THE FUNCTIONAL CENTRAL LIMIT THEOREM AND WEAK CONVERGENCE TO STOCHASTIC INTEGRALS I

Size: px
Start display at page:

Download "THE FUNCTIONAL CENTRAL LIMIT THEOREM AND WEAK CONVERGENCE TO STOCHASTIC INTEGRALS I"

Transcription

1 Ecoomeric Theory, 6, 000, ried i he Uied Saes of America+ THE FUNCTIONAL CENTAL LIMIT THEOEM AND WEAK CONVEGENCE TO STOCHASTIC INTEGALS I Weaky Depede rocesses OBET M. DE JONG Michiga Sae Uiversiy JAMES DAVIDSON Cardiff Uiversiy This paper gives ew codiios for he fucioa cera imi heorem, ad weak covergece of sochasic iegras, for ear-epoch-depede fucios of mixig processes+ These resus have fudamea appicaios i he heory of ui roo esig ad coiegraig regressios+ The codiios give improve o exisig resus i he ieraure i erms of he amou of depedece ad heerogeeiy permied, ad i paricuar, hese appear o be he firs such heorems i which viruay he same assumpios are sufficie for boh modes of covergece+. INTODUCTION Asympoic heory for iegraed processes is a area of research where resus from fucioa imi heory are crucia+ These resus are he mai uderpiig of he ecoomeric aaysis of modes wih iegraed ad coiegraed variabes+ hiips ~986, 987!, hiips ad Durauf ~986!, ark ad hiips ~988, 989!, ad Johase ~988, 99! are he we-kow semia coribuios o wha is ow a very exesive ieraure+ I his heory, he sampe saisics whose disribuios are sough are ypicay fucios of sampe momes i which he daa may be ~a! saioary or ~b! iegraed or ~c! a mixure of boh+ The asympoic aaysis of each of hese cases requires a differe echique+ Case ~a! is he sadard oe eadig o Gaussia imi disribuios+ I case ~b!, weak covergece o fucioas of Browia moio or reaed Gaussia processes mus usuay be proved, ad he echique of aaysis is o combie a muivariae fucioa cera imi heorem ~FCLT! wih he coiuous mappig heorem+ I is impora, espe- We hak Bruce Hase, eer hiips, ad wo aoymous referees for heir commes o earier versios of his paper+ Ay errors are ours aoe+ Address correspodece o James Davidso, Cardiff Busiess Schoo, Cardiff Uiversiy, Coum Drive, Cardiff CF 3EU, UK+ 000 Cambridge Uiversiy ress $9+50 6

2 6 OBET M. DE JONG AND JAMES DAVIDSON ciay for appicaios o ecoomic daa, ha a wide aiude shoud be permied i he amou ad ype of depedece ad heerogeeiy i he radom variabes uder cosideraio+ I case ~c!, he imis i quesio are sochasic iegras ~Iô iegras!, ad excep i he uivariae case, o show weak covergece cas for a differe echique of proof+ esus of ype ~b! are appied i a he previousy cied sudies, ad resus of ype ~c! are aso crucia i a bu he firs wo+ I is oeworhy i view of he ow rouie use of ess based o hese asympoics ~wih criica vaues obaied by simuaio! ha i he aer case, he avaiabe proofs of weak covergece impose reaivey srige codiios o he amou ad form of permied depedece+ For exampe, Srasser ~986!, Cha ad Wei ~988!, ad Jegaaha ~99! impose a marigae differece assumpio, ruig ou seria correaio of he icremes, a eas of he iegraor process+ hiips ~988b! cosiders iear processes wih idepede ad ideicay disribued ~i+i+d+! iovaios, ad Hase ~99! aows srog mixig, bu a he cied codiios are sroger ha are kow o be sufficie for he FCLT for he same muivariae process+ Moreover, he resus give by hiips ~988a! ad Davidso ~994! coai errors+ I his paper, we give ew codiios for he muivariae FCLT ad sochasic iegra covergece+ The former resu domiaes he exisig oes i he ecoomerics ieraure usig comparabe assumpios, such as Woodridge ad Whie ~988! ad Davidso ~994, Theorem 9+8!+ The codiios are oy a ie sroger ha he bes comparabe oes for he ordiary cera imi heorem ~CLT!+ Moreover, our resus for sochasic iegra covergece impose viruay he same codiios as he FCLT ad so represe a subsaia improveme over previous resus+ Secio ses ou he mai assumpios; Secio 3 discusses he FCLT ad Secio 4 he correspodig sochasic iegra covergece resu+ Secio 5 cocudes he paper+ The proofs are gahered i Appedixes A C+. DEFINITIONS AND ASSUMTIONS A key issue i his heory is he mehod of characerizig weak depedece of he uderyig ime series+ We foow auhors such as Gaa ad Whie ~988! ad öscher ad rucha ~99! i workig wih he cocep of ear-epoch depedece o a mixig process+ This framework has cosiderabe geeraiy+ Whereas addiioa depedece ca be aowed i specific cases such as iear processes ~see Davidso 000; hiips ad Soo 99!, our assumpio is more ikey o be robus i cases of pariay specified modes, i which aspecs of he shor-ru daa geeraio process are ukow+ Such siuaios are edemic i ecoomeric research+ I addiio o icudig ifiie-order movig averages uder suiabe summabiiy codiios, ear-epoch depedece ca be show o be saisfied i various oiear dyamic processes+ See Davidso ~000! for exampes+ Mixig processes are aso aowed+

3 Our defiiio of ear-epoch depedece is as foows+ Le X deoe a riaguar array of radom variabes defied o he probabiiy space ~V, F,! ad e 7X7 p deoe ~E6X6 p! 0p for p + DEFINITION + X is caed L -NED o radom variabes V if for m 0, 7X E~X 6F m, m!7 d ~m!,.) where F s s~v s,+++,v! F for s, d is a array of posiive cosas, ad ~m! r 0 as m r + We refer o he d as he ear-epoch-depedece ~NED! magiude idices ad o he ~m! as he NED umbers+ A sequece such as ~m! is said o be of size if ~m! O~m «! for some «0, ad we aso say ha X is NED of size o he process V + I he appicaio, V ca be a mixig process+ Of he differe mixig coceps ha have bee defied, he ecoomerics ieraure usuay adops eiher uiform ~f-! or srog ~a-! mixig, ad we cosider boh of hese cases, wih simiar size ermioogy for he a- ad f-mixig umbers+ For defiiios ad deais see he precedig refereces ad aso Davidso ~994!+ De Jog ~997! appears o provide he mos geera CLT for NED fucios of mixig processes currey avaiabe+ Leig $X % deoe a riaguar sochasic array, i is show i ha paper ha K d X & N~0,!, where K is a ieger-vaued icreasig sequece, if he foowig assumpio hods+ Assumpio + K ~a! X has mea zero ad 7 X 7 + ~b! There exiss a posiive cosa array c such ha $X 0c % is L r -bouded for r uiformy i ad + ~c! X is L -NED of size _ o V, where V is a a-mixig array of size r0~r!, or X is L -NED of size _ o V, where V is a f-mixig array of size r0~~r!!, ad d 0c is bouded uiformy i ad + ~d! For some sequece b such ha b o~k! ad b o~!, eig b #, M i max ~i!b ib c ad M, r max r b K c, max M i o~b 0!,.) i r ad r i WEAKLY DEENDENT OCESSES 63 M i O~b!+.3) I he case of f-mixig, r is aowed aso if he assumpio of uiform iegrabiiy of X 0c is added o Assumpio ~b!+

4 64 OBET M. DE JONG AND JAMES DAVIDSON 3. A FUNCTIONAL CENTAL LIMIT THEOEM Le K ~j! X ~j! X for 3.) where $K ~j!, % is a sequece of ieger-vaued, righ-coiuous, icreasig fucios of j, wih K ~0! 0 for a ; K ~j! is odecreasig i for a ad K ~j! K ~j '! r as r if j j ' + The referece case obviousy is X 0 X, for some sequece of radom variabes X, wih K This framework is basicay he same as ha of Woodridge ad Whie ~988! ad Davidso ~994, Ch+ 9!+ THEOEM 3++ Le Assumpio hod for X ad assume ha h~j! im EX ~j! 3.) r exiss for a ad ha 3 im dr0 sup im sup d# K ~j d! r K ~j! c ) d The X ~j! & X~j!, where X~j! is a Gaussia process havig amos surey ~a+s+! coiuous sampe pahs ad idepede icremes+ The ie of argume we adop o prove Theorem 3+ corass wih ha of Woodridge ad Whie ~988! ad Davidso ~994!+ They obai he FCLT by a direc proof ha geeraes he cera imi heorem as a coroary, whereas we sar wih he fiie dimesioa disribuios+ Uder Assumpio, ~X ~j!,+++,x ~j k!! d & ~X~j!,+++,X~j k!! 3.4) for ay fiie coecio of coordiaes j,+++,j where he imi disribuios are a+s+ coiuous ad Gaussia+ This foows from Theorem of De Jog ~997! ad he Cramér Wod heorem ~Davidso, 994, Theorem 5+5!+ d Accordig o Theorems 5+4 ad 5+5 of Biigsey ~968!, X & X, where X is coiuous wih probabiiy oe, if ~3+4! hods ad X is sochasicay equicoiuous+ This is he propery ha for a «0, im dr0 im sup ~ sup r sup 6X ~j! X ~j '!6 «! ) $j ' :6j j ' 6 d% Therefore, o compee he proof i suffices o show ha ~3+5! hods for he paria sum process ad ha he icremes are idepede i he imi+ These argumes are se ou i Appedix B+

5 If h~j! j he X is Browia moio+ More geeray, X beogs o a exesio of he cass of rasformed Browia moio processes B h defied i Davidso ~994, Ch+ 9+4!+ The erm h~j! mus be odecreasig everywhere bu uder he prese geeraizaio i eed o be sricy icreasig everywhere, ad icremes of he process may equa zero a+s+ The depedece ad heerogeeiy codiios of Theorem 3+ reax hose empoyed by Woodridge ad Whie ~988! ad Davidso ~994!, whose codiios are simiar+ These aer heorems do o permi a size _ of he NED coefficies bu empoy a rade-off codiio+ The rae a which max c is required o approach zero is dicaed by his rade-off codiio, ad aso he codiio sup im sup d ~0, j! K ~j d! r K ~j! c 0d 3.6) is imposed, which is obviousy sroger ha ~3+3!+ For exampe, cosider K ad c b b 0 for b ~0, _!, appropriae o he case X b b 0 u, where u is i+i+d+ wih fiie variace+ The, K ~j d! r K ~j! im sup c 0d C~~j d! b j b!0d 3.7) for C 0, ad ceary he codiio from equaio ~3+6! does o hod, whereas he codiio from equaio ~3+3! does hod+ ausibe exampes i which codiio ~3+3! fais o hod are o easy o cosruc, bu cosider he case c I~ 405!+ Noe ha max c o~! ad ha im sup r c im sup r ) Oe ca ceary fid a sequece b such ha Assumpio ~d! hods here+ However, im dr0 sup im sup c im im sup dr0 r I~ 405! im dr0 WEAKLY DEENDENT OCESSES mi im sup r 04 03, ) The imi of a process whose icremes have variaces evovig ike c i his exampe has a discoiuiy a he origi+ I oher words, X~0! 0a+s+, bu for 0,,X~j! Y a+s+, where Y is disribued as N~0, 4 5 _!+

6 66 OBET M. DE JONG AND JAMES DAVIDSON Exedig Theorem 3+ o he muivariae case is sraighforward, ad we have he foowig coroary, which foows direcy from Theorem 3+ ad Theorem 9+6 of Davidso ~994!+ THEOEM 3++ Le X be a m-vecor-vaued array ad assume ha for every m-vecor of ui egh here exiss a array c such ha he codiios of Theorem 3+ hod for ' X, a wih respec o he same fucios K ~j!+ d The X & X, where X is a m-dimesioa Gaussia process havig a+s+ coiuous sampe pahs ad idepede icremes+ Impici i he assumpios of Theorem 3+ is he exisece of a marix of covariace fucios, say, h~j! ~m m!, havig he propery ha ' h~j! is a posiive odecreasig fucio for a of ui egh+ For exampe, such a case is give by h~j! j b V for a posiive defiie marix V ad b 0+ Havig he variaces red a differe raes is aso ceary possibe, ahough i is difficu o sae a simpe codiio o h coverig a he possibe cases+ Apar from his requireme, here shoud be o difficuy i meeig he codiios of Theorem 3+ provided Theorem 3+ hods for each eeme of he vecor+ Thus, Coroary of De Jog ~997! shows ha ay cosa array of he form c b 0 g for b g, wih o resricio o sigs, wi saisfy Assumpio ~d!+ Ceary, i his case, Assumpios ~b! ad ~c! are saisfied for a choices of by he maximum of he m array cosas specified i he eemewise covergece+ Codiio ~3+3! wi hod ikewise i his case, accordig o he earier discussio+ 4. WEAK CONVEGENCE TO STOCHASTIC INTEGALS Give vecor-vaued arrays U s ~ p! ad W ~q!, we ex cosider he covergece i disribuio of sums of he ype G s ' U s W, ~ p q!+ 4.) The case W U, or more geeray of he vecors havig eemes i commo, is permied i our approach+ Leig U U ad W d W, ~U,W! & ~U,W! uder he codiios of Theorem 3++ Noe ha wih arge eough, U ~j! ad W ~j! are arbirariy we approximaed by -measurabe radom variabes uder he NED assumpio+ Hece U ad W, havig idepede icremes, are marigaes wih respec o he same firaio+ We seek codiios uder which he weak imi of G, afer ceerig, is he Iô iegra * 0 UdW ' + The oy exisig resus of his ype aowig seria correaio appear o be hose of hiips ~988b! ad Hase ~99!+ hiips ~988b! assumes iear processes wih i+i+d+ iovaios+ Hase ~99! assumes adaped srog-mixig processes+ Our resu coais hese forms of depedece as specia cases ad,

7 i geera, domiaes hem i erms of size codiios+ 4 The assumpios aso do o require U ad W o be adaped sequeces+ These ca deped o eves of he ifiiey far fuure, provided he depedece is damped a such a rae ha he imi processes are marigaes wih respec o he same firaio+ This resu hods by he appicaio of he same ype of bockig argume ha aows he CLT o be proved uder depedece+ Our heorem hods uder esseiay he same codiios as specified previousy for he FCLT+ As before, i eed o be he case ha U ad W are Browia moio, bu his propery wi hod for he eadig case of X 0 X where im r E~ X!~ X! ' V ~fiie, posiive semidefiie!+ I he heorem i is usefu o specify he joi covergece of he ripe ~U,W,G L UW!, so ha he resu may be used subsequey o cosruc he imiig disribuios of he saisics famiiar i ui roo esig ad coiegraio heory, ivovig Browia fucioas, by appicaios of he coiuous mappig heorem+ THEOEM 4++ Le he codiios of Theorem 3+ hod for X ~U ',W '! ' ad K + The ~U,W,G L UW! & U,W, d UdW ', 4.) 0 where U ad W are a+s+ coiuous Gaussia processes havig idepede icremes ad L UW s WEAKLY DEENDENT OCESSES 67 EU W ' s + 4.3) To esabish his resu we adop he approach of Cha ad Wei ~988, Theorem +4~ii!!+ Uder he saed codiios, ~U,W! d & ~U,W!+ Therefore, by he Skorokhod represeaio heorem ~Skorokhod, 956! here exis radom processes ~U,W! havig he same disribuio as ~U,W! bu ha coverge amos surey o ~U,W!, ad hese processes are used o cosruc a approximaio o he iegra+ Leig G deoe he couerpar of G for hese variabes, he joi disribuio of ~U,W,G L UW! is he same as ha specified i ~4+!+ To prove he heorem i is sufficie o show G L UW p & 0 UdW ', 4.4) because he joi covergece foows as a case of Theorem 9+6 of Davidso ~994! i which G L UW is mapped io a ~a+s+ cosa! eeme of C@0,# pq + Moreover, we ca cosider he case of scaar U ad W wihou oss of geeraiy, because he geera case he foows by appyig Theorem 30+4 of Davidso ~994!+

8 68 OBET M. DE JONG AND JAMES DAVIDSON The covergece i ~4+4! is show i wo seps, usig a bockig argume+ Le k ~he umber of bocks! be a odecreasig sequece such ha k r as r ad im r k ~0 d! 0, where d is he uiform disace bewee ~U,W! ad ~U,W! excep o a se of arbirariy sma probabiiy, ad e k G * U ~j!~w ~j j! W ~j!!, 4.5) where j j j0k + Aso, e G * deoe he couerpar of G * for ~U,W!+ The firs sep, based o Cha ad Wei ~988!, is o show ha G * UdW 0 p & ) This proof ca foow ha of Theorem 30+3 of Davidso ~994!, ie for ie up o equaio ~30+78!, wih appropriae chages of oaio+ Because he disribuios of G * ad G * are he same, i suffices for he secod sep o show ha 6G G * L UW 6 p & ) Noig ha G G * L UW A B, 4.8) where A ad k j m 0 k j ~U, m W, EU, m W,! 4.9) B EU, m W,, 4.0) m where j #, for j,+++,k, he proof of ~4+7! is compeed by showig p & 0 ad B r 0+ These argumes, which are fairy eghy, are give i A Appedix C+ 5. CONCLUSION This paper has give ew weak covergece resus ha pace he asympoics uderyig he heory of coiegraig regressios o viruay he same fooig as sadard asympoics+ We prove he FCLT uder codiios simiar o he bes oes kow o us for he ordiary CLT, from he poi of view of he amou of depedece ad heerogeeiy permied i he uderyig radom

9 WEAKLY DEENDENT OCESSES 69 processes+ We aso show ha sochasic iegra covergece hods uder effecivey he same codiios, somehig ha has o bee demosraed previousy o our kowedge+ NOTES + See Hase ~99!+ Davidso s Theorem 30+3 ~994! is correced i he 997 repri of he work by revisig he codiios+ The prese paper shows ha Davidso s origia heorem is correc as saed, eve hough he proof coais a error+ d p + I his paper, & deoes covergece i disribuio, whereas & deoes covergece i probabiiy+ 3+ Summaios over a empy idex se are defied as zero here+ 4+ I ca be difficu o deermie wheher oe se of codiios acuay coais aoher+ However, we oe ha if i he hiips ~988b! mode he iear MA coefficies are -summabe ~see hiips, 988b, p+ 530!, he process is L -NED o he i+i+d+ forcig variabes of size 3 _ + EFEENCES Adrews, D+W+K+ ~988! Laws of arge umbers for depede o-ideicay disribued radom variabes+ Ecoomeric Theory 4, Biigsey, + ~968! Covergece of robabiiy Measures. New York: Wiey+ Cha, N+H+ &C+Z+Wei ~988! Limiig disribuios of eas-squares esimaes of usabe auoregressive processes+ Aas of Saisics 6, Davidso, J+ ~99! A cera imi heorem for gobay osaioary ear-epoch depede fucios of mixig processes+ Ecoomeric Theory 8, Davidso, J+ ~993! The cera imi heorem for gobay osaioary ear-epoch depede fucios of mixig processes: The asympoicay degeerae case+ Ecoomeric Theory 9, Davidso, J+ ~994! Sochasic Limi Theory. Oxford: Oxford Uiversiy ress+ Davidso, J+ ~000! Whe Is a Time Series I~0!? Evauaig he Memory roperies of Noiear Dyamic Modes+ Workig paper ~revised!+ Davidso, J+ &+M+De Jog ~997! Srog aws of arge umbers for depede heerogeeous processes: A syhesis of ew ad rece resus+ Ecoomeric eviews 6 ~3!, De Jog, +M+ ~997! Cera imi heorems for depede heerogeeous radom variabes+ Ecoomeric Theory 3, Gaa, A++ &H+Whie ~988! A Uified Theory of Esimaio ad Iferece for Noiear Dyamic Modes. New York: Basi Backwe+ Hase, B+E+ ~99! Covergece o sochasic iegras for depede heerogeeous processes+ Ecoomeric Theory 8, Jegaaha, + ~99! O he asympoic behavior of eas-squares esimaors i A ime series modes wih roos ear he ui circe+ Ecoomeric Theory 7, Johase, S+ ~988! Saisica aaysis of coiegraed vecors+ Joura of Ecoomic Dyamics ad Coro, Johase, S+ ~99! Esimaio ad hypohesis esig of coiegraed vecors i Gaussia vecor auoregressive modes+ Ecoomerica 59, McLeish, D+L+ ~975a! A maxima iequaiy ad depede srog aws+ Aas of robabiiy 3, McLeish, D+L+ ~975b! Ivariace pricipes for depede variabes+ Zeischrif für Wahrscheiichskeisheorie ud Verwade Gebiee 33, McLeish, D+L+ ~977! O he ivariace pricipe for osaioary mixigaes+ Aas of robabiiy 5, ark, J+Y+ &+C+B+hiips ~988! Saisica iferece i regressios wih iegraed processes, par + Ecoomeric Theory 4,

10 630 OBET M. DE JONG AND JAMES DAVIDSON ark, J+Y+ &+C+B+hiips ~989! Saisica iferece i regressios wih iegraed processes, par + Ecoomeric Theory 5, hiips, +C+B+ ~986! Udersadig spurious regressios i ecoomerics+ Joura of Ecoomerics 33, hiips, +C+B+ ~987! Time series regressio wih a ui roo+ Ecoomerica 55, hiips, +C+B+ ~988a! Weak covergece o he sochasic iegra * 0 BdB ' + Joura of Muivariae Aaysis 4, hiips, +C+B+ ~988b! Weak covergece of sampe covariace marices o sochasic iegras via marigae approximaios+ Ecoomeric Theory 4, hiips, +C+B+ &S+N+Durauf ~986! Muipe ime series regressio wih iegraed processes+ eview of Ecoomic Sudies LIII ~4!, hiips, +C+B+ &V+Soo ~99! Asympoics for iear processes+ Aas of Saisics 0, öscher, B+M+ &I++rucha ~99! Basic srucure of he asympoic heory i dyamic oiear ecoomeric modes, par : Cosisecy ad approximaio coceps+ Ecoomeric eviews 0, 5 6+ Skorokhod, A+V+ ~956! Limi heorems for sochasic processes+ Theory of robabiiy ad Is Appicaios, Srasser, H+ ~986! Marigae differece arrays ad sochasic iegras+ robabiiy Theory ad eaed Fieds 7, Woodridge, J+M+ &H+Whie ~988! Some ivariace pricipes ad cera imi heorems for depede heerogeeous processes+ Ecoomeric Theory 4, AENDIX A: TECHNICAL LEMMAS FO MIXINGALES A impora oo for obaiig our resus is he mixigae propery+ The L -mixigaes were iroduced by McLeish ~975a!, ad he exesio o L p -mixigaes, p, by Adrews ~988!+ Le G deoe a array of s-fieds, icreasig i for each + DEFINITION + $X, G % is caed a L p -mixigae if for m 0, 7X E~X 6G, m!7 p a c~m!, 7E~X 6G, m!7 p a c~m!, A.) A.) ad c~m! r 0 as m r + The oaio here ad i he res of he paper is as i Davidso ~99, 993! ad De Jog ~997!+ The a are referred o as he mixigae magiude idices, ad X is caed a mixigae of size if c~m! is of size + Uder iegrabiiy codiios, radom variabes ha are NED o a mixig process are kow o be mixigaes, ad i paricuar we have he foowig sadard resu ~see, e+g+, Davidso, 994, Coroary 7+6!+ LEMMA A++ If X saisfies pars ~a! ~c! of Assumpio, $X, F, % is a L - mixigae of size _ wih mixigae magiude idices c +

11 WEAKLY DEENDENT OCESSES 63 esus of his kid are ofe used impiciy i he seque, where we proceed by showig ha cerai fucios of he variabes are NED o V ad appyig he same ype of argume+ Ahough he mixigae assumpio is o srucured eough o yied weak covergece resus wihou suppemeary codiios, because for exampe i may o be preserved uder rasformaios, i is usefu a cerai sages of he proofs+ I addiio o he various kow mixigae properies documeed i sources such as Davidso ~994!, we make use here of he foowig resus+ LEMMA A++ If $Y j, F j % is a L -mixigae wih magiude idices a j ad im sup r k a j A.3) ad for a q, k he ~E~Y j6f, j q! E~Y j6f, j q!! p & 0, A.4) k Y j p & 0+ A.5) roof. Noe ha for a m, k k Y j ~Y j E~Y j6f,!! m q m k ~E ~Y j6f, j q! E~Y j6f, j q!! k E~Y j6f,!+ A.6) k The L -orm of he firs ad hird erms is bouded by a j c~m!, which ca be made arbirariy sma by seecig a arge vaue of m+ The secod erm coverges i probabiiy o zero by he requireme of equaio ~A+4!+ See aso Adrews ~988!+ LEMMA A+3+ Le $X, G % ad $Y, G % be riaguar L -mixigae arrays of size _ wih mixigae magiude idices a X ad a Y, respecivey, where ~a X! O~! ad ~a Y! O~!+ If g is a icreasig ieger-vaued fucio of wih g r as r, he im r s 6E~X Y s!6i~6 s6 g! 0+ roof. This is aaogous o Lemma 4 of De Jog ~997!+ A.7)

12 63 OBET M. DE JONG AND JAMES DAVIDSON LEMMA A+4+ If $X, G % ad $Y, G % are L -mixigaes wih mixigae umbers c X ~ j! ad c Y ~ j! ad magiude idices a X ad a Y, he s X Y s C ~a ~a s s X! 0 ~og j! c X ~ j! Y! ~og j! c Y ~ j! 0+ A.8) for 0 C + roof. Defie X E~X 6G,! E~X 6G,! A.9) ad Y si E~Y s 6G, s i! E~Y s 6G, s i! A.0) ad oe ha s X Y s i i i i s X Y si s X Y si I~ s i! s X Y si I~ s i! s X Y si I~ s i! + A.) Cosider each of hese hree ses of erms+ Noe firs ha he sequece s X Y si I~ s i!, A.) is a marigae differece wih respec o he G, ad, herefore, for some cosas C 0 ad C 0, i C C s X Y si I~ s i! i C E Y si 0 s X max E 0 EX i 0 EX i Y si 0 s max s EY si 0, A.3)

13 WEAKLY DEENDENT OCESSES 633 where hese iequaiies are, respecivey, by he Burkhoder, Cauchy Schwarz, ad Doob iequaiies+ A simiar argume hods for he secod se of erms i ~A+!, oig ha s X Y si I~ s i!, s is a marigae differece wih respec o G, s i ad aso ha for each s, s s s X max X + A.4) Fiay, we have i C 3 C 3 s X Y si I~ s i! i 7 X 7 7Y, i, i I~ i!7 0 EX sup i EY, i, i I~ i! 0 A.5) for C 3 0+ The majora of ~A+! does o exceed he sum of ~A+5! ad wo erms of he form ~A+3!+ Now, he emma foows by combiig he mixigae assumpio wih he fac ha EX EE~X 6G,! EE~X 6G,! E~X E~X 6G,!! E~X E~X 6G,!!, A.6) wih simiar equaiies for Y si, ad he fac ha for a moooe decreasig sequece $x j, j % he reaio ~x j x! 0 C ~og j! x j 0, A.7) for C 0, hods by a argume simiar o McLeish ~975a, Theorem +6!+ AENDIX B: OOF OF THEOEM 3+ Fix d 0 ad e j dj jd0 for j 0,+++,@0d#+ For ay pair j, j ' such ha 6j j ' 6 d0, e j d ~j,j '! deoe he maxima vaue of j such ha j j dj ad j ' j dj ad oe ha 0,j j djd ~j,j '! d ad 0,j ' j djd ~j,j '! d+ I addiio, defie

14 634 OBET M. DE JONG AND JAMES DAVIDSON K ~mi~j d,!! ~j,d! c B.) K ~j! ad e X ~j! X ~! if j + The sup sup 6X ~j! X ~j '!6 $j ' :6j j ' 6 d0% sup sup 6X ~j! X ~j djd ~j,j '!! X ~j djd ~j,j '!! X ~j '!6 $j ' :6j j ' 6 d0% max j 0,+++,@0d# sup ~j! X ~j dj!6 $j:0 j j dj d%6x sup ~j! X ~j dj!6 j 0 $j:0 j j dj d%6x j 0 sup ~j! X ~j dj $j:0 j j dj d%6x!6 I sup $j:0 j j dj d%6x ~j! X ~j dj!6 «04 4«E sup ~j! X ~j dj j 0 $j:0 j j dj d%6x!6 I sup $j:0 j j dj d%6x ~j! X ~j dj!6 ~j dj,d!4«e sup ~j! X ~j dj!60 ~j dj j 0 $j:0 j j dj d%6x,d! I sup ~j! X ~j dj!6 $j:0 j j dj d%6x 0 ~j dj,d! «0~4 ~j dj,d!! c max 4«E sup 6X ~j! X ~j dj!60 ~j dj,d! 4 I sup C«j 0,+++,@0d# $j:0 j j dj d% $j:0 j j dj d%6x ~j! X ~j dj!6 0 ~j dj,d! «0~4 ~j dj,d!! max j 0,+++,@0d# E sup ~j! X ~j dj!60 ~j dj $j:0 j j dj d%6x,d! I sup 6X ~j! X ~j dj!6 0 ~j dj,d! $j:0 j j dj d% 4 max ~j dj,d! j 0,+++,@0d# «B.)

15 WEAKLY DEENDENT OCESSES 635 for some fiie cosa C 0+ The secod iequaiy foows from subaddiiviy, he hird iequaiy is Markov s, ad he remaiig seps foow from he assumpios+ Nex, oe ha by he mixigae propery ~Lemma A+! ad Coroary 6+4 of Davidso ~994!, he sequece Y ~d,j '! sup 6X ~j! X ~j '!60 ~j ',d! $j:0 j j ' d% B.3) is uiformy square-iegrabe+ Moreover, Assumpio ~b! impies ha his propery is idepede of he segme of he daa sequece represeed by Y + ~Compare McLeish, 975b, Lemma 6+5; ad McLeish, 977, proof of Theorem +4+! I oher words, im sup r max EY ~d,j dj! I~6Y ~d,j dj!6 K! j 0,+++,@0d# max j 0,+++,@0d# im sup EY ~d,j dj! I~6Y ~d,j dj!6 K! r f~k!, B.4) where f ~K! does o deped o d ad f ~K! r 0asKr+ Because d is arbirary, i foows by ~3+5!, ~B+!, ad ~B+4! ha X ~j! is sochasicay equicoiuous if im im sup max ~j dj,d! 0+ dr0 r j 0,+++,@0d# B.5) Because he max ad he im sup i equaio ~B+5! ca simiary be ierchaged, his hods by he assumpio of equaio ~3+3!+ Nex, we show ha X~j! has idepede icremes+ I view of he Gaussiaiy, i suffices o show ha for ay se $j,+++,j k :0 j j {{{ j k % ad a i j, X~j i! X~j i! ad X~j j! X~j! are ucorreaed+ This foows because E~X~j i! X~j i!!~x~j j! X~j!! im E~X ~j i! X ~j i!!~x ~j j! X ~j!!, r B.6) where for ay fixed d 0, 6E~X ~j i! X ~j i!!~x ~j j! X ~j!!6 K ~j i! K ~j i! K ~j i! K ~j i! K ~! K ~j d! s K ~j! K ~j i! EX X s K ~j i! K ~j d! X s K ~j! X s K ~j j! s K ~j d! EX X s K ~! 6 EX X s 6I~6s 6 K ~j d! K ~j i!!+ B.7) s

16 636 OBET M. DE JONG AND JAMES DAVIDSON Noe ha im r K ~! K ~! 6EX X s 6I~6s 6 K ~j d! K ~j i!! 0 s B.8) for d 0, by Lemma A+3 ad he requireme ha K ~j! K ~j '! r for a j j ', ad aso ha K ~j d! r s K ~j! im im dr0 X s 0 by he assumpio i equaio ~3+3!+ Because d is arbirary i ~B+8!, i foows ha E~X~j i! X~j i!!~x~j j! X~j!! 0+ This compees he proof+ AENDIX C: OOF OF THEOEM 4+ Firs, wrie B k j m EU, m W, I~m q! k j m EU, m W, I~m q!, C.) where q is a odecreasig sequece such ha q r as r + We defie c U ad c W as he cosas wih respec o which Assumpio hods for U ad W, respecivey+ Noe ha because im max max$~c U!,~c W! % 0 r C.) by Assumpio ~d!, i is possibe o choose k ad q such ha im k q max max$~c U!,~c W! % 0+ r C.3)

17 E E E WEAKLY DEENDENT OCESSES 637 The secod erm i ~C+! coverges o zero, because is absoue vaue is bouded by m 6EU, m W 6I~m q! o~! C.4) by Lemma A+3+ For he firs erm i ~C+!, oe ha j k m 6EU, m W, I~m q!6 k q m O~k q max max$~c U!,~c W! %! 6EU, m W, I~m q!6 o~! C.5) by ~C+3!, oig ha vaues of exceedig q coribue zero o he sum+ p To show ha A & 0, firs defie h~a, x! xi~6x6 a! ai~x a! ai~x a! C.6) ad g~a, x! ~x a!i~x a! ~x a!i~x a! C.7) ad oe ha x g~a, x! h~a, x!+ For some K 0 o be chose, defie UE g~kc U,U! Eg~Kc U,U! ad UE m E~ UE 6G, m! C.8) ad U h~kc U,U! Eh~Kc U,U! ad U m E~ U 6G, m!, C.9) where G s~v,v,,+++!+ Noe ha U U U + Aso oe ha g ad h are Lipschiz fucios ad herefore U ad U are L -NED o V for a K, wih NED magiude idices c U ad NED umbers ~m!+ ~See Davidso, 994, Theorem 7++! Therefore, U is aso a L -mixigae of size _ wih mixigae magiude idices c U, impyig ha 7UE m 7 Cm 0 m U c C.0) for m 0 ad C 0 ad aso, by Assumpio ~b!, ha 7UE m 7 c U sup7u 0c U I~6U 60c U K!7 c U f ~K!, C.)

18 N N G G E G G 638 OBET M. DE JONG AND JAMES DAVIDSON for some f ~K! o depedig o or, where f ~K! r 0asKr+ These iequaiies furher impy ha 7UE m 7 ~Cm 0 m c U! m ~c U f ~K!! m C ' c U f ~K! m m 0 m0 m C.) for C ' 0+ Therefore, U is a L -mixigae of size _ wih mixigae magiude idices c U f ~K! m for some sma eough m 0+ Simiary, we may decompose W io W ad WG, havig he same properies wih respec o cosas c W + Noe ha A k j p ~ UE s j W, E E U s W, E U s W, E E U s W, U s W, E U s W, U s W, E U s W,!, C.3) where for ecoomy of oaio we heceforh use he symbo p j o deoe + Cosider he four sums of erms correspodig o his decomposiio+ I foows by Lemma A+4 ha he L -orms of a hese sums excep hose ivovig U s W, are of order k O j ~c s j U! m ~c W! 0f ~K! O~ f ~K! m!, C.4) where he equaiy i ~C+4! is by assumpio+ By choosig a arge eough K, he imsups of he correspodig compoes of A ca be made as sma as desired+ Accordigy, e he remaiig compoe be defied as A k j p U s j W, E~ U s W,!, ad we compee he proof by showig ha for a K 0, N Lemma A++ Firs wrie A k Y j, A C.5) p & 0, by a appicaio of C.6) where Y j j s p ~ U s j W, E U s W,!+ C.7) Defie F j s~v,j,v,j,+++! ad H, s~v,,+++,v,! ad for breviy of oaio e E deoe E~{6H,!+ The, oe ha for m 0 here exis posiive cosas C, C, ad C 3 such ha

19 WEAKLY DEENDENT OCESSES 639 7Y j E Y j 7 j p ~ U s j j s p j W, E U s ~ W, E j s p E j j s p E j j ~ W, E j W, j E j U s W,! W,! W, ~ U s E U s! W, E U s E W, 7W, E j 7U s E W,! ~ U s E U s U s! ~ U s E W, 7 j j c W 0 «j ~m0k! C j C U s W, U s! U s 7 W, U 0 «j ~m0k! c s 0 ~c U s! 0 ~c W! U s j E W, C 3 m 0 «~0k! «j ~c s j U! 0 ~c W! C.8) for some «0+ The firs iequaiy foows from rearragig he erms ad he orm iequaiy; he secod iequaiy uses ieraed expecaios; he hird is he Cauchy Schwarz iequaiy ad rearragig of erms; he fourh uses he NED defiiio, Theorem +6 of McLeish ~975a! ~see aso Davidso, 994, Theorem 6+9!, ad he size

20 640 OBET M. DE JONG AND JAMES DAVIDSON assumpios; ad he fifh is obaied usig Jese s iequaiy+ For he case m 0, a excep he wo fia seps of ~C+8! hod, bu for his case we have j 7Y j E~Y j 6H, j j!7 C 4 ~c s j U! 0 ~c W! C.9) for C 4 0, usig some of he same argumes as before+ We have herefore esabished ha Y j is L -NED of size _, o a mixig process+ Because i aso possesses a is momes, i foows by Coroary 7+6 of Davidso ~994! ha $Y j, F j % is aso a L - mixigae of size _, wih respec o cosas a j j ~c s j U! ~c W! 0+ C.0) k Noe ha im sup r a j,, because by assumpio, max im sup r ~c U!, im sup r ~c W! + C.) By Lemma A+, he proof is herefore compee if we ca show ha for a q, k ~E~Y j6f, j q! E~Y j6f, j q!! We ex wrie p & 0+ C.) U ~ U U m! U m ~ U m U m!, C.3) ad eig c~m! deoe he mixigae umbers reaig o U, oe ha $ U U m, G % ad $ U m, G % are L -mixigaes wih mixigae umbers equa o c~m! for m ad c~! for m+ Therefore, by Lemma A+4 ad he assumpios, im sup r k j p j k j p j ~E ~ U s W, 6F, j q! E~ U s ~E~~ U m s U m s! W, 6F, j q! E~~ U m s U m s! W, 6F, j q!! W, 6F, j q!! m C ~c~m! ~og! m c~! ~og~!! 0 O~m «! C.4) for some C 0 ad «0+ Therefore by choosig m arge eough, he differece bewee he expressios ca be made egigibe+ A simiar argume ca be used o repace W, by W, W m, i he as expressio, ad herefore i remais o show m ha for a q, K, ad m,

21 WEAKLY DEENDENT OCESSES 64 k j p j ~E~~ U m s U m s!~ m W, W m,!6f, j q! E~~ U m s U m s!~ m W, W m,!6f, j q!! p & 0+ C.5) Noig ha m U m U m h m ~ U h U h! C.6) ad m W, W, m m h m ~ W h h, W,!, C.7) i foows ha his resu hods if for a q, K, h, ad, k j p j k ~E~~ U h s U h s!~ W, E~~ U h s U h s!~ W, W h,!6f, j q! [ ~E~Z j6f, j q! E~Z j6f, j q!! W,!6F, j q!! p & 0+ C.8) Because he erms of ~C+8! are ucorreaed, he aer saeme is rue if for a q, K, h, ad, im k r EZ j 0+ C.9) However, oe ha k EZ j j k p j j p j s p j s p j h E~ U h s U s!~ W, W,! h ~ U h s U s!~ W, W,!+ C.30) Cosider, as represeaive, he erms for which s h s h + C.3) The oher cases are reaed ideicay+ Firs, oe ha by he marigae differece propery of he four erms i equaio ~C+30!, he erms i ha equaio are zero uess s h + Therefore, for he erms ha saisfy he precedig resricio, we have, appyig Lemma A+4 oce agai,

22 64 OBET M. DE JONG AND JAMES DAVIDSON k j p j s p j h ~ U h s U s!~ W, W,! j p j I~ h!~ k j p j j p j ~ s p j h ~ U h s U s!~ h U, h W, I ~ h!~ W, W,! h U, h W,! h U, h!~ W, h U, h! W,! k O j O j p j O max j k o~!, ~c s k j ~c s j U! 0 ~c W! I~ h!c W U c, h j j U! ~c s ~c U! W! j 0 ~c W! C.3) where he as equaiy foows from he assumpio of equaio ~3+3!+ This compees he proof+

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Integrality Gap for the Knapsack Problem

Integrality Gap for the Knapsack Problem Proof, beiefs, ad agorihms hrough he es of sum-of-squares 1 Iegraiy Gap for he Kapsack Probem Noe: These oes are si somewha rough. Suppose we have iems of ui size ad we wa o pack as may as possibe i a

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Zhi-Wei Sun and Hao Pan (Nanjing)

Zhi-Wei Sun and Hao Pan (Nanjing) Aca Arih. 5(006, o., 39. IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS Zhi-Wei Su ad Hao Pa (Najig Absrac. We esabish wo geera ideiies for Beroui ad Euer poyomias, which are of a ew ype ad have

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

STRONG CONVERGENCE OF MODIFIED MANN ITERATIONS FOR LIPSCHITZ PSEUDOCONTRACTIONS

STRONG CONVERGENCE OF MODIFIED MANN ITERATIONS FOR LIPSCHITZ PSEUDOCONTRACTIONS Joura of Mahemaica Scieces: Advaces ad Appicaios Voume, Number, 009, Pages 47-59 STRONG CONVERGENCE OF MODIFIED MANN ITERATIONS FOR LIPSCHITZ PSEUDOCONTRACTIONS JING HAN ad YISHENG SONG Mahmaicas ad Sciece

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S.

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S. Sochasic Processes Adoped From p Chaper 9 Probabiliy, adom Variables ad Sochasic Processes, 4h Ediio A. Papoulis ad S. Pillai 9. Sochasic Processes Iroducio Le deoe he radom oucome of a experime. To every

More information

Sheffer sequences of polynomials and their applications

Sheffer sequences of polynomials and their applications Kim e a. Advaces i Differece Equaios 2013 2013:118 hp://www.advacesidiffereceequaios.com/coe/2013/1/118 R E V I E W Ope Access Sheffer sequeces of poyomias ad heir appicaios Dae Sa Kim 1 TaekyuKim 2* Seog-Hoo

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

Estimates and Standard Errors for Ratios of Normalizing Constants from Multiple Markov Chains via Regeneration

Estimates and Standard Errors for Ratios of Normalizing Constants from Multiple Markov Chains via Regeneration Esimaes ad Sadard Errors for Raios of Normaizig Cosas from Muipe Markov Chais via Regeeraio Hai Doss 1 ad Aixi Ta 2 1 Deparme of Saisics, Uiversiy of Forida 2 Deparme of Saisics, Uiversiy of Iowa Absrac

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

Department of Statistics, College of Science, Persian Gulf University, Bushehr, Iran

Department of Statistics, College of Science, Persian Gulf University, Bushehr, Iran Appied Mahemaics 4 5 6-7 Pubished Oie Juy 4 i SciRes hp://wwwscirporg/oura/am hp://dxdoiorg/436/am453 Wavee Desiy Esimaio of Cesorig Daa ad Evauae of Mea Iegra Square Error wih Covergece Raio ad Empirica

More information

Supplementary Material on Testing for changes in Kendall s tau

Supplementary Material on Testing for changes in Kendall s tau Suppemetary Materia o Testig for chages i Keda s tau Herod Dehig Uiversity of Bochum Daie Voge Uiversity of Aberdee Marti Weder Uiversity of Greifswad Domiik Wied Uiversity of Cooge Abstract This documet

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS M.A. (Previous) Direcorae of Disace Educaio Maharshi Dayaad Uiversiy ROHTAK 4 Copyrigh 3, Maharshi Dayaad Uiversiy, ROHTAK All Righs Reserved. No par of his publicaio may be reproduced

More information

Applying the Moment Generating Functions to the Study of Probability Distributions

Applying the Moment Generating Functions to the Study of Probability Distributions 3 Iformaica Ecoomică, r (4)/007 Applyi he Mome Geerai Fucios o he Sudy of Probabiliy Disribuios Silvia SPĂTARU Academy of Ecoomic Sudies, Buchares I his paper, we describe a ool o aid i provi heorems abou

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

NONPARAMETRIC PREDICTIVE REFRESSION

NONPARAMETRIC PREDICTIVE REFRESSION DEPATMENT OF ECONOMICS UNIVESITY OF CYPUS NONPAAMETIC PEDICTIVE EFESSION Ioais Kasparis, Eea Adreou & Peer C.B. Phiips Discussio Paper 4-22 P.O. Box 2537, 678 Nicosia, CYPUS Te.: +357-228937, Fax: +357-2289528

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

BRIDGE ESTIMATOR AS AN ALTERNATIVE TO DICKEY- PANTULA UNIT ROOT TEST

BRIDGE ESTIMATOR AS AN ALTERNATIVE TO DICKEY- PANTULA UNIT ROOT TEST The 0 h Ieraioal Days of Saisics ad Ecoomics Prague Sepember 8-0 06 BRIDGE ESTIMATOR AS AN ALTERNATIVE TO DICKEY- PANTULA UNIT ROOT TEST Hüseyi Güler Yeliz Yalҫi Çiğdem Koşar Absrac Ecoomic series may

More information

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods joural of mulivariae aalysis 57, 175190 (1996) aricle o. 0028 Order Deermiaio for Mulivariae Auoregressive Processes Usig Resamplig Mehods Chaghua Che ad Richard A. Davis* Colorado Sae Uiversiy ad Peer

More information

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables Available olie a wwwsciecedireccom ScieceDirec Procedia - Social ad Behavioral Scieces 30 ( 016 ) 35 39 3 rd Ieraioal Coferece o New Challeges i Maageme ad Orgaizaio: Orgaizaio ad Leadership, May 016,

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Comparisons Between RV, ARV and WRV

Comparisons Between RV, ARV and WRV Comparisos Bewee RV, ARV ad WRV Cao Gag,Guo Migyua School of Maageme ad Ecoomics, Tiaji Uiversiy, Tiaji,30007 Absrac: Realized Volailiy (RV) have bee widely used sice i was pu forward by Aderso ad Bollerslev

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

A Note on the Kou s Continuity Correction Formula

A Note on the Kou s Continuity Correction Formula A Noe o he Kou s Coiuiy Correcio Forua Tig Liu Chag Feg YaQiog Lu * Bei Yao * Schoo of Opica ad Eecroic Iforaio Huazhog Uiversiy of Sciece ad Techoogy Schoo of Maheaic ad Saisic Huazhog Uiversiy of Sciece

More information

Stationarity and Unit Root tests

Stationarity and Unit Root tests Saioari ad Ui Roo ess Saioari ad Ui Roo ess. Saioar ad Nosaioar Series. Sprios Regressio 3. Ui Roo ad Nosaioari 4. Ui Roo ess Dicke-Fller es Agmeed Dicke-Fller es KPSS es Phillips-Perro Tes 5. Resolvig

More information

Spectral Simulation of Turbulence. and Tracking of Small Particles

Spectral Simulation of Turbulence. and Tracking of Small Particles Specra Siuaio of Turbuece ad Trackig of Sa Parices Hoogeeous Turbuece Saisica ie average properies RMS veociy fucuaios dissipaio rae are idepede of posiio. Hoogeeous urbuece ca be odeed wih radoy sirred

More information

On the Validity of the Pairs Bootstrap for Lasso Estimators

On the Validity of the Pairs Bootstrap for Lasso Estimators O he Validiy of he Pairs Boosrap for Lasso Esimaors Lorezo Campoovo Uiversiy of S.Galle Ocober 2014 Absrac We sudy he validiy of he pairs boosrap for Lasso esimaors i liear regressio models wih radom covariaes

More information

Pure Math 30: Explained!

Pure Math 30: Explained! ure Mah : Explaied! www.puremah.com 6 Logarihms Lesso ar Basic Expoeial Applicaios Expoeial Growh & Decay: Siuaios followig his ype of chage ca be modeled usig he formula: (b) A = Fuure Amou A o = iial

More information

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12 Iroducio o sellar reacio raes Nuclear reacios geerae eergy creae ew isoopes ad elemes Noaio for sellar raes: p C 3 N C(p,) 3 N The heavier arge ucleus (Lab: arge) he ligher icomig projecile (Lab: beam)

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Introduction to the Mathematics of Lévy Processes

Introduction to the Mathematics of Lévy Processes Iroducio o he Mahemaics of Lévy Processes Kazuhisa Masuda Deparme of Ecoomics The Graduae Ceer, The Ciy Uiversiy of New York, 365 Fifh Aveue, New York, NY 10016-4309 Email: maxmasuda@maxmasudacom hp://wwwmaxmasudacom/

More information

On stability of first order linear impulsive differential equations

On stability of first order linear impulsive differential equations Ieraioal Joural of aisics ad Applied Mahemaics 218; 3(3): 231-236 IN: 2456-1452 Mahs 218; 3(3): 231-236 218 as & Mahs www.mahsoural.com Received: 18-3-218 Acceped: 22-4-218 IM Esuabaa Deparme of Mahemaics,

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

The periodogram of fractional processes

The periodogram of fractional processes The periodogram of fracioal processes Carlos Velasco y Deparameo de Ecoomía Uiversidad Carlos III de Madrid December 4, 2005 Absrac We aalyze asympoic properies of he discree Fourier rasform ad he periodogram

More information

Convergence theorems. Chapter Sampling

Convergence theorems. Chapter Sampling Chaper Covergece heorems We ve already discussed he difficuly i defiig he probabiliy measure i erms of a experimeal frequecy measureme. The hear of he problem lies i he defiiio of he limi, ad his was se

More information

Manipulations involving the signal amplitude (dependent variable).

Manipulations involving the signal amplitude (dependent variable). Oulie Maipulaio of discree ime sigals: Maipulaios ivolvig he idepede variable : Shifed i ime Operaios. Foldig, reflecio or ime reversal. Time Scalig. Maipulaios ivolvig he sigal ampliude (depede variable).

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

The Limiting Properties of Lindahl Strategic. Equilibrium Allocations

The Limiting Properties of Lindahl Strategic. Equilibrium Allocations he Limiig Properies of Lidah Sraegic Equiibrium Aocaios B Yoshihiko Oai * Facu of Ecoomics Kushu Sago Uiversi his revisio: November 200 [Absrac] I his paper, usig he framework of a sequece of ecoomies,

More information

Time Series, Part 1 Content Literature

Time Series, Part 1 Content Literature Time Series, Par Coe - Saioariy, auocorrelaio, parial auocorrelaio, removal of osaioary compoes, idepedece es for ime series - Liear Sochasic Processes: auoregressive (AR), movig average (MA), auoregressive

More information