Isotope Effects on Tritium Mass Transfer in Li 17 Pb 83 Liquid Blanket

Size: px
Start display at page:

Download "Isotope Effects on Tritium Mass Transfer in Li 17 Pb 83 Liquid Blanket"

Transcription

1 CJWS-3 Kunming, China, Jun 0-3, 010 Isotope Effects on Tritium Mass Transfer in Li 17 Pb 83 Liquid Blanket S. Fukada, *Y. Edao, H. Okitsu and M. Okada Department Of Advanced Energy Engineering Science Interdisciplinary Graduate School of Engineering science Kyushu University

2 Contents 1 Background Our purpose & research 3 Experiment & Discussion 4 Conclusion 1

3 Background Necessary conditions of Tritium breeding blanket Self-sufficient tritium cycle High temperature heat recovery Inertial fusion reactor, KOYO-Fast Li 17 Pb 83 eutectic alloy ITER-TBM High tritium-breeding simplified blanket structure DCLL HCLL

4 Tritium recovery and leakage Inertial fusion reactor, KOYO-fast Furnace chamber LiPb flow 300 o C,.7m 3 /s leak Circulation pump 1GWt fusion reactor T generation rate : 1.5MCi/day Overall tritium leak : 10Ci/day T transfer 500 o C Tritium recovery Heat system exchanger Tritium recovery ratio of % is demanded!! leak Fueling system T recovery rate Power generator 3

5 Solubility [1 / Pa 0.5 ] Purpose & Recent research Temperature [ Design of tritium recovery system and evaluation of o C] tritium leakage F.Reiter(H) Chan and Veleckis(H) Katuta(H) C.H.Wu(D) In order to clarify the difference 10-8 Large difference /T [1/K] Estimation of property for tritium mass transfer in LiPb Wettability at interface between LiPb and wall materials Isotope effects in hydrogen isotope solubility Impurity effects Li composition change Experiment of H or D permeating through Li-Pb 4

6 Experiment of H, D permeating through Li-Pb A schematic diagram of the experimental apparatus Mass flow meter Glove-box Gas purification exhaust Experimental conditions H or Ar Li-Pb Temperature K H partial pressure D measurement purge Pure Fe H or D Electric furnance GC D partial pressure 10 5 H, D flow rate 5ccm Ar flow rate 5ccm Permeability, diffusivity and solubility of hydrogen isotopes in LiPb were determined by means of a permeation methd 5

7 Permeated H concentration in Ar purge gas [ppm] H permeation rate through LiPb+Fe system 10 5 Fe-H permeation Good agreement in the wide range Fe+Li 17 Pb 83 -H permeation Experiment LiPb Temp. = 873K LiPb+Fe system Fe 10 (transient-state permeation) (steady-state permeation) Time [hour] The overall hydrogen permeation rate is around 100 times higher than the LiPb and Fe dual layer system. The rate-determining step is in the diffusion in the LiPb layer 6

8 Permeation flux of H [mol/m s] H permeation flux in Li-Pb Dependence of H permeation flux, J LiPb-H, on upstream pressure PLiPbH J LiPb H ( ph,, ) upstream p P H downstream LiPb H KLiPb H DLiPb d Downstream-side Ar H K J H =1.6x p H 873K J H =1.4x p H 773K J H =1.x p H 673K J H =1.4x p H Upstream H pressure [Pa] recombination LiPb Diffusion of atom H Fe dissociation The hydrogen solubility obeys the Sieverts law H Upstream-side 7

9 Permeated H concentration in Ar purge gas [ppm] Wettability of Li-Pb with metal surfaces IF less wettability Possibility in some void generating between liquid and solid The apparent solubility is increased The follows equation is not valid when a certain amount of mirobubbles is present at the interface between LiPb and Fe 10 5 P K D Fe-H permeation Fe+Li 17 Pb 83 -H permeation (transient-state permeation) Experiment LiPb Temp. = 873K LiPb+Fe system Fe (steady-state permeation) Time [hour] LiPb H LiPb H Liquid Li-Pb Solid metal LiPb H Micro bubble Micro-bubble gives no effect on the values of P LiPb-H, D LiPb-H, K LiPb-H determined in the present permeation cell Our experimental permeation rate determined by the permeation method is in good agreement with the numerical one under the condition of no micro-bubble formation. 8

10 Diffusivity of H and D [m /s] Solubility of H and D [1 / Pa 0.5 ] Diffusivity & Solubility of H and D Diffusivity Temperature [ o C] Solubility Temperature [ o C] H permeation experiment D permeation experiment F.Reiter(H) T.Terai(T) Okamoto(T) H permeation experiment D permeation experiment Chan and Veleckis(H) F.Reiter(H) Katuta(H) C.H.Wu(D) /T [1/K] /T [1/K] There is no isotopic difference between H and D diffusivity in Li-Pb Solubility of D in Li-Pb is larger than H in Li-Pb 9

11 Isotope effects of solubility The isotope effects are correlated in terms of the harmonic oscillation model Hydrogen solubility is described by the difference in energy between the gaseous phase and the liquid metal phase. The Gibbs free-energy of each hydrogen gas under the standard condition, G k,0, is correlated to the following equation. (By R. Lasser) G k,0 R T g LkT ln 1 e 3.5 J k / T R g D k,0 B k,0 3 H-H LiPb-H k = H, HD, D, DT, T Gas phase Li-Pb phase 10

12 Isotope effects of solubility When H atoms dissolved in Li17Pb83 interstitials are assumed to vibrate in a three-dimensional isotropic harmonic oscillation mode, the vibration energy is described in terms of the zero-point energy, H,0, and the energy of excited state. Isotope effect calculated by harmonic oscillation model for H or D solution in Li-Pb ln K H K D sinh h D,0 k 3ln B T sinh h G G H,0 D,0 R H,0 g T k B T H,0 D,0 Isotope effect can be correlated by H (=h H,0 /k B T) The isotope effects are correlated in terms of the harmonic oscillation model 11

13 Tritium permeation rate through LiPb Tritium permeation rate through heat exchanger wall of a laser fusion reactor Furnace chamber LiPb flow Circulation pump 300 o C,.7m 3 /s leak T transfer 500 o C Tritium recovery Heat system exchanger leak Fueling system T recovery rate Power generator T concentration in LiPb, x T =10-8 (T/LiPb) R T >100Ci/day Necessary to develop high tritium recovery and high efficient permeation barrier 1

14 Conclusion Our recent activities on Li-Pb blanket material are introduced in the present paper. We continue the experiment and design activity for fusion reactor systems 1 3 The solubility obeys the Sieverts law regardless of various pressures. The wettability is estimated and micro-bubble gives no effect on the values of permeability, diffusivity and solubility determined in the present experiment. Solubility of D in Li-Pb is larger than H in Li-Pb. There is no isotopic difference between H and D diffusivity in Li-Pb. The isotope effects are correlated in terms of the harmonic oscillation model. Tritium permeation rate through heat exchanger wall of the laser fusion reactor are estimated and it is larger than 10Ci/day 13

15 CJWS-3

16 Effects of impurities and composition changes Decrease of electro-resistivity of Li-Pb with reaction of oxygen impurity 4Li (in Li-Pb)+O =Li O F. Barbier, FED (1997) Previous researches pointed out that some impurities affect solubility and diffusivity

17 Repeated measurement of Li17Pb melting point Melting point We checked melting point of Li-Pb several times, and we made sure that the melting temperature did not change after several hydrogenatingdehydrogenating operation of Li-Pb

18 Li and H activity of Li X Pb 1-X -H eutectic alloy system Pure Li Pb Pb H - Li+ Pb Li + Pb H - Li-Pb can constitute eutectic alloy system. 0.5 a HinLi a H x HinLi p H When x Li >0.5, electric charge of Li + is not shielded by Pb atoms, and Li + -H - ionic binding is major in Li X Pb 1-X eutectic alloy. Activity of Li is higher. When x Li <0.5, electric charge of Li + is shielded by Pb atoms, and Li + and H - ions may not be combined directly. Activity of Li is the lowest. 18

19 Properties of liquid blanket materials Li Li 0.17 Pb 0.83 FliBe vaporn pressure(800k).1pa 0.37Pa 0.011Pa latent heat 140kJ/mol 180kJ/mol 05kJ/mol viscosity 3.6x10-5 kgs/m.0x10-4 kgs/m 1.5x10-3 kgs/m density 0.48g/cm 3 9.5g/cm 3.0g/cm 3

20 Appendix 1 : Analytical equation One-dimensional diffusion equation The determining-step is diffusion in Li-Pb I.C. t=0, c=0 : B.C. t>0, x=0: t>0, x=l: W W up down P H P P c t, H 0 ", up P down 0 D LiPbH AD AD x LiPb c c x LiPbH x0 c x, c xl up, c down K s K s p H, p up H, down c LiPb D LiPbH K S L 9L JL L 4Dt 4Dt 4 e e e p H up p D H down LiPbHt 5L Dt

21 Appendix The diffusion equation in Li-Pb+pure-Fe system is as follows : 0 x Fe Fe x c, t Fe H, Fe LiPb D H, Fe c, t H, Fe The initial and boundary conditions are as follows: t 0, c H Fe 0, ch,, LiPb 0 H, LiPb c x D H, LiPb x0 c H, LiPb x ph, up ADH, Fe c H, Fe x 0, Wup, ch, Fe c p x x x Fe c 0 H, LiPb, i Fe, clipb K H, LiPb LiPb c H, Fe, i c Fe K H, Fe Fe K H, Fe, ph, down ADH, LiPb ch LiPb j, H Wdown, ch, LiPb c p x 0 x Fe LiPb p H, up LiPb K H, LiPb p H, down

22 Tritium recovery method from Li-Pb blanket Gas-liquid counter-current extraction tower using a packed column Furnace chamber LiPb flow Circulation pump T/He out 300 o C,.7m 3 /s leak leak T transfer 500 o C Tritium recovery Heat system exchanger Fueling system Power generator T recovery rate T/LiPb in He in Li-Pb Raschig ring T He C T Tritium p T,i LiPb out p T C T,i Liquid phase Gas phase Interface Ldc T k L a v kgav ( ct ct i) dz ( pt, R T G dp p, i T T g t p ) dz

23 Ratio of T permeation rate to the total T generation rate Tritium recovery ratio (E recovery )[%] Tritium recovery & permeation T concentration profiles in a packed-column and the rate of permeation T to the total T d=m d=1m d=0.5m E recovery < 99.9% Caluculation (1-c T, LiPb out /c T, LiPb in )x100(= E recovery ) Temperature 500 o C LiPb flow rate 3.5m 3 /s Flow velosity 1m/s Height of extraction column [m] 10-5 Tube diameter, d=0.1m Li-Pb flow rate [m 3 /s]

24 Calculation of packed column h The differential mass balance equation in the height direction of tower under steady-state Ldc T k L a v kgav ( ct ct i) dz ( pt, R T ) dz c T and p T are integrated to determine the column height H L N L L k a L v c c T, in c G p, i T T g t dct c HETP of gas side, H G, and liquid side, H L, for 1 inch raschig ring H G N G p GR T T, in dp T. out T T, i G v t pt, out T i T, k a g p p p dp T p H G 3.07 G0.3 L 0.51 G G D G 3 H L 1 L 430 L 0. L L D L 0.5

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor IAEA-CRP Plasma-Wall Interaction with Reduced Activation Steel Surfaces in Fusion Devices

More information

Estimation of Tritium Recovery from a Molten Salt Blanket of FFHR

Estimation of Tritium Recovery from a Molten Salt Blanket of FFHR US/Japan Workshop on Power Plant Studies and Related Advanced Technologies with EU Participation, April 6-7, 2002 (San Diego, CA) Estimation of Tritium Recovery from a Molten Salt Blanket of FFHR Dept.

More information

Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket

Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket I. Ricapito 1), P. Calderoni 1), A. Ibarra 2), C. Moreno 2), Y. Poitevin

More information

ENEA Experience in PbLi Technologies

ENEA Experience in PbLi Technologies ENEA Experience in PbLi Technologies DCLL WORKSHOP- Tritium extraction technologies for EU DCLL M. Utili (ENEA) marco.utili@enea.it 14-15 November 2014 DCLL BB: Tritium extraction from Pb-16Li Tritium

More information

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor John D. Stempien, PhD Content Based on Doctoral Thesis Defense Workshop on Tritium Control Salt Lake City,

More information

Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials

Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials T. Kinjyo a), M. Nishikawa a), S. Fukada b), M. Enoeda c), N. Yamashita a), T. Koyama a) a) Graduate School of Engineering

More information

Tritium Technologies of ITER and DEMO breeding blankets

Tritium Technologies of ITER and DEMO breeding blankets Tritium Technologies of ITER and DEMO breeding blankets A.Ciampichetti Current research topics in Nuclear Fusion Engineering Politecnico di Torino 18-01-2010 Outline Introduction Some Tritium properties

More information

Conceptual Design of Advanced Blanket Using Liquid Li-Pb

Conceptual Design of Advanced Blanket Using Liquid Li-Pb Japan- US workshop on Fusion Power Plants and related advanced technologies with participation of EU February 5-7, 2007 at Kyoto, Japan Conceptual Design of Advanced Blanket Using Liquid Li-Pb Y. Yamamoto,

More information

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS L.V. Boccaccini, N. Bekris, R. Meyder and the HCPB Design Team CBBI-13, Santa Barbara, 30th Nov.-2nd Dec. 2005 L.V.

More information

Gas Chromatography Separation of H 2 -D 2 -Ar Using Pd/K

Gas Chromatography Separation of H 2 -D 2 -Ar Using Pd/K Gas Chromatography Separation of H 2 -D 2 -Ar Using Pd/K FTP/P1-06 X. J. Qian 1), D. L. Luo 1), C. Qin 1), G. Q. Huang 1), W. Yang 1) 1) China Academy of Engineering Physics, Mianyang, SiChuan, P.R.China

More information

Measurement and modelling of hydrogen uptake and transport. Alan Turnbull

Measurement and modelling of hydrogen uptake and transport. Alan Turnbull Measurement and modelling of hydrogen uptake and transport Alan Turnbull Hydrogen gas (+ H 2 O vapour, H 2 S) dissociation General and localised corrosion, cathodic protection, galvanic coupling; electroplating

More information

Mass Transfer Operations

Mass Transfer Operations College of Engineering Tutorial # 1 Chemical Engineering Dept. 14/9/1428 1. Methane and helium gas mixture is contained in a tube at 101.32 k Pa pressure and 298 K. At one point the partial pressure methane

More information

Summary Tritium Day Workshop

Summary Tritium Day Workshop Summary Tritium Day Workshop Presentations by M. Abdou, A. Loarte, L. Baylor, S. Willms, C. Day, P. Humrickhouse, M. Kovari 4th IAEA DEMO Programme Workshop November 18th, 2016 - Karlsruhe, Germany Overall

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER P. Satyamurthy Bhabha Atomic Research Centre, India P. Satyamurthy,

More information

Apparatus and Permeability of CO2 Dissolved in Water through LDPE and Nylon 6 Films

Apparatus and Permeability of CO2 Dissolved in Water through LDPE and Nylon 6 Films J. Pack. Set Technol Vol. 2 No. 2 (1993) Apparatus and Permeability of CO2 Dissolved in Water through LDPE and Nylon 6 Films Tsutomu NAKAGAWA*, Atsuko NARUSE*, Akon HIGUCHI* The apparatus by which the

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

Key words: EcosimPro, model, simulation, detritiation.

Key words: EcosimPro, model, simulation, detritiation. Design, modelling and simulation of the water detritiation system (WDS) of the ITER project with EcosimPro. Carlos Rodríguez Aguirre Email: carlos_vince@hotmail.com Tutor from the university: Mónica Coca

More information

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems Elements of Strategy on Modelling Activities in the area of Test Blanket Systems I. Ricapito, TBM & MD Project Team, ITER Department, F4E, Barcelona (Spain) Barcelona, Sept 17 th 2014 Information Day FPA-611

More information

Design of a Tritium Mitigation and Control System for Fluoride-salt-cooled Hightemperature THESIS

Design of a Tritium Mitigation and Control System for Fluoride-salt-cooled Hightemperature THESIS Design of a Tritium Mitigation and Control System for Fluoride-salt-cooled Hightemperature Reactor Systems THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in

More information

Concept of Multi-function Fusion Reactor

Concept of Multi-function Fusion Reactor Concept of Multi-function Fusion Reactor Presented by Songtao Wu Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui, 230031, P.R. China 1. Motivation 2. MFFR Concept

More information

Preliminary system modeling for the EUROfusion Water Cooled Lithium Lead blanket

Preliminary system modeling for the EUROfusion Water Cooled Lithium Lead blanket EUROFUSION WPBB-PR(16) 14558 F.R Urgorri et al. Preliminary system modeling for the EUROfusion Water Cooled Lithium Lead blanket Preprint of Paper to be submitted for publication in Tritium 2016-11t International

More information

Tritium Fuel Cycle Safety

Tritium Fuel Cycle Safety Tritium Fuel Cycle Safety W Kirk Hollis 1, Craig MV Taylor 1, Scott Willms 2 1 Los Alamos National Laboratory, 2 ITER IAEA Workshop on Fusion Energy June 14 th, 2018 Slide 1 Overview What is a Tritium

More information

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN 37 CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN Absorption in a chemical process refers to a mass transfer between gas and liquid which transfers one or more components from the gas phase to the

More information

System for Continuous Chemical and Isotopic Purification of Hydrogen for the MuCap Experiment

System for Continuous Chemical and Isotopic Purification of Hydrogen for the MuCap Experiment MuCF07 System for Continuous Chemical and Isotopic Purification of Hydrogen for the MuCap Experiment A.A. Vasilyev a, I.A. Alekseev a, O.A. Fedorchenko a, V.A. Ganzha a, M. Hildebrandt b, P. Kammel c,

More information

CONTROL OF H 2 GAS EVOLUTION AT CATHODE DURING ELECTROCHEMICAL MACHINING OF IRON BY USING PALLADIUM BASED MEMBRANES

CONTROL OF H 2 GAS EVOLUTION AT CATHODE DURING ELECTROCHEMICAL MACHINING OF IRON BY USING PALLADIUM BASED MEMBRANES CONTROL OF H 2 GAS EVOLUTION AT CATHODE DURING ELECTROCHEMICAL MACHINING OF IRON BY USING PALLADIUM BASED MEMBRANES R.K Upadhyay 1, Arbind Kumar 2, P.K Srivastava 3 1 Department of Mechanical Engineering

More information

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Conceptual design of liquid metal cooled power core components for a fusion power reactor Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Japan-US workshop on Fusion Power

More information

The PPCS In-Vessel Component Concepts (focused on Breeding Blankets)

The PPCS In-Vessel Component Concepts (focused on Breeding Blankets) International School of Fusion reactor Technology Erice, July 26 August 1, 2004 The PPCS In-Vessel Component Concepts (focused on Breeding Blankets) Presented by L. Giancarli Commissariat à l Energie Atomique,

More information

FLIBE ASSESSMENTS ABSTRACT

FLIBE ASSESSMENTS ABSTRACT FLIBE ASSESSMENTS Dai-Kai Sze, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (630) 252-4838 USA Kathryn McCarthy, Idaho National Engineer & Environmental Laboratory, P.O. Box 1625,

More information

HCLL Test Blanket Module Test program in ITER

HCLL Test Blanket Module Test program in ITER International Workshop on Liquid Metals Breeder Blankets 23-24 September 2010 CIEMAT, Madrid, Spain HCLL Test Blanket Module Test program in ITER Y. Poitevin, M. Zmitko, I. Ricapito, Fusion for Energy

More information

ERT 216 HEAT & MASS TRANSFER SEM2, 2013/2014

ERT 216 HEAT & MASS TRANSFER SEM2, 2013/2014 ERT 16 HET & MSS TRNSFER SEM, 01/014 Tutorial: Principles of Mass Transfer (Part 1) gas of CH 4 and He is contained in a tube at 10 kpa pressure and 98 K. t one point the partial pressure of methane is

More information

Preliminary Safety Analysis of CH HCSB TBM

Preliminary Safety Analysis of CH HCSB TBM Preliminary Safety Analysis of CH HCSB TBM Presented by: Chen Zhi SWIP ITER TBM Workshop, China Vienna, Austria, IAEA, July 10-14, 2006 1 Introduction Calculation model Outline Review of CH HCSB TBM preliminary

More information

Thermal Treatment of Stainless Steel towards the Zero Outgassing Rate

Thermal Treatment of Stainless Steel towards the Zero Outgassing Rate Thermal Treatment of Stainless Steel towards the Zero Outgassing Rate Vincenc Nemanic, Institute of Surface Engineering and Optoelectronics, Teslova 30, 1000 Ljubljana, Slovenia vincenc.nemanic@guest.arnes.si

More information

11. Radioactive Waste Management AP1000 Design Control Document

11. Radioactive Waste Management AP1000 Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E)

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Xue-Ming Shi Xian-Jue Peng Institute of Applied Physics and Computational Mathematics(IAPCM), BeiJing, China December

More information

Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells

Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells L. El-Guebaly Fusion Technology Institute University of Wisconsin-Madison With input from: C. Kessel (PPPL)

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Tritium Safety of Russian Test Blanket Module

Tritium Safety of Russian Test Blanket Module Tritium Safety of Russian Test Blanket Module V.K. Kapyshev, V.G. Kovalenko, Y.S. Strebkov N.A. Dollezhal Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000, Russia Abstract

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Analysis of tritium kinetics of SIBELIUS beryllium

Analysis of tritium kinetics of SIBELIUS beryllium Fusion Engineering and Design 51 52 (2000) 85 91 www.elsevier.com/locate/fusengdes Analysis of tritium kinetics of SIBELIUS beryllium S. Cho a, *, M.A. Abdou b a Korea Basic Science Institute, 52 Yeoeun-dong,

More information

AP1000 European 11. Radioactive Waste Management Design Control Document

AP1000 European 11. Radioactive Waste Management Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

Tritium processing system for the ITER Li/V Blanket Test Module

Tritium processing system for the ITER Li/V Blanket Test Module Fusion Engineering and Design 39 40 (1998) 859 864 Tritium processing system for the ITER Li/V Blanket Test Module Dai-Kai Sze a, *, Thanh Q. Hua a, Mohamad A. Dagher b, Lester M. Waganer c, Mohamed A.

More information

MELCOR model development for ARIES Safety Analysis

MELCOR model development for ARIES Safety Analysis MELCOR model development for ARIES Safety Analysis Paul Humrickhouse Brad Merrill INL ARIES Meeting UCSD San Diego, CA January 23 rd -24 th, 2012 Presentation Outline Status of MELCOR modeling for ARIES-ACT

More information

Tritium Management in FHRs

Tritium Management in FHRs Tritium Management in FHRs Ongoing and Planned Activities in Integrated Research Project Led by Georgia Tech Workshop on Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Experiments,

More information

Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR

Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR MIT NUCLEAR REACTOR LABORATORY AN MIT INTERDEPARTMENTAL CENTER Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR David Carpenter Group Leader, Reactor Experiments 10/27/15

More information

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at Chapter 7 What is steady state diffusion? Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at any point, x, and hence the concentration gradient at x, in the solid,

More information

Tritium Control Using Carbon Outside of Core Stephen T Lam

Tritium Control Using Carbon Outside of Core Stephen T Lam Tritium Control Using Carbon Outside of Core Stephen T Lam Charles Forsberg Ron Ballinger Tritium Overview Generation Thermal neutron transmutation of Li-6 Initially 0.005 wt. % Li-6 in Flibe consumed

More information

FLOW ANALYSIS IN THE HCLL-TBM ITER CHANNELS INCLUDING MHD AND HEAT TRANSFER

FLOW ANALYSIS IN THE HCLL-TBM ITER CHANNELS INCLUDING MHD AND HEAT TRANSFER V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal,14-17 June 2010 FLOW ANALYSIS IN THE HCLL-TBM ITER CHANNELS INCLUDING MHD

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

FUSION TECHNOLOGY INSTITUTE

FUSION TECHNOLOGY INSTITUTE FUSION TECHNOLOGY INSTITUTE Z-Pinch (LiF) 2 -BeF 2 (flibe) Preliminary Vaporization Estimation Using the BUCKY 1-D Radiation Hydrodynamics Code W I S C O N S I N T.A. Heltemes, E.P. Marriott, G.A. Moses,

More information

Introduction to the Tritium Workshop Day and

Introduction to the Tritium Workshop Day and Introduction to the Tritium Workshop Day and Overview of the Tritium Fuel Cycle and Conditions for Tritium Fuel Self- Sufficiency and Other Tritium Issues Mohamed Abdou 4th IAEA DEMO Programme Workshop

More information

Polymer permeability and barrier properties - Application to flexible pipe design

Polymer permeability and barrier properties - Application to flexible pipe design Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources Polymer permeability and barrier properties - Application to flexible pipe design MH. Klopffer,

More information

Lecture 4. Ultrahigh Vacuum Science and Technology

Lecture 4. Ultrahigh Vacuum Science and Technology Lecture 4 Ultrahigh Vacuum Science and Technology Why do we need UHV? 1 Atmosphere = 760 torr; 1 torr = 133 Pa; N ~ 2.5 10 19 molecules/cm 3 Hertz-Knudsen equation p ZW 1/ 2 ( 2mk T) At p = 10-6 Torr it

More information

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Presented by Rick Lee Chief Operator, DIII-D Operations Manager, Energy/Fusion Outreach Program General Atomics

More information

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden A. Klix1, A. Domula2, U. Fischer1, D. Gehre2 1 Karlsruhe

More information

Preparations for proof-of- principle D-T IEC experiments

Preparations for proof-of- principle D-T IEC experiments 14 th US-Japan Workshop on IEC October 15-16, 2012 University of Maryland Preparations for proof-of- principle D-T IEC experiments Yasushi YAMAMOTO 1, Masami Ohnishi 1, Hodaka, Osawa 1, Yuji Hatano 2 and

More information

Experimental Studies of Active Temperature Control in Solid Breeder Blankets

Experimental Studies of Active Temperature Control in Solid Breeder Blankets Experimental Studies of Active Temperature Control in Solid Breeder Blankets M. S. Tillack, A. R. Raffray, A. Y. Ying, M. A. Abdou, and P. Huemer Mechanical, Aerospace and Nuclear Engineering Department

More information

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA BY BOB WOOLLEY 15-19 FEBRUARY 1999 APEX-6 MEETING LIQUID WALLS A sufficiently thick, flowing, liquid first wall and tritium breeding blanket which almost completely

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Separation through Dialysis

Separation through Dialysis Separation through Dialysis SOLVED WITH COMSOL MULTIPHYSICS 3.5a COPYRIGHT 2008. All right reserved. No part of this documentation may be photocopied or reproduced in any form without prior written consent

More information

In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI

In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU January 11-13, 2005 at Tokyo, JAPAN In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI Hirofumi

More information

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden A. Klix1, A. Domula2, U. Fischer1, D. Gehre2, J. Henniger2,

More information

Aiming at Fusion Power Tokamak

Aiming at Fusion Power Tokamak Aiming at Fusion Power Tokamak Design Limits of a Helium-cooled Large Area First Wall Module Clement Wong General Atomics International Workshop on MFE Roadmapping in the ITER Era Princeton University,

More information

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR Stephen A. Birdsell and R. Scott Willms Los Alamos National Laboratory MS C348, Los Alamos, New Mexico 87545 ABSTRACT A large quantity of

More information

APPENDIX Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell

APPENDIX Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell APPENDIX Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell AaronJ.Mango* Mark W. Schmeeckle* David Jon Furbish* Department of Geological Sciences, Florida

More information

Recent R&D Activities on Tritium Technologies in Tritium Process Laboratory (TPL) of Japan Atomic Energy Agency (JAEA)

Recent R&D Activities on Tritium Technologies in Tritium Process Laboratory (TPL) of Japan Atomic Energy Agency (JAEA) Recent R&D Activities on Tritium Technologies in Tritium Process Laboratory (TPL) of Japan Atomic Energy Agency (JAEA) Toshihiko Yamanishi, Takumi Hayashi, Yoshinori Kawamura, Hirofumi Nakamura, Iwai Yasunori,

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web ChE 344 Winter 2011 Final Exam Monday, April 25, 2011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this examination,

More information

Numerical Simulation of Detritiation System for NIFS with Commercial Catalyst and Adsorbent

Numerical Simulation of Detritiation System for NIFS with Commercial Catalyst and Adsorbent J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Numerical Simulation of Detritiation System for NIFS with Commercial Catalyst and Adsorbent K. Munakata a,*, K. Hara a, T. Sugiyama b, K. Kotoh c, M. Tanaka

More information

PISCES W fuzz experiments: A summary of work up to now.

PISCES W fuzz experiments: A summary of work up to now. FNST/PFC/MASCO meeting, UCLA Aug. 2-6, 2010 W fuzz experiments: A summary of work up to now. M.J. Baldwin, R.P. Doerner, D. Nishijima University of California, San Diego, USA Why do we care about fuzz?

More information

Assignment 3: blood oxygen uptake. Lars Johansson IEI/mechanics Linköping university

Assignment 3: blood oxygen uptake. Lars Johansson IEI/mechanics Linköping university Assignment 3: blood oxygen uptake Lars Johansson IEI/mechanics Linköping university 1 Introduction In the human lung, the airway branches to the terminal structures which are the alveoli. The alveoli are

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

Membrane processes selective hydromechanical diffusion-based porous nonporous

Membrane processes selective hydromechanical diffusion-based porous nonporous Membrane processes Separation of liquid or gaseous mixtures by mass transport through membrane (= permeation). Membrane is selective, i.e. it has different permeability for different components. Conditions

More information

Tritium Control and Safety

Tritium Control and Safety Tritium Control and Safety Brad Merrill Fusion Safety Program 1 st APEX Electronic Meeting, February 6, 2003 Presentation Outline Temperature & tritium control approach TMAP model of solid wall AFS/Flibe

More information

Deuterium (Hydrogen) Flux Permeating through Palladium and Condensed Matter Nuclear Science

Deuterium (Hydrogen) Flux Permeating through Palladium and Condensed Matter Nuclear Science Deuterium (Hydrogen) Flux Permeating through Palladium and Condensed Matter Nuclear Science Qing M. Wei, Bin Liu, Yu X. Mo, Xing Z. Li, Shu X. Zheng, Dong X. Cao Department of Physics, Tsinghua University,

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

Introduction to Thermoelectric Materials and Devices

Introduction to Thermoelectric Materials and Devices Introduction to Thermoelectric Materials and Devices 4th Semester of 2012 2012.03.29, Thursday Department of Energy Science Sungkyunkwan University Radioisotope Thermoelectric Generator (PbTe) Space probe

More information

Energy Practice Test

Energy Practice Test Line Master C-29 Name: Energy Practice Test Section A. Multiple Choice Questions (10 mars) Directions: Place the letter of answer that is most correct on the line provided. 1. Which energy resource is

More information

Rn assay and distillation purification

Rn assay and distillation purification Rn assay and distillation purification of Lq. Xe for Kr Introduction Distillation purification of Xe for Kr Kr assay with API-MS detector Rn assay with XMASS prototype detector Summary Yasuo Takeuchi (Kamioka

More information

Influence of High Magnetic Field on Fusion Reactor Blanket Processes

Influence of High Magnetic Field on Fusion Reactor Blanket Processes FT/P5-7 Influence of High Magnetic Field on Fusion Reactor Blanket Processes G. Kizane, J. Tiliks, A. Vitins, E. Kolodinska Laboratory of Radiation Chemistry of Solids, University of Latvia 4 blvd. Kronvalda,

More information

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram Effect of Temperature on Materials June 20, 2008 Kamran M. Nemati Phase Diagram Objective Phase diagrams are graphical representations of what phases are present in a material-system at various temperatures,

More information

A new approach for comprehensive modelling of molten salt properties

A new approach for comprehensive modelling of molten salt properties A new approach for comprehensive modelling of molten salt properties Anna L. Smith Delft University of Technology Radiation, Science & Technology Department Mekelweg 15 2625 JB Delft The Netherlands a.l.smith@tudelft.nl

More information

Mr. Bracken. Intermolecular Forces Notes #1

Mr. Bracken. Intermolecular Forces Notes #1 Mr. Bracken AP Chemistry Name Period Intermolecular Forces Notes #1 States of Matter: A gas expands to fill its container, has neither a fixed volume nor shape, and is easily compressible. A liquid has

More information

What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction

What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction Liquids and Solids What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction Types of Interparticle Forces Ionic Bonding Occurs between cations and anions Metallic

More information

The role of PMI in MFE/IFE common research

The role of PMI in MFE/IFE common research The role of PMI in MFE/IFE common research Presented by Doerner for the Team and TITAN 1-1 Participants In 2006, Jupiter II recognized that PMI was a bridge issue between MFE and IFE R&D Both MFE and IFE

More information

MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015

MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015 MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015 233/1 CHEMISTRY PAPER 1 (THEORY) TIME: 2 HOURS SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai Tel: 0711 88 22

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System L. R. Baylor, C.N. Barbier, S. K. Combs, R.C. Duckworth, T.D. Edgemon, S. J. Meitner, M.P. Hechler, D.A. Rasmussen, R. Kersevan*,

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Numerical Study on the Condensation Length of Binary Zeotropic Mixtures

Numerical Study on the Condensation Length of Binary Zeotropic Mixtures 1 Numerical Study on the Condensation Length of Binary Zeotropic Mixtures Han Deng, Maria Fernandino, Carlos A. Dorao 3rd Trondheim Gas Technology Conference 4 5 June, 2014 Trondheim, Norway 3rd Trondheim

More information

Oxygen Reactivity of a Carbon Fiber Composite. T.D. Marshall, R.J. Pawelko, R.A. Anderl, G.R. Smolik, B.J. Merrill, R.L. Moore, D.A.

Oxygen Reactivity of a Carbon Fiber Composite. T.D. Marshall, R.J. Pawelko, R.A. Anderl, G.R. Smolik, B.J. Merrill, R.L. Moore, D.A. INEEL/CON-0-00574 PREPRINT Oxygen Reactivity of a Carbon Fiber Composite T.D. Marshall, R.J. Pawelko, R.A. Anderl, G.R. Smolik, B.J. Merrill, R.L. Moore, D.A. Petti September 00 nd Symposium on Fusion

More information

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor Ade afar Abdullah Electrical Engineering Department, Faculty of Technology and Vocational Education Indonesia University of

More information

Fuel ash behavior importance of melting

Fuel ash behavior importance of melting Fuel ash behavior importance of melting Why is ash melting important? Bed agglomeration in fluidized bed boilers Bed behavior in BL recovery boilers Deposit formation and build up Corrosion of superheaters

More information

Liquids and Solutions Crib Sheet

Liquids and Solutions Crib Sheet Liquids and Solutions Crib Sheet Determining the melting point of a substance from its solubility Consider a saturated solution of B in a solvent, A. Since the solution is saturated, pure solid B is in

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

Dynamical Desorption Process of Oxygen on Platinum by Using a Gas Controllable H 2 j H þ Electrolyte j Pt Cell

Dynamical Desorption Process of Oxygen on Platinum by Using a Gas Controllable H 2 j H þ Electrolyte j Pt Cell Materials Transactions, Vol. 46, No. 5 (005) pp. 1058 to 1063 #005 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Dynamical Desorption Process of Oxygen on Platinum by Using a Gas Controllable H

More information

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA)

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt PROBLEM 14.6 KNOWN: Pressure and temperature of hydrogen stored in a spherical steel tank of prescribed diameter and thickness. FIND: (a) Initial rate of hydrogen mass loss from the tank, (b) Initial rate

More information