Bayesian Analysis of Simple Random Densities

Size: px
Start display at page:

Download "Bayesian Analysis of Simple Random Densities"

Transcription

1 Ope Joual of Statstcs Pulshed Ole ugust 4 ScRes Bayesa alyss of Smple Radom Destes Paulo C Maques F Calos de B Peea Depatameto de Estatístca Isttuto de Matemátca e Estatístca vesdade de São Paulo São Paulo Basl Emal: pmaques@meusp cpeea@meusp Receved 3 Jue 4; evsed 5 July 4; accepted July 4 Copyght 4 y authos ad Scetfc Reseach Pulshg Ic Ths wo s lcesed ude the Ceatve Commos ttuto Iteatoal Lcese (CC BY stact tactale opaametc po ove destes s toduced whch s closed ude samplg ad exhts pope posteo asymptotcs Keywods Bayesa opaametcs Bayesa Desty Estmato Radom Destes Radom Pattos Stochastc Smulatos Smoothg Itoducto The ealy 97 s wtessed Bayesa feece gog opaametc wth the toducto of statstcal models wth fte dmesoal paamete spaces The most cospcuous of these models s the Dchlet pocess [] whch s a po o the class of all poalty measues ove a gve sample space that tades geat aalytcal tactalty fo a educed suppot: as show y Blacwell [] ts ealzatos ae almost suely dscete poalty measues The posteo expectato of a Dchlet pocess s a poalty measue that gves postve mass to each oseved value the sample mag the pla Dchlet pocess usutale to hadle feetal polems such as desty estmato May extesos ad alteatves to the Dchlet pocess have ee poposed [3] I ths pape we costuct a po dstuto ove the class of destes wth espect to Leesgue measue Gve a patto sutevals of a ouded teval of the eal le we defe a adom desty whose ealzatos have a costat value o each suteval of the patto The dstuto of the values of the adom desty o each suteval s specfed y tasfomg ad codtog a multvaate omal dstuto Ou smple adom desty s the fte dmesoal aalogue of the stochastc pocesses toduced y Thou [4] ad Le [5] Computatos wth these stochastc pocesses volve a tactale omalzato costat ad ae estcted to values of the adom desty o a fte ume of ataly chose doma How to cte ths pape: Maques ad Peea C (4 Bayesa alyss of Smple Radom Destes Ope Joual of Statstcs

2 Maques C Peea pots demadg some d of tepolato of the esults The fte dmesoalty of ou adom desty maes ou computatos moe dect ad taspaet ad gves us smple statemets ad poofs outle of the pape s as follows I Secto we gve the fomal defto of a smple adom desty I Secto 3 we pove that the dstuto of a smple adom desty s closed ude samplg The esults of the smulatos Secto 4 depct the asymptotc ehavo of the posteo dstuto We exted the model heachcally Secto 5 to deal wth adom pattos lthough the usual Bayes estmate of a smple adom desty s a dscotuous desty Secto 6 we compute smooth estmates solvg a decso polem whch the states of atue ae ealzatos of the smple adom desty ad the actos ae smooth destes of a sutale class ddtoal popostos ad poofs of all the esults the pape ae gve Secto 7 Smple Radom Destes Let ( Ω F P e the poalty space fom whch we duce the dstutos of all adom ojects cosdeed the pape Fo some tege let e the suset of vectos of wth postve compoets Wte R fo the Boel sgma-feld of Let λ deote Leesgue measue ove ( R We omt the dexes whe The compoets of a vecto v ae wtte as v v Suppose that we have ee gve a teval [ a ] ad a set of eal umes { t t t } such that a t < t < < t ducg a patto of [ a ] to the sutevals [ at [ t t [ t t [ t ] The class of smple destes wth espect to ths patto cossts of the oegatve smple fuctos whch have a costat value o each suteval ad tegate to oe Let d t t fo ad defe the map S : y S ( u du Each smple desty f : wth ths class ca e epeseted as whch [ f x hi x t t h h h s such that each h ad S ( h The h s ae the heghts of the steps of the smple desty f Fom ow o let { v : dv dv } fo ote that y the defto of the d s gve aove t follows that f Moeove defe the pojecto o the fst coodates π : y π ( v v v ( v v Fo a omal adom vecto Z ( Z Z wth mea m ad covaace matx Σ deote y L ( m Σ the dstuto of the logomal adom Z Z e e If Σ s osgula t s easy to show that has a desty vecto exp ( log f u π Σ u u m Σ ( log u m I ( u whch Σ s the detemat of Σ ad we have toduced the otatos log u ( log u log u ad m ( m m We defe a adom desty whose ealzatos ae smple destes wth espect to the patto duced y specfyg the dstuto of the adom vecto of ts steps heghts Ifomally the steps heghts wll have the dstuto of a logomal adom vecto gve that S ( The fomal defto of the adom desty s gve tems of a veso of the codtoal dstuto of gve S ( ad the expesso of ts codtoal desty wth espect to a domatg measue Howeve we ae outsde the elemetay case whch the jot dstuto s domated y a poduct measue I fact we have Poposto 7 a smple poof that Leesgue measue λ ad the jot dstuto of ad S ( ae mutually sgula sutale famly of measues that domate the codtoal dstuto of gve S ( fo each value of S ( s desced the followg lemma Lemma Let τ : R e defed y τ ( d λ ( π ( fo The each τ s a measue ove ( R The poof of Lemma s gve Secto 7 Fgue gves a smple geometc tepetato of the measues τ whe the udelyg patto s fomed y thee sutevals The followg esult s the ass fo the fomal defto of the adom desty 378

3 Maques C Peea Fgue Geometcal tepetato of the measues τ of Lemma fo > the patcula case whe 3 π The value of τ s the aea of the pojecto multpled y d 3 e the famly of measues ove R defed o Lemma The we have that : S R defed y Theoem Let L ( m Σ wth osgula Σ ad let { τ } ( ( u ( f ( I ( u d S u f τ s a egula veso of the codtoal dstuto of gve S ( Moeove ( S f f u I u d u S τ whch S fo each > The ecessay lemmata ad the poof of Theoem ae gve Secto 7 The followg defto of the adom desty uses the specfc veso of the codtoal dstuto costucted Theoem L m Σ wth osgula Σ We say that the map ϕ : Ω defed y Defto 3 Let ( x H I [ ( x ϕ ω ω t t ae the adom heghts of the steps of ϕ wth dst- R ad S ( s the egula veso of the codtoal otaed Theoem Hece fo evey R we have s a smple adom desty whch H ( H H uto gve y H ( ( S fo dstuto of gve S ( f ( h H ( I d h τ h f ( S whch τ( d λ ( π ( ad t holds that H ( We use the otato ϕ ( m Σ 3 Codtoal Model ow we model a set of asolutely cotuous osevales codtoally gve the value of a smple adom desty ϕ The followg lemma poved Secto 7 desces the codtoal model ad detemes the fom of the lelhood ϕ m Σ epeseted as Lemma 3 Cosde 379

4 Maques C Peea ( x H I [ ( x ϕ ω ω t t ad let the adom vaales X X e codtoally depedet ad detcally dstuted gve that H h wth dstuto X d H h f y λ y whch we have defed f ( y hi [ ( y Defe t t X ( X X ad let x ( x x The XH ( h λ almost suely [ H ] wth Rado-odym devatve whch c I [ t t ( x j d XH XH λ d xh f xh h c fo j The factozato cteo mples that c ( c c s a suffcet statstc fo ϕ That s ths codtoal model as oe should expect all the sample fomato s cotaed the coutgs of how may sample pots elog to each suteval of the patto duced y sg the otato of Lemma 3 ad defg c ( c c we ca pove that the po dstuto of ϕ s closed ude samplg * * Theoem 3 If ϕ ( m Σ the ϕ X x ( m Σ whch m mσ c Ths esult poved Secto 7 maes the smulatos of the po ad posteo dstutos essetally the * same the oly dffeece eg the computato of m 4 Stochastc Smulatos We summaze the dstuto of a smple adom desty ϕ ( m Σ ϕ( x ω H ( ω I [ ( x epeseted as two ways Fst motvated y the fact poved Poposto 75 that the t t po ad posteo expectatos ae pedctve destes we tae as a estmate the expectato of the steps heghts hˆ E [ H] E[ H ] Secod the ucetaty of ths estmate s assessed defg ( ˆ ˆ { < } B h h : max h h ad tag as a cedle set the B ( h ˆ wth the smallest such that P : H B( hˆ { } fo > ω ω γ whch γ ( s the cedlty level The Radom Wal Metopols algothm [6] s used to daw depedet ealzatos of the steps of ϕ as values of a Maov cha H The two summaes ae computed though egodc meas of ths cha Fo { } example the cedle set s detemed wth the help of the almost sue covegece of { } I ( ˆ H E I ˆ ˆ H P ω: H ω B h Bh Bh s fo the paametes appeag Defto 3 we tae ou expemets all the m s equal to oe ad the covaace matx Σ ( σ j s chose the followg way Gve some postve defte covaace fucto C : we duce Σ fom C defg t t j t t j σ j C fo j I ou examples we study the famly of Gaussa covaace fuctos defed y θ ( x y C ρθ xy ρe wth dspeso paamete ρ > ad scale paamete θ > Example 4 Let ϕ ( m Σ ad cosde the sample space [ ] wth { 98 99} Fo the sae of geealty we duce Σ fom the famly of Gaussa covaace fuctos wth fxed dspeso paamete ρ ut wth adom scale paamete Θ Y whch Y Gamma ( These choces guaatee that computatos wth Σ ae umecally stale I Fgue the summaes of the po dstuto of ϕ show that the value of ρ cotols the cocetato of the po Fxg ρ 5 ad 38

5 Maques C Peea geeatg data fom the mxtue Beta ( Beta ( Beta ( we have Fgue 3 the posteo summaes fo dffeet sample szes ote the cocetato of the posteo as we cease the sze of the samples Fgue Effect of the value of ρ o the cocetato of the po The cuves lac ae po expectatos ad the gay egos ae cedle sets wth cedlty level of 95% Fgue 3 Posteo summaes fo Example 4 O each gaph the lac smple desty s the estmate ˆϕ the lght gay ego s a cedle set wth cedlty level of 95% ad the da gay cuve s the data geeatg desty 38

6 Maques C Peea We oseve the same asymptotc ehavo of the posteo dstuto wth data comg fom a tagula dstuto ad a mxtue of omals (wth appopate tucato of the sample space 5 Radom Pattos Ifeetally we have a che costucto whe the defto of the smple adom desty volves a adom patto Ifomally we wat a model fo the adom desty whch the udelyg patto adapts tself accodg to the fomato cotaed the data We cosde a famly of ufom pattos of a gve teval [ ] a Each patto of ths famly wll e desced y a postve tege adom vaale K whch detemes the ume of sutevals the patto Sce the paamete ρ of the famly of Gaussa covaace fuctos used to duce Σ may have dffeet meags fo dffeet pattos we teat t as a postve adom vaale R Explctly we ae cosdeg the followg heachcal model: K ad R ae depedet Gve that K ad R ρ a duced y we choose the ufom patto of the teval [ ] a ( a ( ( a aa a a duce Σ ρθ fom the famly of Gaussa covaace fuctos ad tae the smple adom desty ϕ ( m Σ ρθ Fally the osevales ae modeled as Lemma 3 Ths heachy s summazed the followg gaph I the followg example stead of specfyg pos fo K ad R we defe the lelhood of K ad R y Lx( ρ fxkr ( x ρ whose fom s otaed Poposto 76 fd the maxmum ˆ ˆ ρ ag max L ρ ad use these values the deftos of the po detemg the posteo sum- ρ x maes as we dd Secto 4 Example 5 Wth a sample of sze geeated fom a Beta ( 4 dstuto we fd the maxmum of the lelhood of K ad R at ( ˆ ˆ ρ ( 943 I Fgue 4 we have the posteo summaes otaed usg these values the defto of the po Moeove the left gaph of Fgue 5 we have the dstuto fucto ˆF coespodg to the estmated posteo desty Fo the sae of compaso we plot the ght gaph of Fgue 5 some quatles of ths dstuto ˆF agast the quatles of the dstuto F fom whch we geeated the data 6 Smooth Estmates It s possle to go eyod the dscotuous destes otaed as estmates the last two sectos ad get smooth estmates of a smple adom desty ϕ solvg a Bayesa decso polem whch the states of atue ae the ealzatos of ϕ ad the actos ae smooth destes of a sutale class I vew of Theoem 3 t s eough to cosde the polem wthout data s efoe the sample space s the a whch s pattoed accodg to some Fo a desty f wth espect to Leesgue measue we teval [ ] deote ts f f dλ Poposto 6 Fo let g g e destes wth espect to Leesgue measue wth suppot [ a ] such that g < ad let D e the class of destes of the fom α g wth α fo L om y 38

7 Maques C Peea Fgue 4 Posteo summaes fo Example 5 The lac smple desty s the estmate ˆϕ the lght gay ego s a cedle set wth cedlty 95% ad the da gay cuve s the data geeatg desty Fgue 5 Example 5 O the left gaph the lac cuve s the estmated dstuto fucto ˆF ad the gay cuve s the data geeatg dstuto fucto F O the ght gaph we have the compaso of some of the quatles of ˆF ad F Let ad α ϕ m Σ ad defe S as the class of destes whch ae ealzatos of ϕ Defe the loss fucto L : S D y ( λ L s f s f s x f x d x The the Bayes decso s ˆ ϕ ˆ α g whch ˆ α mmze gloally the quadatc fom a Q αα M αj j j j α λ suject to the costats α fo ad Mj g x g j x d x a ϕ λ J g x E x d x a wth the deftos We use the esult of Poposto 6 poved Secto 7 choosg the g s sde a class of smooth destes that seve appoxmately as a ass to epeset ay cotuous desty wth the specfed suppot Fo the ext example suppose that the suppot of the destes s the teval [ ] Beste s Theoem (see [7] Theoem 6 states that the polyomal B x f x x ( appoxmates ufomly ay cotuous fucto f defed o [ ] whe Suppose that f s a desty 383

8 Maques C Peea If we defe fo ( ( Γ ( Γ Γ α f we ca ewte the appoxmatg polyomal as B ( x α g ( x Beta ( desty wth suppot [ ] whch g s a desty of a adom vaale Hece f we tae a suffcetly lage we expect that ay cotuous wll e easoaly appoxmated y a mxtue of these g s Example 6 Suppose that we have a sample of 5 data pots smulated fom a tucated expoetal dstuto whose desty s ( x e f ( x I [ ] ( x e Repeatg the aalyss made Example 5 we fd the maxmum of the lelhood of K ad R at ( ˆ ˆ ρ ( 9 86 The left gaph of Fgue 6 pesets the posteo summaes fte that we solved the polem of costaed optmzato Poposto 6 ad foud the esults show the ght gaph of Fgue 6 7 ddtoal Results ad Poofs I ths secto we peset some susday popostos ad gve poofs to all the esults stated the pape Poposto 7 Let L ( m Σ ad deote y S ( the jot dstuto of ad S ( The λ S ( Poof Defe the set { v : dv v } R The { } ( ( P ω: ( ω S ( ( ω P ω: d ω S ω S y defto of S O the othe had ote that λ ( sce ths s the ( c S mesoal hypeplae defed y the set Sce the esult follows -volume of the -d- Poof of Lemma Whe the esult s tval sce ths case mag τ a ull measue Suppose that > ad let g : e the fucto defed y Defe h y h ( y g( y g( v v v v dv d : y π The thee s a v Suppose that We wll show that π ( h ( such that y π ( v ( v v h( y g( y v v dv d fo evey R ad Fgue 6 Example 6 O the ght gaph the lac smple desty s the estmate ˆϕ ad the lght gay ego s a cedle set wth cedlty 95% O oth gaphs the da gay cuve s the data geeatg desty O the left gaph the lac smooth desty s the Bayes decso of Poposto 6 384

9 Sce v we have that ( dv v d mplyg that h that Maques C Peea h y v Sce v t follows fom the defto of the vese mage of y h ad theefoe we coclude that π ( h ( To pove the othe cluso suppose that y h ( v ad y the defto of h we have that v g( y y y dy d ad defe v h ( y Hece mplyg that v ecause dv Sce v y π v t follows that y π ( Theefoe h ( π ( Hece we have that τ d λ h ad the popetes of the vese mage of h ad the Leesgue measue etal that each τ s a measue ove ( R L m Σ Let ξ defed y Lemma 7 Let e a measue ove ( ad { } ( ξ λ u : us u the jot dstuto of ad S ( R Deote y S ( that S ( ξ wth Rado-odym devatve d dξ f S S( gve y f u f u I u S ( The we have whch u ad Poof Defe the fucto T : y ( T u us u ote that ξ λ T Defe the fucto ψ : ψ u f u I u wth u ad The dagam y commutes sce ψ ( T( u ψ ( u S u f u I u f u we have that S fo evey ( ( f ( u dλ u d T ψ T u λ T ( u ψ ( u ξ( u f ( u I ( u ξ( u u Fo evey { } { } P ω: ω S ω P ω: ω T S d d R whch the ffth equalty s otaed tasfomg y T u ad It follows that S ( ξ ad the Rado-odym devatve has the desed expesso Lemma 73 Let ξ e the measue defed o Lemma 7 ad let { τ } e the famly of measues defed o Lemma The fo evey measuale oegatve ψ : we have that ψ u d ξ u ψ u dτ u d λ whch u ad Poof Defe f : y f( u ( u u du Hece f s a dffeetale fucto whose vese s the dffeetale fucto g defed o Lemma The value of the Jacoa o the pot v s Jg ( v d Let R y ad defe h as Lemma Whe > we have aleady show the couse of the poof of Lemma that π ( h ( fo evey R Rememeg that y defto π h I y I ( g( y s fo the value of I ( g( y t follows that ( ow suppose that I ths case sce cosde two sucases: sce ad we coclude that π we have that I ( y I ( y π 385

10 Maques C Peea f ay of the y the I ( g( y g( y y y dy d othewse we have dy d < ad aga t happes that I ( g( y I ( y I ( g( y π Hece fo R ad B R we have that ξ( B λ { u : u S ( u B} I ( u IB( S ( u dλ ( u I ( g( y IB Jg ( y d λ ( y d I ( y I d ( B λ y π ( d λ y λ τ( λ B π B Theefoe we coclude that ths case also d d d whch y ad the thd equalty s otaed tasfomg y f ad the peultmate equalty s a cosequece of Toell s Theoem The esult follows fom the Poduct Measue Theoem ad Fu s Theoem (see [8] Theoems 6 ad 64 Lemma 74 Let L ( m Σ Let { τ } e the famly of measues defed o Lemma Let S ( e the dstuto of S ( The S ( λ wth Rado-odym devatve d dλ f S S( gve y Poof Let R S f f u I u d u S τ u ad Let ξ e the measue defed o Lemma 7 We have that { : } { : ( } ( f ( u I ( u d ( u S ( f ( u I ( u d τ d u λ ( ( P ω S ω P ω ω S ω ξ whch the peultmate equalty follows fom Lemma 7 ad the last equalty follows fom Lemma 73 Hece S ( λ ad the Rado-odym devatve has the desed expesso Poof of Theoem Let S ( e the jot dstuto of ad S ( ad let S ( e the S Fo R ad B R y the defto of codtoal dstuto we have that dstuto of ( B P{ S ( B} ( d S B S S B d S ( ( d λ S dλ whch we have used the Lez ule fo the Rado-odym devatves O the othe had y Lemmas 7 ad 73 we have that wth ( B f u I u d ξ u f u I u dτ u d λ S B B u ad Both expessos fo ( B S S ( ae compatle f dτ fs ( f u I u u 386

11 fo almost evey [ λ ] Theefoe we have that ( S odym devatve d S ( dτ f S ( ( gve y f ( u S fs ( as desed The fact that ( Poof of Lemma 3 Let τ fo almost evey f u I u > [ ] Maques C Peea λ wth Rado- follows mmedately S α h e the measues ove ( c R defed y α ( ( h λ ( x h d each h Let B B B wth B R fo By the hypothess of codtoal depedece ad Toell s Theoem we have that Hece XH ( h ( Bh ( B h f( x d ( x λ XH Xj H j B j j j j j B B j j f ( xj dλ( x hi [ ( x d t t j λ x c h d λ( x αh( B B ad α h agee o the π -system of poduct sets that geeate R Theefoe y Theoem 6 of [9] oth measues agee o the whole sgma-feld R It follows that XH ( h λ almost suely [ H ] ad the Rado-odym devatve has the desed expesso Poof of Theoem 3 By Bayes Theoem fo each R we have that c ( x C f ( xh d ( h C h d ( h HX XH H H d C h h h c H dτ ( dτ C c h f ( h I ( h d τ h f S whch we have used the expesso of the lelhood otaed Lemma 3 the Lez ule fo the Rado-odym devatves the expesso of d H dτ Defto 3 ad the costat C s such that x The emade of the poof eles o some matx algea Let I e the detty matx Sce HX y defto Σ s symmetc we have that I I ( Σ Σ Wte l log h Sce the scala l Σ m s equal to ts taspose that Defg d Σ c we have fo ΣΣ Σ Σ Σ Σ Theefoe we have that l m Σ l m l Σ l m Σ l m Σ m l m m l c * * h exp ( l m Σ ( l m exp ( d Σ l l Σ l m Σ l m Σ m C ( d Σ l l Σ l m Σ l m Σ m m Σ d d Σ d exp wth C exp ( ( m d d d d Σ m ( d Σ m m Σ d we have that Σ Σ Defe * m m d Sce the scala * * m m m m m d d d Σ Σ we have Σ Σ Σ Σ Hece we ota 387

12 Maques C Peea c * * h exp ( l m Σ ( l m C exp l Σ l m Σ l m Σ m * * C exp ( l m Σ ( l m * * * ( sg ths esult the expesso of HX togethe wth the expesso of f we have whch ( x C f * ( h I ( h ( h d τ HX C CC f S ad * L m Σ We coclude that gve that X x the vecto H has the dstuto of the heghts of the steps of ϕ ( m Σ as desed Poposto 75 Suppose that the adom vaales X X ae modeled accodg to Lemma 3 Deote y X the dstuto of X fo Fo coveece use the otatos X ( X X ad ( x x x The fo evey R we have X ( E ϕ( y dλ( y fo ; E d x ϕ y X x λ y X X as ( X Poof By Defto 3 we have whch h ad f ( y hi [ ( y t t Fo tem ote that f s a desty of the adom vecto E ( y E HI [ ( y ϕ f ( y d ( h t t H fo y I a aalogous mae we have E ϕ y X x f y d hx HX ( P{ X H } ( h d ( h ( f ( y dλ ( y d H ( h ( f ( y d H ( h dλ( y X X H H E ϕ( y d λ( y whch the fouth equalty follows fom Toell s Theoem Fo tem fo each P{ X X B} ( x ( B X X X x d O the othe had we have P X X B P X X BH B R { } { } ( x h d ( x h B X X H X H X H h d ( x h B X H ( d d B X H h hx x HX X ( ( d d d B f y λ y hx x HX X ( ( f( y d ( hx d ( y d ( x B λ HX X ( E ϕ( y X x dλ ( y d ( x B X we have 388

13 Maques C Peea whch the thd equalty follows fom the hypothess of codtoal depedece ad Theoem B6 of [9] the fouth equalty s a cosequece of Theoem 64 of [8] ad the sxth equalty s due to Toell s Theoem Compag oth expessos fo P{ X X B} we get the desed esult Poposto 76 Let K P K ove ( e the dstuto of K ad let R P R ove ( R e the dstuto of R Deote y KR the jot dstuto of K ad R whch y the depedece of K ad R s equal to the poduct measue K R ad let KRH e the jot dstuto of K R ad H I the heachcal model desced Secto 5 we have that XKR ( ρ λ almost suely KR wth Rado-odym devatve d XKR dλ ( x ρ fxkr ( x ρ fxh ( xh HKR ( h ρ d fo the f XH defed o Lemma 3 Poof Let R ad B R By the defto of codtoal dstuto we have { } XKR ( ρ KR ( ρ P X K R B d O the othe had y agumets smla to those used the poof of Poposto 75 we have P X K R B { } P{ X ( KR BH } XKRH ( ρ h d KRH ( ρ h B XH ( h d KRH ( ρ h B ( XH ( h d HKR ( h d KR ( B ρ ρ ( B ( B Compag oth expessos fo P{ X ( K R B} we have B ( fxh xh dλ x d HKR h ρ d KR ( ρ ( fxh xh HKR h ρ λ x KR ( ρ d d d ρ f xh d h ρ d λ x XKR XH HKR almost suely KR ad the esult follows Poof of Poposto 6 By Toell s Theoem the expected loss s ( ϕ λ ϕ λ a a whch we have defed the postve costat C E ϕ ( x dλ( x f a ( x α g ( x leadg us to E L f f x d x f x E x d x C By hypothess each f has the fom ( j ( a j a E L ϕ f αα g x g x dλ x α g x E ϕ x d λ x C j whch we have used the leaty of the tegal Theefoe mmzg the expected loss s the same as solvg the polem of costaed mmzato of the quadatc fom Q Fo the matx M ( M j ote that fo evey o ull ( y y y we have j j ( j j dλ a y My yym yy g x g x x j j ( j j d d a yg x y g x λ x yg x λ x a > j whch we have used the leaty of the tegal Theefoe the matx M s postve defte yeldg (see [] that the quadatc fom Q s covex ad the polem of costaed mmzato of Q has a sgle gloal 389

14 Maques C Peea soluto ( ˆ α ˆ α 8 Cocluso Sce the Bayes decso s the f that mmzes the expected loss the esult follows The adom desty cosdeed the pape ca e exteded to multvaate polems toducg aalogous pattos of d-dmesoal Eucldea space lso as a alteatve to the empcal appoach used Secto 5 we ca specfy full pos fo the hypepaametes lthough moe computatoally challegg ths choce defes a moe flexle model wth adom dmeso fo whch the desty estmates ae o loge smple destes Moe geeal adom pattos ca also e cosdeed Refeeces [] Feguso T (973 Bayesa alyss of Some opaametc Polems The als of Statstcs [] Blacwell D (973 Dsceteess of Feguso Selectos The als of Statstcs [3] Gosh JK ad Ramamooth RV ( Bayesa opaametcs Spge ew Yo [4] Thou D (986 Bayesa ppoach to Desty Estmato Bometa [5] Le PJ (988 The Logstc omal Dstuto fo Bayesa opaametc Pedctve Destes Joual of the meca Statstcal ssocato [6] Roet CP ad Casella G (4 Mote Calo Statstcal Methods d Edto Spge ew Yo [7] Bllgsley P (995 Poalty ad Measue 3d Edto Wley-Itescece ew Jesey [8] sh RB ( Poalty ad Measue Theoy 3d Edto Hacout/cademc Pess Massachusetts [9] Schevsh MJ (995 Theoy of Statstcs Spge ew Yo [] Bazaaa MS ad Shetty CM (6 olea Pogammg: Theoy ad lgothms 3d Edto Wley-Itescece ew Jesey 39

15

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

Bayesian Nonlinear Regression Models based on Slash Skew-t Distribution

Bayesian Nonlinear Regression Models based on Slash Skew-t Distribution Euopea Ole Joual of Natual ad Socal Sceces 05; www.euopea-scece.com Vol.4, No. Specal Issue o New Dmesos Ecoomcs, Accoutg ad Maagemet ISSN 805-360 Bayesa Nolea Regesso Models based o Slash Skew-t Dstbuto

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

The Geometric Proof of the Hecke Conjecture

The Geometric Proof of the Hecke Conjecture The Geometc Poof of the Hecke Cojectue Kada Sh Depatmet of Mathematc Zhejag Ocea Uvety Zhouha Cty 6 Zhejag Povce Cha Atact Begg fom the eoluto of Dchlet fucto ug the e poduct fomula of two fte-dmeoal vecto

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications Iteatoal Joual of Basc & Appled Sceces IJBAS-IJENS Vol: No:6 7 A New Appoach to Momets Iequaltes fo NRBU ad RNBU Classes Wth Hypothess Testg Applcatos L S Dab Depatmet of Mathematcs aculty of Scece Al-Azha

More information

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials Poceedgs of The Natoa Cofeece O Udegaduate Reseach (NCUR) 00 The Uvesty of Noth Caoa at Asheve Asheve, Noth Caoa Ap -, 00 Pemutatos that Decompose Cyces of Legth ad ae Gve y Moomas Lous J Cuz Depatmet

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lectue 6 Leag Bayesa belef etwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Seott Squae Admstato Mdtem: Wedesday, Mach 7, 2004 I class Closed book Mateal coveed by Spg beak, cludg ths lectue Last yea mdtem o

More information

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables Appled Mathematc, 0,, 8-86 do:046/am095 Publhed Ole Novembe 0 (http://wwwscrpog/oual/am) Dtbuto of Geometcally Weghted Sum of Beoull Radom Vaable Abtact Deepeh Bhat, Phazamle Kgo, Ragaath Naayaachaya Ratthall

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research

Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research Joual of Mode Appled Statstcal Methods Volume 3 Issue Atcle 9 5--04 Robust Regesso Aalyss fo No-Nomal Stuatos ude Symmetc Dstbutos Asg I Medcal Reseach S S. Gaguly Sulta Qaboos Uvesty, Muscat, Oma, gaguly@squ.edu.om

More information

ASYMPTOTICS OF THE GENERALIZED STATISTICS FOR TESTING THE HYPOTHESIS UNDER RANDOM CENSORING

ASYMPTOTICS OF THE GENERALIZED STATISTICS FOR TESTING THE HYPOTHESIS UNDER RANDOM CENSORING IJRRAS 3 () Novembe www.apape.com/volume/vol3iue/ijrras_3.pdf ASYMPOICS OF HE GENERALIZE SAISICS FOR ESING HE HYPOHESIS UNER RANOM CENSORING A.A. Abduhukuov & N.S. Numuhamedova Natoal Uvety of Uzbekta

More information

Probability. Stochastic Processes

Probability. Stochastic Processes Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg g Natoal Su Yat-se Uvesty Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Sees A, OF THE ROMANIAN ACADEMY Volume 8, Numbe 3/27,. - L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems It Joual of Math Aalyss, Vol 8, 04, o 8, 865-879 HIKARI Ltd, wwwm-hacom http://ddoog/0988/jma044368 A Epaded Method to Robustly Pactcally Output Tacg Cotol fo Uceta Nolea Systems Keyla Almha, Naohsa Otsua,

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

Hyper-wiener index of gear fan and gear wheel related graph

Hyper-wiener index of gear fan and gear wheel related graph Iteatoal Joual of Chemcal Studes 015; (5): 5-58 P-ISSN 49 858 E-ISSN 1 490 IJCS 015; (5): 5-58 014 JEZS Receed: 1-0-015 Accepted: 15-0-015 We Gao School of Ifomato Scece ad Techology, Yua Nomal Uesty,

More information

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh) Joual of Qualty Measuemet ad Aalyss JQMA 3(), 07, 5-34 Jual Pegukua Kualt da Aalss FULLY IGHT PUE GOUP INGS (Gelaggag Kumpula Tule Kaa Peuh) MIKHLED ALSAAHEAD & MOHAMED KHEI AHMAD ABSTACT I ths pape, we

More information

Allocations for Heterogenous Distributed Storage

Allocations for Heterogenous Distributed Storage Allocatos fo Heteogeous Dstbuted Stoage Vasleos Ntaos taos@uscedu Guseppe Cae cae@uscedu Alexados G Dmaks dmaks@uscedu axv:0596v [csi] 8 Feb 0 Abstact We study the poblem of stog a data object a set of

More information

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution ustala Joual of Basc ad ppled Sceces, 6(: 98-6, ISSN 99-878 Estmato of Paametes of the Epoetal Geometc Dstbuto wth Pesece of Outles Geeated fom Ufom Dstbuto Pavz Nas, l Shadoh ad Hassa Paza Depatmet of

More information

Council for Innovative Research

Council for Innovative Research Geometc-athmetc Idex ad Zageb Idces of Ceta Specal Molecula Gaphs efe X, e Gao School of Tousm ad Geogaphc Sceces, Yua Nomal Uesty Kumg 650500, Cha School of Ifomato Scece ad Techology, Yua Nomal Uesty

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method) Ojectves 7 Statcs 7. Cete of Gavty 7. Equlum of patcles 7.3 Equlum of g oes y Lew Sau oh Leag Outcome (a) efe cete of gavty () state the coto whch the cete of mass s the cete of gavty (c) state the coto

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

φ (x,y,z) in the direction of a is given by

φ (x,y,z) in the direction of a is given by UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o

More information

Probability and Stochastic Processes

Probability and Stochastic Processes Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg Natoal Su Yat-se Uvesty Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

Exponentiated Lomax Geometric Distribution: Properties and Applications

Exponentiated Lomax Geometric Distribution: Properties and Applications Expoetated Lomax Geometc Dstbuto: Popetes ad Applcatos Amal Solma Hassa Mathematcal Statstcs Cao Uvesty Isttute of Statstcal Studes ad Reseach Egypt d.amalelmoslamy@gmal.com Mawa Abd-Allah Mathematcal

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations IOSR Joual of Mathematcs (IOSRJM) ISS: 78-578 Volume, Issue (July-Aug 01), PP 14-19 Legede-coeffcets Compaso Methods fo the umecal Soluto of a Class of Oday Dffeetal Equatos Olaguju, A. S. ad Olaegu, D.G.

More information

Bayes method for low rank tensor estimation

Bayes method for low rank tensor estimation Joual of Physcs: Cofeece Sees PAPER OPEN ACCESS Bayes method fo low ak teso estmato To cte ths atcle: Taj Suzuk ad Hesho Kaagawa 2016 J. Phys.: Cof. Se. 699 012020 Vew the atcle ole fo updates ad ehacemets.

More information

Chapter 2 Probability and Stochastic Processes

Chapter 2 Probability and Stochastic Processes Chapte Pobablty ad Stochastc Pocesses Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Fuctos of Radom Vaables Statstcal Aveages of Radom Vaables Some Useful Pobablty Dstbutos

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING TATITIC IN TRANITION-ew sees Octobe 9 83 TATITIC IN TRANITION-ew sees Octobe 9 Vol. No. pp. 83 9 A GENERAL CLA OF ETIMATOR UNDER MULTI PHAE AMPLING M.. Ahed & Atsu.. Dovlo ABTRACT Ths pape deves the geeal

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM Joual o Mathematcal Sceces: Advaces ad Applcatos Volume 6 Numbe 00 Pages 77-9 PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM DAU XUAN LUONG ad TRAN VAN AN Depatmet o Natual Sceces Quag Nh

More information

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS Electoc tascptos Mathematcal Isttute Slesa Uvesty Opava Czech Republc August Ths tet s a electoc tascpto of the ogal eseach pape D Kupa Some Geometc Aspects of Vaatoal Poblems Fbed Mafolds Fola Fac Sc

More information