Chapter 7 Varying Probability Sampling

Size: px
Start display at page:

Download "Chapter 7 Varying Probability Sampling"

Transcription

1 Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal pobabltes of selecto to the uts the populato. Ths type of samplg s kow as vayg pobablty samplg scheme. If s the vaable ude study ad X s a auxlay vaable elated to, the the most commoly used vayg pobablty scheme, the uts ae selected wth pobablty popotoal to the value of X, called as sze. Ths s temed as pobablty popotoal to a gve measue of sze (pps) samplg. If the samplg uts vay cosdeably sze, the SRS does ot takes to accout the possble mpotace of the lage uts the populato. A lage ut,.e., a ut wth lage value of cotbutes moe to the populato total tha the uts wth smalle values, so t s atual to expect that a selecto scheme whch assgs moe pobablty of cluso a sample to the lage uts tha to the smalle uts would povde moe effcet estmatos tha the estmatos whch povde equal pobablty to all the uts. Ths s accomplshed though pps samplg. ote that the sze cosdeed s the value of auxlay vaable X ad ot the value of study vaable. Fo example a agcultue suvey, the yeld depeds o the aea ude cultvato. So bgge aeas ae lkely to have lage populato ad they wll cotbute moe towads the populato total, so the value of the aea ca be cosdeed as the sze of auxlay vaable. Also, the cultvated aea fo a pevous peod ca also be take as the sze whle estmatg the yeld of cop. Smlaly, a dustal suvey, the umbe of wokes a factoy ca be cosdeed as the measue of sze whe studyg the dustal output fom the espectve factoy. Dffeece betwee the methods of SRS ad vayg pobablty scheme: I SRS, the pobablty of dawg a specfed ut at ay gve daw s the same. I vayg pobablty scheme, the pobablty of dawg a specfed ut dffes fom daw to daw. It appeas pps samplg that such pocedue would gve based estmatos as the lage uts ae oveepeseted ad the smalle uts ae ude-epeseted the sample. Ths wll happe case of sample mea as a estmato of populato mea whee all the uts ae gve equal weght. Istead of gvg equal weghts to all the uts, f the sample obsevatos ae sutably weghted at the estmato stage by takg the pobabltes of selecto to accout, the t s possble to obta ubased estmatos. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page

2 I pps samplg, thee ae two possbltes to daw the sample,.e., wth eplacemet ad wthout eplacemet. Selecto of uts wth eplacemet: The pobablty of selecto of a ut wll ot chage ad the pobablty of selectg a specfed ut s same at ay stage. Thee s o edstbuto of the pobabltes afte a daw. Selecto of uts wthout eplacemet: The pobablty of selecto of a ut wll chage at ay stage ad the pobabltes ae edstbuted afte each daw. PPS wthout eplacemet (WOR) s moe complex tha PPS wth eplacemet (WR). We cosde both the cases sepaately. PPS samplg wth eplacemet (WR): Fst we dscuss the two methods to daw a sample wth PPS ad WR.. Cumulatve total method: The pocedue of selecto a smple adom sample of sze cossts of - assocatg the atual umbes fom to uts the populato ad - the selectg those uts whose seal umbes coespod to a set of umbes whee each umbe s less tha o equal to whch s daw fom a adom umbe table. I selecto of a sample wth vayg pobabltes, the pocedue s to assocate wth each ut a set of cosecutve atual umbes, the sze of the set beg popotoal to the desed pobablty. If X, X,..., X ae the postve teges popotoal to the pobabltes assged to the uts the populato, the a possble way to assocate the cumulatve totals of the uts. The the uts ae selected based o the values of cumulatve totals. Ths s llustated the followg table: Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page

3 Uts Sze Cumulatve X X X X X X T X T X+ X T T T X X X Select a adom umbe R betwee ad T by usg adom umbe table. If T R T, the th ut s selected wth pobablty X,,,,. T Repeat the pocedue tmes to get a sample of sze. I ths case, the pobablty of selecto of th ut s T T X P T T P X. ote that T s the populato total whch emas costat. Dawback : Ths pocedue volves wtg dow the successve cumulatve totals. Ths s tme cosumg ad tedous f the umbe of uts the populato s lage. Ths poblem s ovecome the Lah s method. Lah s method: Let M Max X,.e., maxmum of the szes of uts the populato o some coveet,,..., umbe geate tha M. The samplg pocedue has followg steps:. Select a pa of adom umbe (, ) such that, M.. If X, the th ut s selected othewse eected ad aothe pa of adom umbe s chose. 3. To get a sample of sze, ths pocedue s epeated tll uts ae selected. ow we see how ths method esues that the pobabltes of selecto of uts ae vayg ad ae popotoal to sze. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 3

4 Pobablty of selecto of th ut at a tal depeds o two possble outcomes ethe t s selected at the fst daw o t s selected the subsequet daws peceded by effectve daws. Such pobablty s gve by P( ) P( M ) X M. * P, say. X Pobablty that o ut s selected at a tal M X M X Q, say. M Pobablty that ut s selected at a gve daw (all othe pevous daws esult the o selecto of ut ) P + QP + Q P +... * * * * P Q X / M X X X / M X X total X. Thus the pobablty of selecto of ut s popotoal to the sze sample. X. So ths method geeates a pps Advatage:. It does ot eque wtg dow all cumulatve totals fo each ut.. Szes of all the uts eed ot be kow befoe had. We eed oly some umbe geate tha the maxmum sze ad the szes of those uts whch ae selected by the choce of the fst set of adom umbes to fo dawg sample ude ths scheme. Dsadvatage: It esults the wastage of tme ad effots f uts get eected. X The pobablty of eecto. M The expected umbes of daws equed to daw oe ut Ths umbe s lage f M s much lage tha X. M. X Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 4

5 Example: Cosde the followg data set of 0 umbe of wokes the factoy ad ts output. We llustate the selecto of uts usg the cumulatve total method. Factoy o. umbe of wokes Idustal poducto Cumulatve total of szes (X) ( thousads) ( metc tos) () 30 T 5 60 T T T T T T T T T Selecto of sample usg cumulatve total method:.fst daw: - Daw a adom umbe betwee ad 64.. Secod daw: - Suppose t s 3 -T 4 < 3 < T 5 - Ut s selected ad 5 8 etes the sample. - Daw a adom umbe betwee ad 64 - Suppose t s 38 - T7 < 38 < T8 - Ut 8 s selected ad 8 7 etes the sample - ad so o. - Ths pocedue s epeated tll the sample of equed sze s obtaed. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 5

6 Selecto of sample usg Lah s Method I ths case M Max X 4,,...,0 So we eed to select a pa of adom umbe (, ) such that 0, 4. Followg table shows the sample obtaed by Lah s scheme: Radom o Radom o Obsevato Selecto of ut < X3 0 tal accepted ( y 3) > X6 tal eected 4 7 7> X4 4 tal eected 9 9> X 5 tal eected 9 < X9 tal accepted ( y 9) ad so o. Hee ( y3, y 9) ae selected to the sample. Vayg pobablty scheme wth eplacemet: Estmato of populato mea Let : value of study vaable fo the th ut of the populato,,,,. X : kow value of auxlay vaable (sze) fo the th ut of the populato. P : pobablty of selecto of th ut the populato at ay gve daw ad s popotoal to sze X. Cosde the vayg pobablty scheme ad wth eplacemet fo a sample of sze. Let value of th obsevato o study vaable the sample ad Defe the y z,,,...,, p z z y be the p be ts tal pobablty of selecto. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 6

7 s a ubased estmato of populato mea, vaace of z s σ z whee σ z P P ad a ubased estmate of vaace of z s Poof: sz ( z z). ote that z ca take ay oe of the values out of Z, Z,..., Z wth coespodg tal pobabltes P, P,..., P, espectvely. So E( z) ZP P P. Thus Ez ( ) Ez ( ). So z s a ubased estmato of populato mea. The vaace of z s Va( z ) Va z ow Va z [ ] Va( z ) E z E( z ) E z ( ) Z P σ z P (say). ' ( ) ( zs ae depedet WR case). P Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 7

8 Thus Va( z ) σ z. σ z To show that s z s a ubased estmato of vaace of z, cosde ( ) Es ( z) E ( z z) o Es ( z ) E z z Ez ( ) Ez ( ) Va( z) { E( z )} Va( z ) { E( z )} z usgva( z) P σz P ( ) σ z + + σ z ( σ + ) ( + ) z s z σ z E σ Va( z ) s z y Va( z ) z. ( ) p ote: If P, the z y, σ Va( z ). whch s the same as the case of SRSWR. y Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 8

9 Estmato of populato total: A estmate of populato total s ˆ y tot z. p. Takg expectato, we get ˆ E ( tot ) P+ P P P P P tot. tot Thus ˆtot s a ubased estmato of populato total. Its vaace s Va ˆ ( tot ) Va( z ) P P P tot P tot P. A estmate of the vaace ˆ sz Va( tot ). Vayg pobablty scheme wthout eplacemet I vayg pobablty scheme wthout eplacemet, whe the tal pobabltes of selecto ae uequal, the the pobablty of dawg a specfed ut of the populato at a gve daw chages wth the daw. Geeally, the samplg WOR povdes a moe effcet estmato tha samplg WR. The estmatos fo populato mea ad vaace ae moe complcated. So ths scheme s ot commoly used pactce, especally lage scale sample suveys wth small samplg factos. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 9

10 Let U : th ut, P : Pobablty of selecto of U at the fst daw,,,..., P P Pobablty of selectg U at the : ( ) P () P. th daw Cosde P () Pobablty of selecto of U at d daw. Such a evet ca occu the followg possble ways: U s selected at d daw whe st d - U s selected at daw ad U s selected at daw st d - U s selected at daw ad U s selected at daw st d - U- s selected at daw ad U s selected at daw st d - U + s selected at daw ad U s selected at daw st d - U s selected at daw ad U s selected at daw So P () ca be expessed as P P P P P P P + P P + P P () + P P P + P+ P P P ( ) P P P P P + P P ( ) P P P P P P P P P P P P P P P P fo all uless () () P. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 0

11 y P () wll, geeal, be dffeet fo each,,,. So E wll chage wth successve daws. p y Ths makes the vayg pobablty scheme WOR moe complex. Oly p y estmato of. I geeal, ( ) wll ot povde a ubased estmato of. p wll povde a ubased Odeed estmates To ovecome the dffculty of chagg expectato wth each daw, assocate a ew vaate wth each daw such that ts expectato s equal to the populato value of the vaate ude study. Such estmatos take to accout the ode of the daw. They ae called the odeed estmates. The ode of the value obtaed at pevous daw wll affect the ubasedess of populato mea. We cosde the odeed estmatos poposed by Des Ra, fst fo the case of two daws ad the geealze the esult. Des Ra odeed estmato Case : Case of two daws: Let y ad y deote the values of uts U() ad U () daw at the fst ad secod daws espectvely. ote that ay oe out of the uts ca be the fst ut o secod ut, so we use the otatos U() ad U() stead of U ad U. Also ote that y ad yae ot the values of the fst two uts the populato. Futhe, let p ad p deote the tal pobabltes of selecto of U () ad U (), espectvely. Cosde the estmatos y z p z y y + p / ( p) y + y z+ z z. ( p ) p Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page

12 p ote that p s the pobablty PU ( () U () ). Estmato of Populato Mea: Fst we show that z s a ubased estmato of. Ez ( ). ote that Cosde P. y y p p P P P ( ) E ote that ca take ay oe of out of the values,,..., Ez P+ P P P P P Ez ( ) E y+ y ( p ) p ( P ) E( y ) + E E y U() ( Usg E ( ) EX[ E( X)]. p whee E s the codtoal expectato afte fxg the ut U () selected the fst daw. y Sce p ca take ay oe of the ( ) values (except the value selected the fst daw) P wth pobablty P, P so ( P) y P E y U P E U P * () ( ) () ( ). p p P P. whee the summato s take ove all the values of except the value y whch s selected at the fst daw. So ( P ) * E y U() tot y. p Substtutg t Ez ( ), we have Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page

13 Thus Ez ( ) Ey ( ) + E ( tot y) [ ] + [ E( y) E ( y) ] tot tot E ( tot ). Ez ( ) + Ez ( ) Ez ( ) +. Vaace: The vaace of z fo the case of two daws s gve as Va( z ) P P P 4 tot tot P P Poof: Befoe statg the poof, we ote the followg popety ab a b b whch s used the poof. The vaace of z s [ ] Vaz Ez Ez ( ) ( ) ( ) y y( p) E + y + p p y ( + p ) y ( p ) E + 4 p p atue of atue of vaable vaable depeds depeds st oly o upo ad st d daw daw Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 3

14 ( + ) ( ) P P PP 4 P P P ( ) ( ) ( ) + P PP P PP P PP P P P P PP P 4 Usg the popety + ( + P) ( ) P P P P P P P ab a b b, we ca wte ( P). ( ) + P Va( z ) + ( ) + ( + )( )] P P P P P 4 P( P) P P (+ P + ) + ( P P P) + ( + P)( ) 4 P P P P P P P P P + P + P + P ] P tot totp P P P + tot tot 4 P 4 tot totp + 4 P P tot totp tot tot P ( + 4 ) 4 + P P tot P tot ( totp + tot tot + P tot ) P 4 + P 4 P P tot ( totp P tot ) P P tot P tot P 4 P P P tot P tot P 4 P 4 P ` Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 4

15 tot tot P P P Va( z ) P P P 4 4 vaace of WR educto of vaace case fo WR wth vayg pobablty Estmato of Va( z ) Vaz ( ) Ez ( ) ( Ez ( )) Ez ( ) Sce Ezz ( ) EzEz ( u) [ ] E z E( z). Cosde E z zz E( z ) E( zz ) Ez ( ) Va( z ) Va( z ) z z z s a ubased estmato of Va( z ) Alteatve fom Va( z ) z z z z+ z ( z z) 4 zz y y y p 4 p p y y( p) ( p ) 4 p p ( p ) y y 4 p p. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 5

16 Case : Geeal Case Let () () ( ) ( ) ( U, U,..., U,..., U ) be the uts selected the ode whch they ae daw daws whee U ( ) deotes that the th ut s daw at the th daw. Let ( y, y,.., y,..., y ) ad ( p, p,..., p,..., p ) be the values of study vaable ad coespodg tal pobabltes of selecto, espectvely. Futhe, let P(), P(),..., P( ),..., P ( ) be the tal pobabltes of U, U,..., U,..., U, espectvely. () () ( ) ( ) Futhe, let y z p y z y+ y y + ( p... p ) fo,3,...,. p Cosde z z as a estmato of populato mea. We aleady have show case that Ez ( ). ow we cosde Ez ( ),,3,...,. We ca wte E( z ) EE z U, U,..., U () () ( ) whee E s the codtoal expectato afte fxg the uts U(), U(),..., U( ) daw the fst ( - ) daws. Cosde y y E ( p... p ) E E ( p... p ) U, U,..., U p p () () ( ) y E ( P P... P ) E U, U,..., U. () () ( ) p () () ( ) y Sce codtoally ca take ay oe of the -( -) values,,,..., wth pobabltes p P P, so P P... P () () ( ) Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 6

17 whee y P (... ) (... ) * E p p E P P P. p () () ( ) P ( P P... P ) () () ( ) * E * deotes that the summato s take ove all the values of y except the y values selected the fst ( -) daws lke as,.e., except the values y, y,..., y whch ( (), (),..., ( )) ae selected the fst ( -) daws. Thus ow we ca expess y E( z ) EE y+ y y + ( p... p ) p * E () ()... ( ) E () () ( ) ( (), (),..., ( )) { tot ( )} E () () ( ) () () ( ) E tot tot fo all,,...,. + The ( ) E( z ) E z. Thus z s a ubased estmato of populato mea. The expesso fo vaace of z geeal case s complex but ts estmate s smple. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 7

18 Estmate of vaace: Va( z ) E( z ). Cosde fo < s, [ ] Ezz ( ) EzEz ( U, U,..., U ) s s s E z E( z ) because fo < s, z wll ot cotbute ad smlaly fo s< z wll ot cotbute the expectato., s Futhe, fo s<, Cosde Substtutg [ ] Ezz ( ) EzEz ( U, U,..., U ) s s E z s E( z ). s E zz s Ezz ( s) ( ) ( s) s ( ) ( s) s ( ) ( ). Va( z ), we get Va( z ) E( z ) Ez ( ) E zz s ( ) ( s) s Va( z ) z zzs ( ) ( s) s z z zz s ( s) s zz s z z, ( s) s Usg + Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 8

19 The expesso of Va ( z ) ca be futhe smplfed as Va( z ) z z z ( ) ( ) z z ( ) ( z z). Uodeed estmato: I odeed estmato, the ode whch the uts ae daw s cosdeed. Coespodg to ay odeed estmato, thee exst a uodeed estmato whch does ot deped o the ode whch the uts ae daw ad has smalle vaace tha the odeed estmato. I case of samplg WOR fom a populato of sze, thee ae Coespodg to ay uodeed sample(s) of sze uts, thee ae! odeed samples. Fo example, fo f the uts ae u ad u, the - thee ae! odeed samples - ( u, u) ad ( u, u ) - thee s oe uodeed sample ( u, u ). uodeed sample(s) of sze. Moeove, Pobablty of uodeed Pobablty of odeed Pobablty of odeed + sample ( u, u ) sample ( u, u ) sample ( u, u ) Fo 3, thee ae thee uts u, u, u 3 ad -thee ae followg 3! 6 odeed samples: ( u, u, u3),( u, u3, u),( u, u, u3),( u, u3, u),( u3, u, u),( u3, u, u ) - thee s oe uodeed sample ( u, u, u 3). Moeove, Pobablty of uodeedsample Sum of pobablty of odeed sample,.e. Pu (, u, u) + Pu (, u, u) + Pu (, u, u) + Pu (, u, u) + Pu (, u, u) + Pu (, u, u), Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 9

20 Let zs, s,,..,,,,...,!( M) be a estmato of populato paamete θ based o odeed sample s. Cosde a scheme of selecto whch the pobablty of selectg the odeed sample ( s ) s p s. The pobablty of gettg the uodeed sample(s) s the sum of the pobabltes,.e., p s M p s. Fo a populato of sze wth uts deoted as,,,, the samples of sze ae tuples. I the th daw, the sample space wll cosst of ( )...( + ) uodeed sample pots. p so P[ selecto of ay odeed sample] ( )...( + )! selecto of ay psu P[ selecto of ay uodeed sample ] P! ( )...( + ) odeed sample M(!)!( )! the p s p so.! ˆ M Theoem: If θ ˆ 0 z,,,..., ;,,..., (!) ad s s M θ u zs ps ae the odeed ad uodeed estmatos of θ epectvely, the () E( ˆ θ ) ( ˆ u E θ0) () Va( ˆ θ ) Va( ˆ θ0) u whee z s s a fucto of th s odeed sample (hece a adom vaable) ad p s s the pobablty of selecto of th p s odeed sample ad p s s p. s Poof: Total umbe of odeed sample! () E( ˆ θ ) 0 s M ( ˆ E θ ) z p p u s s s s p s zs p s ps s E( ˆ θ ) M 0 z p s s z p s s s Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 0

21 () Sce ˆ θ 0 z s, so ˆ θ 0 z s wth pobablty ps,,,..., M, s,,...,. Smlaly, M M ˆ ˆ θ, so u zs ps θ u zs ps wth pobablty p s Cosde Va( ˆ θ ˆ ˆ 0) E( θ0) ( 0) E θ z ( ˆ 0) s ps s E θ ˆ ˆ ˆ u u u Va( θ ) E( θ ) ( ) E θ ( ˆ z 0) s ps ps E θ s ˆ θ u s s s s s s s Va( ˆ θ0) Va( ) z p z p p 0 z + s ps zs ps ps s s z p z p p s z + s ps zs ps ps zs ps zs ps ps s s s s s s z + s ps zs ps ps zs ps zs ps s Va( ˆ θ ) Va( ˆ θ ) 0 o Va( ˆ θ ) Va( ˆ θ ) u ( zs zs ps ) ps 0 s u 0 Estmate of Va ˆ θ Sce ( ) ˆ ˆ Va( θ0) Va( θ ) ( z z p ) p u u s s s s s ˆ ˆ Va( θ ) ( 0) ( u Va θ zs zs ps ) ps s ˆ p Va( θ ) p ( z z p ). s 0 s s s s Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page

22 Based o ths esult, ow we use the odeed estmatos to costuct a uodeed estmato. It follows fom ths theoem that the uodeed estmato wll be moe effcet tha the coespodg odeed estmatos. Muthy s uodeed estmato coespodg to Des Ra s odeed estmato fo the sample sze Suppose y ad y ae the values of uts U ad U selected the fst ad secod daws espectvely wth vayg pobablty ad WOR a sample of sze ad let p ad p be the coespodg tal pobabltes of selecto. So ow we have two odeed estmates coespodg to the odeed samples s ad s as follows * * s ( y, y ) wth ( U, U ) * s ( y, y ) wth ( U, U ) * whch ae gve as * y y z( s ) ( + p) + ( p) p p whee the coespodg Des Ra estmato s gve by ad y y( p) y + + p p * y y z( s) ( + p) + ( p) p p whee the coespodg Des Ra estmato s gve by y y( p) y + +. p p The pobabltes coespodg to z( s ) * ad z( s ) ae * pp * ps ( ) p pp * ps ( ) p ps () ps ( ) + ps ( ) * * pp( p p) ( p )( p ) Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page

23 p * p'( s ) p p * p p'( s). p p Muthy s uodeed estmate zu ( ) coespodg to the Des Ra s odeed estmate s gve as z( u) z( s ) p'( s ) + z( s ) p'( s ) * * zs ( ) ps ( ) + zs ( ) ps ( ) * * * * * * ps ( ) + ps ( ) y y pp y y pp ( + p) + ( p) + ( + p) + ( p) p p p p p p pp pp + p p y y y y ( + p) + ( p) ( p) + ( + p) + ( p) ( p) p p p p ( p ) + ( p ) y y ( p) ( + p) + ( p) + ( p) ( p) + (+ p p p p p y y ( p) + ( p) p p ( p p ) { } { }. Ubasedess: ote that y ad p ca take ay oe of the values out of,,..., ad P, P,..., P, espectvely. The y ad p ca take ay oe of the emag values out of,,..., ad P, P,..., P, espectvely,.e., all the values except the values take at the fst daw. ow Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 3

24 [ ( )] Ezu PP PP ( P) + ( P) + P P P P P P < PP PP ( P) + ( P) + P P P P P P < PP PP ( P) + ( P) + P P P P P P PP ( P) + ( P) P P ( P)( P) P P + P P Usg esult ab a b b, we have Ezu [ ( )] ( P P) + ( P P) P P ( P) + ( P) P P + +. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 4

25 Vaace: The vaace of zuca ( ) be foud as [ ( )] Va z u P P P P PP P P ( P P) P P ( P)( P) ( )( )( ) ( ) PP ( P P) ( P P) P P Usg the theoem that Va( ˆ θ ) ( ˆ u Va θ0) we get [ ] Va [ z u ] Va z ( u) ( ) * Va z s ad ( ) ( ) * Va z s Ubased estmato of V[ zu ( )] A ubased estmato of Va ( z u ) s Va [ z u ] ( p p)( p)( p) y y ( ). ( p p) p p Hovtz Thompso (HT) estmate The uodeed estmates have lmted applcablty as they lack smplcty ad the expessos fo the estmatos ad the vaace becomes umaageable whe sample sze s eve modeately lage. The HT estmate s smple tha othe estmatos. Let be the populato sze ad y, (,,..., ) be the value of chaactestc ude study ad a sample of sze s daw by WOR usg abtay pobablty of selecto at each daw. Thus po to each succeedg daw, thee s defed a ew pobablty dstbuto fo the uts avalable at that daw. The pobablty dstbuto at each daw may o may ot deped upo the tal pobablty at the fst daw. Defe a adom vaable α (,,.., ) as f s cluded a sample ' s' of sze α 0 othewse. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 5

26 y Let z,... assumg E( α) > 0 fo all E( α ) whee E( α ). P ( s) + 0. P ( s) π s the pobablty of cludg the ut the sample ad s called as cluso pobablty. The HT estmato of based o y, y,..., y s ˆ z z HT α z. Ubasedess ˆ E ( ) Ez ( α ) HT ze( α ) y E( α ) E( α ) y whch shows that HT estmato s a ubased estmato of populato mea. Vaace Cosde V ( ˆ ) Vz ( ) HT [ Ez ] ( ) ( ) Ez ( ). Ez Ez ( ) E α z E α z + αα zz ( ) z ( ) ( ). Eα + zze αα ( ) Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 6

27 If S { s} the s the set of all possble samples ad π s pobablty of selecto of th ut the sample s E( α ) Py ( s) + 0. Py ( s). π + 0.( π ) π ( α ). ( ) + 0. ( ) π. E Py s Py s So E( α) E( α ) E( z ) z π + πzz (# ) whee π s the pobablty of cluso of th ad th ut the sample. Ths s called as secod ode cluso pobablty. ow [ Ez ( )] E α z z [ E( ) ] zze ( ) E( ) α + α α ( ) + zπ ππ zz ( ). Thus ˆ Va( HT ) πz + π zz ( ) + π z ππ zz ( ) + π ( π) z ( π ππ ) zz ( ) + y y y ( ) ( ) π π π ππ π ( ) ππ π π ππ + y yy π ( ) ππ Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 7

28 Estmate of vaace ˆ ˆ y ( π ) π ππ yy V Va( HT ). + π ( ) π ππ Ths s a ubased estmato of vaace. Dawback: It does ot educes to zeo whe all y π ae same,.e., whe y π. Cosequetly, ths may assume egatve values fo some samples. A moe elegat expesso fo the vaace of y ˆHT has bee obtaed by ates ad Gudy. ates ad Gudy fom of vaace Sce thee ae exactly values of α. Takg expectato o both sdes α whch ae ad ( ) values whch ae zeo, so Also E( α ). α α αα ( ) E E( ) + E( ) ( ) α + αα J α α ( ) E E( ) E( ) (usg E( ) E( )) E + ( ) ( ) ( αα ) E( αα ) ( ) J J Thus E( αα ) P( α, α ) P( α ) P( α α ) E( α ) E( α α ) Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 8

29 Theefoe Smlaly ( ) E( αα ) E( α) E( α ) E( α) E( α α ) E( α) E( α ) ( ) E( α ) E( α α ) E( α ) ( ) [ α ] [ E α ] E( α ) ( ) ( E( ) E( α ) ( ) π ( π ) () ( ) E( αα ) E( α) E( α ) π ( π ). () We had eale deved the vaace of HT estmato as ˆ Va( HT ) ( ) ( ) π π z + π ππ zz ( ) Usg () ad () ths expesso, we get ˆ Va( HT ) ( ) ( ) ( ) π π z + π π z ππ π z z E( αα ) E( α) E( α) z ( ) E( αα ) E( α) E( α) z { E( α) E( α) E( αα ) } zz ( ) ( ) ( π ππ ) z ( π ππ ) z ( π ππ ) zz ( ) ( ) ( ) + ( ππ π )( z z zz ). ( ) The expesso fo π ad π ca be wtte fo ay gve sample sze. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 9

30 Fo example, fo, assume that at the secod daw, the pobablty of selectg a ut fom the uts avalable s popotoal to the pobablty of selectg t at the fst daw. Sce E( α ) Pobablty of selectg a sample of two P + P whee P s the pobablty of selectg at th daw (, ). If P th ut at fst daw (,,..., ) the we had eale deved that So P P d y s ot selected y s selected at daw P P P st at daw y st s ot selected at daw PP P ( ) P P P. P P E( α ) P P P + P P P Aga E( αα ) Pobablty of cludg both y ad y a sample of sze two PP + PP P P P + P P P PP + + P. P P s the pobablty of selectg the Estmate of Vaace The estmate of vaace s gve by ππ π ( ) ( ). ˆ Va HT z z ( ) π Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 30

31 Mdzuo system of samplg: Ude ths system of selecto of pobabltes, the ut the fst daw s selected wth uequal pobabltes of selecto (.e., pps) ad emag all the uts ae selected wth SRSWOR at all subsequet daws. Ude ths system E( α ) π P ( ut ( U ) s cluded the sample) P( U s cluded st daw ) + P( U s cluded ay othe daw) Pobablty that U s ot selected at the fst daw ad P + s selected at ay of subsequet ( -) daws P + ( P) P +. Smlaly, E( αα ) Pobablty that both the uts U ad U ae the sample Pobablty that U s selected at the fst daw ad U s selected at ay of the subsequet daws ( ) daws + Pobablty that U s selected at the fst daw ad U s selected at ay of the subsequet ( ) daws Pobablty that ethe U o U s selected at the fst daw but + both of them ae selected dug the subsequet ( ) daws ( )( ) P + P + ( P P) ( )( ) ( ) ( P + P) + ( ) π ( P + P ) +. Smlaly, E( αα α ) π Pobablty of cludg U, U ad U the sample k k k ( )( ) 3 ( P + P + Pk) +. ( )( ) 3 3 Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 3

32 By a exteso of ths agumet, f U, U,..., U ae the uts the sample of sze ( < ), the pobablty of cludg these uts the sample s ( )( )...( + ) E( αα... α ) π... ( P + P P ) + ( )( )...( + ) Smlaly, f U, U,..., U q be the uts, the pobablty of cludg these uts the sample s ( )( )... E( αα... αq ) π... q ( P + P Pq ) ( )( )...( + ) ( P + P Pq) whch s obtaed by substtutg. Thus f P' s ae popotoal to some measue of sze of uts the populato the the pobablty of selectg a specfed sample s popotoal to the total measue of the sze of uts cluded the sample. Substtutg these π, π, π k etc. the HT estmato, we ca obta the estmato of populato s mea ad vaace. I patcula, a ubased estmate of vaace of HT estmato gve by whee ππ π ˆ Va( HT ) ( ) z z π ππ π ( ) PP ( ). + P P ( ) The ma advatage of ths method of samplg s that t s possble to compute a set of evsed pobabltes of selecto such that the cluso pobabltes esultg fom the evsed pobabltes ae popotoal to the tal pobabltes of selecto. It s desable to do so sce the tal pobabltes ca be chose popotoal to some measue of sze. Samplg Theoy Chapte 7 Vayg Pobablty Samplg Shalabh, IIT Kapu Page 3

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Chapter -2 Simple Random Sampling

Chapter -2 Simple Random Sampling Chapter - Smple Radom Samplg Smple radom samplg (SRS) s a method of selecto of a sample comprsg of umber of samplg uts out of the populato havg umber of samplg uts such that every samplg ut has a equal

More information

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING TATITIC IN TRANITION-ew sees Octobe 9 83 TATITIC IN TRANITION-ew sees Octobe 9 Vol. No. pp. 83 9 A GENERAL CLA OF ETIMATOR UNDER MULTI PHAE AMPLING M.. Ahed & Atsu.. Dovlo ABTRACT Ths pape deves the geeal

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Chapter -2 Simple Random Sampling

Chapter -2 Simple Random Sampling Chapter - Smple Radom Samplg Smple radom samplg (SRS) s a method of selecto of a sample comprsg of umber of samplg uts out of the populato havg umber of samplg uts such that every samplg ut has a equal

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING)

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING) Samplg Theory ODULE X LECTURE - 35 TWO STAGE SAPLIG (SUB SAPLIG) DR SHALABH DEPARTET OF ATHEATICS AD STATISTICS IDIA ISTITUTE OF TECHOLOG KAPUR Two stage samplg wth uequal frst stage uts: Cosder two stage

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING Samplng heory MODULE VII LECURE - 3 VARYIG PROBABILIY SAMPLIG DR. SHALABH DEPARME OF MAHEMAICS AD SAISICS IDIA ISIUE OF ECHOLOGY KAPUR he smple random samplng scheme provdes a random sample where every

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE A. Paduaga et al. / Iteatoal Joual of Egeeg Scece ad Techology (IJEST) FUZZY MUTINOMIA CONTRO CHART WITH VARIABE SAMPE SIZE A. PANDURANGAN Pofesso ad Head Depatmet of Compute Applcatos Vallamma Egeeg College,

More information

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design Authors: Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud Applcato of Calbrato Approach for Regresso Coeffcet Estmato uder Two-stage Samplg Desg Pradp Basak, Kaustav Adtya, Hukum Chadra ad U.C. Sud

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lectue 6 Leag Bayesa belef etwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Seott Squae Admstato Mdtem: Wedesday, Mach 7, 2004 I class Closed book Mateal coveed by Spg beak, cludg ths lectue Last yea mdtem o

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications Iteatoal Joual of Basc & Appled Sceces IJBAS-IJENS Vol: No:6 7 A New Appoach to Momets Iequaltes fo NRBU ad RNBU Classes Wth Hypothess Testg Applcatos L S Dab Depatmet of Mathematcs aculty of Scece Al-Azha

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

To use adaptive cluster sampling we must first make some definitions of the sampling universe:

To use adaptive cluster sampling we must first make some definitions of the sampling universe: 8.3 ADAPTIVE SAMPLING Most of the methods dscussed samplg theory are lmted to samplg desgs hch the selecto of the samples ca be doe before the survey, so that oe of the decsos about samplg deped ay ay

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9 Lectue, Wte 9 Page 9 Combatos I ou dscusso o pemutatos wth dstgushable elemets, we aved at a geeal fomula by dvdg the total umbe of pemutatos by the umbe of ways we could pemute oly the dstgushable elemets.

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2)

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2) TELE4353 Moble a atellte Commucato ystems Tutoal 1 (week 3-4 4 Questo 1 ove that fo a hexagoal geomety, the co-chael euse ato s gve by: Q (3 N Whee N + j + j 1/ 1 Typcal Cellula ystem j cells up cells

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Probability. Stochastic Processes

Probability. Stochastic Processes Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg g Natoal Su Yat-se Uvesty Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables Appled Mathematc, 0,, 8-86 do:046/am095 Publhed Ole Novembe 0 (http://wwwscrpog/oual/am) Dtbuto of Geometcally Weghted Sum of Beoull Radom Vaable Abtact Deepeh Bhat, Phazamle Kgo, Ragaath Naayaachaya Ratthall

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω. Ut: Rado expeet saple space evets classcal defto of pobablty ad the theoes of total ad copoud pobablty based o ths defto axoatc appoach to the oto of pobablty potat theoes based o ths appoach codtoal pobablty

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

UNIT 4 SOME OTHER SAMPLING SCHEMES

UNIT 4 SOME OTHER SAMPLING SCHEMES UIT 4 SOE OTHER SAPLIG SCHEES Some Other Samplg Schemes Structure 4. Itroducto Objectves 4. Itroducto to Systematc Samplg 4.3 ethods of Systematc Samplg Lear Systematc Samplg Crcular Systematc Samplg Advatages

More information

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model ECON 48 / WH Hog The Smple Regresso Model. Defto of the Smple Regresso Model Smple Regresso Model Expla varable y terms of varable x y = β + β x+ u y : depedet varable, explaed varable, respose varable,

More information

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Sees A, OF THE ROMANIAN ACADEMY Volume 8, Numbe 3/27,. - L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr CE 56 Letue otes Set 3 Optmal Tmg of Ivestmet Case A- C s ost. ost st y, beefts stat at the ed of st y C b b b3 0 3 Case B- Cost. s postpoed by oe yea C b b3 0 3 (B-A C s saved st yea C C, b b 0 3 Savg

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution ustala Joual of Basc ad ppled Sceces, 6(: 98-6, ISSN 99-878 Estmato of Paametes of the Epoetal Geometc Dstbuto wth Pesece of Outles Geeated fom Ufom Dstbuto Pavz Nas, l Shadoh ad Hassa Paza Depatmet of

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Probability and Stochastic Processes

Probability and Stochastic Processes Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg Natoal Su Yat-se Uvesty Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal

More information

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y. .46. a. The frst varable (X) s the frst umber the par ad s plotted o the horzotal axs, whle the secod varable (Y) s the secod umber the par ad s plotted o the vertcal axs. The scatterplot s show the fgure

More information