use Edecel Advced Susd GCE d Advced GCE emtos Coe Mthemtcs C C4 Futhe Pue Mthemtcs FP FP Mechcs M M5 Sttstcs S S4 Fo use fom Ju 008 UA08598 TABLE

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Theory of Finsler spaces with ( λβ, ) Metric

Theory of Finsler spaces with ( λβ, ) Metric Theoy of Fsle sces wth ( λβ ) Metc Dhed Thu Kll Multle us Thuv Uvesty Kll DhdhNel E-l: dhedthuc@lco ABTRAT The of ths e s to toduce d study the cocet of ( ) theoes hve ee woout fo ( ) etc whee (x)y s oe

More information