Estimation of Tritium Recovery from a Molten Salt Blanket of FFHR

Size: px
Start display at page:

Download "Estimation of Tritium Recovery from a Molten Salt Blanket of FFHR"

Transcription

1 US/Japan Workshop on Power Plant Studies and Related Advanced Technologies with EU Participation, April 6-7, 2002 (San Diego, CA) Estimation of Tritium Recovery from a Molten Salt Blanket of FFHR Dept. Applied Quantum Physics and Nuclear Engineering, Kyushu University Satoshi FUKADA

2 1. Background study : Characteristics of Flibe as a self-cooled blanket Advantages (1) liquid blanket, low reactivity with air or water (2) low MHD effect (3) TBR >1 with addition of Be and low tritium solubility FFHR or HYLIFE-II Disadvantages (1) less Flibe-facing structural materials under neutron irradiation (2) unknown tritium behavior or recovery in Flibe is not studied. (3) possibly high tritium leak to the environment (4) issues of Be safety JUPITER-II Relating to this study

3 Design activities in NIFS Collaboration Ignition access O.Mitarai (Kyusyu Tokai Univ.) Helical core plasma K.Yamazaki (NIFS) Core Plasma 14MeV neutron Thermo-mechanical analysis T.Yamamoto, H.Matsui (Tohoku Univ.) Structural Materials Pro tecti on w all P h =0.2 MW /m2 P n =1.5 MW /m 2 Nd =4 50 dp a/30 y Sel f-coo led T breeder TBRlo cal > 1.2 Be Liquid / Gas Rad iatio n shi eld redu ctio n > 5 o rd ers Thermal shi eld shielding materials. Blanket system S,Tanaka (Univ. of Tokyo ) Blanket Vac uum vess el & T bou ndary SC mag net Now, on going cf. NIFS annual repo. Safety & Cost Helical reactor design / Sytem Integration A.Sagara (NIFS) surface heat flux In-vessel Components Thermofluid Thermofluid system S.Toda (Tohoku Univ.) Advanced thermofluid T.Kunugi (Kyoto Univ.) Purifi er Pump Ta nk high temp. Chemistry HX T-diseng ager 20 C Pump T st orage Turbine Heat exchanger system A.Shimizu (Kyusyu Univ.) Device system code H.Hashizume (Tohoku Univ.) Tritium T-disengager system S.Fukada, M. Nishikawa (Kyusyu Univ.) May 21, 2001, A.Sagaar

4 1. Background study : Tritium recovery from Flibe relating to the things (1) Physical Properties (Underlined properties are not available or not reliable) Tritium solubility (TF or T 2 ) Tritium diffusivity, permeation coefficient or mass-transfer coefficient Viscosity, thermal diffusivity or heat-transfer coefficient Phase diagram, vapor pressure, free energy change of fluoride formation Estimated from H 2, D 2 or other data (2) Affecting factors Chemical forms of tritium in Flibe, T 2, TF or T 2 O, or Flibe purification REDOX control condition, change from TF to T 2 Corrosive HF or TF in Flibe Isotopic effect and coexistent components to use purified Flibe and REDOX control by Be

5 1. Background study : Necessary conditions imposed on apparatus of tritium recovery from Flibe All tritium generated in a blanket is recovered Very low tritium leak to the environment Simple apparatus and easy to operate Operation over melting temperature High operation safety and material compatible with HF M+nHFMF n +(n/2)h 2 Operated under low water vapor condition BeF 2 +2H 2 OBe(OH) 2 +2HF, LiF+H 2 OLiOH+HF Permeation window, He-Flibe counter-current column, Vacuum disengager

6 2. Design study : Design of tritium-recovery apparatus for FFHR Assumptions Based on FFHR design Steady-state operation Tritium generated in a blanket is transferred by Flibe and is recovered by a tritium recovery apparatus. No isotope effect in properties No decomposition of Flibe by VxB We focused on whether or not tritium can be recovered by a realistic scale of apparatus. Table 1 FFHR parameters on tritium recovery. Fusion power 1GWt Tritium generation 190g-T/day rate Coolant LiF(64%)-BeF 2 (36%) Coolant flow rate in blanket Colant inlet temperature Coolant outlet temperature Tritium leak rate Major radius 2.3m 3 /s Ci/day 10 m Neutron wall loading 1.7 MW/m 2 TBR >1.2 What is the rate-determining step of tritium recovery

7 Flibe blanket 2. Design study : Flow of Flibe and tritium He cooling cylindrical support helical coils vacuum chamber divertor target Be pebbles Flibe flow rate 2.3m 3 /s self-cooling Flibe T-breeder core plasma 9 10 m R pump thermal insulation radiation shield & reflector poloidal coils 470C Tritium generation rate (1 GWt) 190 g-t/day = 1.8 MCi/day 570C x in ( = K H p in or = K S p in 0.5 ) Tritium leak rate K p A in p in 0.5 Tritium recovery system Tritium storage Tritium permeation barrier x out ( = K H p out or = K S p 0.5 out ) Tritium leak rate K p A out p out 0.5 Bypass ratio a Tritium recovery system Heat exchanger Tritium permeation barrier Tritium leak rate to the environment 10 Ci/day K p A in p in K p A out p out others

8 2. Design study : Evaluation of tritium leak If there is no barrier for tritium leak, Q leak = 2x10-3 mol-t/s = 5 MCi/day huge tritium leak (A=10 2 m 2, p T2 =10 3 Pa, K p =3.15x10-11 mol/mspa 0.5 (ferrite), t=5mm) impossible to lower the tritium leak rate, < 10-8 Pa If the heat exchanger or the tritium recovery system is surrounded by a stagnant Flibe (or Flinak) ) layer (barrier), Q leak = 6x10-10 mol-t/s = 1.6Ci/day allowable tritium leak (A=10 2 m 2, p T2 =10 3 Pa, D T =5x10-9 m 2 /s, K H =3.2x10-7 mol/m 3 Pa, t=50cm ) First wall Self-cooled Radiation shield Vacuum vessel T breeder & & 450 C 550 C Thermal shield T boundary coolant in coolant out 20 C Other reliable tritium barrier with a factor of 10 6 is OK, if available (e.g. alumina) Plasma SOL LCFS 0 Flibe Be (60 vol.%) JLF-1(30vol. %) Carbon 10 ~ 20 JLF-1 + B4C (30 vol.%) 100 cm SC magnet

9 2. Design study : Material balance of tritium in Flibe 10 1 Outlet T pressure in Flibe, p out [Pa] Q T = aw Flibe C Flibe (x T,in - x b T, out ) b x T,out = ax T,out + ( 1- a )x T,in Inlet T concentration in Flibe, x in [ppm] a=0.1 a=1 allowable 10Ci/day limit Inlet Tritium pressure in Flibe, p in [Pa] p T,in = K H x T,in p T,out = K H x T,out Q leak = K p Ap T,in + K p Ap T,out Necessary conditions Q T =1.8MCi/day Q leak <10Ci/day Design of economic apparatus Outlet T concentration in Flibe, x out [ppm] a=0.1 is possible Fig. 2 Relation between c in and c out if 50cm shield is present

10 Permeation window He out Tritium getter Permeation material Flibe in Tritium permeation Flibe out He in Tritium permeation barrier (stagnant Flibe) Fig. 3 Permeation window system

11 2. Design study : Tritium transfer process in Flibe-facing material Processes include (1) Tritium (TF or T 2 ) generation rate in Flibe (2) Tritium (TF or T 2 ) diffusion in Flibe (3) Tritium (TF or T 2 ) solution in Flibe (4) Tritium migration from Flibe surface to metal surface (impurity layer) (5) Tritium (T) permeation through metal (6) Desorption or absorption of tritium (TF or T 2 ) from Flibe (7) Tritium (TF or T 2 ) diffusion in gas (8) Tritium recombination on metal surface ( ) unique to Flibe gaseous phase Flibe (6) desorption or absorption (1) generation (2) diffusion (3) solubility (7) diffusion oxide or scale Flibe facing metal (4) interface migration (5) permeation If H 2 or H 2 O coexists in Flibe, HT or HTO is also present. (8) recombination Fig. 4 Mass transfer processes from Flibe to gas phase

12 2. Design study : Rate-determining step of permeation window clean dirty Oxide migration factor, K O /t O [mol-h2/m 2 s] Flibe film diffusion Ni permeation Metal impurity layer migration Tritium pressure in Flibe, p [Pa] j = 2k M ( c F,B - c F,1 ) = 2K O ( p t 1 - p 2 ) O = K p ( p 2 - p 3 ) t p = 2k d c 2 S,3 Fluid Flibe film Impurity migration Permeation Fig. 5 Rate-determining step of the overall tritium permeation

13 2. Design study : Design equations of permeation window Permeation material : Ni, or ferritic steel Upstream side : (purified) Flibe Downstream side : He purge Overall resistance of mass-transfer of tritium permeation 2.3m 3 /s 1 k L,0 H T2 2 = 1 k L H T2 2 + t s K p p ,in p 2 ln 0.5 p 1,out p ,in p p 1,out p 2 p Diffusion in Flibe Permeation through wall k L d = r d v L D L m L Tritium generated in blanket, Q T, is all recovered by permeation window. 0.8 m L r L D T 1 3 m L,b m L,w 0.14 c 1,in H T2 p 2 c 1,out H T2 p 2 Q T = A k L,0 c 1,in H T2 p 2 ln c 1,out H T2 p 2 Fig. 5 Permeation window tritium recovery system

14 2. Design study : Estimation of permeation window area Tritium recovery is easy at high tritium pressure (concentration) high tritium leak Tritium recovery is difficult at low tritium pressure (concentration) large apparatus Operation at around x T =0.2 ppm satisfies 10Ci/day limit and 190g/day recovery Resistances of Flibe-film diffusion is controlling and permeation gives a small effect Tritium molar fraction in Flibe [-] ferrite-steel permeation window T=843K, Q T =190g -T /day, W Flibe =2.3m 3 /s 10 6 Fluid film diffusion controlling Fluid-film diffusion + permeation Permeation controlling Permeation area [m 2 ] Fig. 6 Permeation window area (a=1, t=1mm) Tritium leak Tritium partial pressure [Pa] Large apparatus

15 Counter-current extraction tower Raschig ring packing Flibe in Perforated plate He out Tritium getter Downward Flibe flow Upward He flow Flibe out He in Tritium permeation barrier (stagnant Flibe) Fig. 8 Flibe-He counter-current extraction tower

16 2. Design study : Design equations for He extraction tower Material balance equation Ldy = Gdx k L a v g S ( y - y i )dz = k G a V c t ( x - x i )dz Gas-phase height transfer unit 2 Ê G ˆ H G Á = = 3.07 G0.32 Ê n G ˆ 3 Á Ë k G a V c t L 0.51 Ë D G Flibe-phase height transfer unit Ê L ˆ H L Á = = Ê L ˆ Ê n Á L ˆ Á Ë k L a V g S 430Ë m L Ë D L Concentration profile (Solution) y y in = È Ê exp 1- K CLˆ Á Î Í Ë G È Ê exp 1- K L ˆ Á C Î Í Ë G z H 0, L h H 0, L - K C L G - K L C G 0.5 c T2,out /c T 2,in [-] h/htu 0,L =1 h/htu 0,L =10 h/htu 0,L = LH T2 p/g [-] Fig. 9 Concentration change in extraction tower Rate-determining step is liquid phase diffusion.

17 2. Design study : Tritium concentration in He extraction tower Tritium concentration in He almost increases logarithmically. Tritium concentration in Flibe almost decreases logarithmically of DF for Flibe-tritium system is possible by 5 m extraction tower. 190 g/day tritium can be recovered by one extraction tower. Values of H L are unsure because they are not determined by Flibe experiment but by water-hydrogen system. (HTU) L >> (HTU) G Fig. 10 Tritium concentration in He extraction tower (a=0.1)

18 2. Design study : Analysis of vacuum disengager Assumptions Flibe drops free fall from the top and dissolved tritium is desorbed by a vacuum pump. d p =2mm, h=10m, a=0.1 Surface recombination resistance is ignored. Drop formation energy 1.4kW Pumping power for perforation 160kW Flibe in Gas out Tritium out Tritium concentration in Flibe [appm] Vacuum disengager a=0.1, W=2.3m 3 /s, d p =2mm Distance from the top [m] 1.6x Fig.11 Concentration profile in disengager Tritium pressure in Flibe [Pa] Flibe out x T,out = 6 1 x T,in p 2 n exp(- 4Dn2 p 2 t  ) 2 d 2 n=1 t = 2h g Q T = aw Flibe c Flibe ( x T, in - x T,out ) Vacuum pump Tritium permeation barrier

19 2. Design study : Conclusions from design study Need a tritium barrier to control tritium leak below 10Ci/day As long as the tritium leak rate is lower than the permissible level (e.g. by stagnant Flibe), arranging the tritium recovery system in a by-pass line is effective. In that case, the recovery systems of the permeation window, extraction column and vacuum disengager are a realistic- scale apparatus. Diffusion in fluid Flibe is the rate-determining step in the permeation window and He-Flibe counter-current column. In order to raise the accuracy of the design, the mass-transfer coefficient from Flibe to extraction gas should be clearly determined.

20 2. Design study : On Flinabe as a blanket material (LiF-NaF-BeF 2 ) advantages Low melting point (=240C?), low operation temperature TBR>1 may be possible with addition of Be. Other physical properties may be similar to Flibe disadvantages Activation of Na (formation of 22 Na or 24 Na) There are no data available on tritium mass-transport More data are necessary for the design of the tritium recovery system

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor John D. Stempien, PhD Content Based on Doctoral Thesis Defense Workshop on Tritium Control Salt Lake City,

More information

Isotope Effects on Tritium Mass Transfer in Li 17 Pb 83 Liquid Blanket

Isotope Effects on Tritium Mass Transfer in Li 17 Pb 83 Liquid Blanket CJWS-3 Kunming, China, Jun 0-3, 010 Isotope Effects on Tritium Mass Transfer in Li 17 Pb 83 Liquid Blanket S. Fukada, *Y. Edao, H. Okitsu and M. Okada Department Of Advanced Energy Engineering Science

More information

FLIBE ASSESSMENTS ABSTRACT

FLIBE ASSESSMENTS ABSTRACT FLIBE ASSESSMENTS Dai-Kai Sze, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (630) 252-4838 USA Kathryn McCarthy, Idaho National Engineer & Environmental Laboratory, P.O. Box 1625,

More information

Design Integration of the LHD-type Energy Reactor FFHR2 towards Demo

Design Integration of the LHD-type Energy Reactor FFHR2 towards Demo Design Integration of the LHD-type Energy Reactor FFHR2 towards Demo A. Sagara 1, S. Imagawa 1, Y. Kozaki 1, O. Mitarai 2, T. Tanaka 1, T. Watanabe 1, N. Yanagi 1, T. Goto 1, H. Tamura 1, K. Takahata 1,

More information

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Conceptual design of liquid metal cooled power core components for a fusion power reactor Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Japan-US workshop on Fusion Power

More information

EU PPCS Models C & D Conceptual Design

EU PPCS Models C & D Conceptual Design Institut für Materialforschung III EU PPCS Models C & D Conceptual Design Presented by P. Norajitra, FZK 1 PPCS Design Studies Strategy definition [D. Maisonnier] 2 models with limited extrapolations Model

More information

K 1 T M 1 T N 1 M K 1 A

K 1 T M 1 T N 1 M K 1 A Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU and China March 16-18, 2009 at the University of Tokyo in Kashiwa, JAPAN Overview of FFHR design activity

More information

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor IAEA-CRP Plasma-Wall Interaction with Reduced Activation Steel Surfaces in Fusion Devices

More information

Design concept of near term DEMO reactor with high temperature blanket

Design concept of near term DEMO reactor with high temperature blanket Design concept of near term DEMO reactor with high temperature blanket Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies March 16-18, 2009 Tokyo Univ. Mai Ichinose, Yasushi Yamamoto

More information

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS L.V. Boccaccini, N. Bekris, R. Meyder and the HCPB Design Team CBBI-13, Santa Barbara, 30th Nov.-2nd Dec. 2005 L.V.

More information

Design window analysis of LHD-type Heliotron DEMO reactors

Design window analysis of LHD-type Heliotron DEMO reactors Design window analysis of LHD-type Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya

More information

Conceptual Design of Advanced Blanket Using Liquid Li-Pb

Conceptual Design of Advanced Blanket Using Liquid Li-Pb Japan- US workshop on Fusion Power Plants and related advanced technologies with participation of EU February 5-7, 2007 at Kyoto, Japan Conceptual Design of Advanced Blanket Using Liquid Li-Pb Y. Yamamoto,

More information

Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials

Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials Effects of Water Vapor on Tritium Release Behavior from Solid Breeder Materials T. Kinjyo a), M. Nishikawa a), S. Fukada b), M. Enoeda c), N. Yamashita a), T. Koyama a) a) Graduate School of Engineering

More information

Tritium Management in FHRs

Tritium Management in FHRs Tritium Management in FHRs Ongoing and Planned Activities in Integrated Research Project Led by Georgia Tech Workshop on Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Experiments,

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

Optimization Studies on Conceptual Designs of LHD-type Reactor FFHR

Optimization Studies on Conceptual Designs of LHD-type Reactor FFHR Optimization Studies on Conceptual Designs of LHD-type Reactor FFHR A. Sagara 1, O. Mitarai 2, M. Kobayashi 1, T. Morisaki 1, T. Tanaka 1, S. Imagawa 1, Y. Kozaki 1, S. Masuzaki 1, K. Takahata 1, H. Tamura

More information

Tritium Control Using Carbon Outside of Core Stephen T Lam

Tritium Control Using Carbon Outside of Core Stephen T Lam Tritium Control Using Carbon Outside of Core Stephen T Lam Charles Forsberg Ron Ballinger Tritium Overview Generation Thermal neutron transmutation of Li-6 Initially 0.005 wt. % Li-6 in Flibe consumed

More information

Magnetic Toroidal Facility (MTOR) has been constructed. Multiple MHD experiments currently underway in FY02

Magnetic Toroidal Facility (MTOR) has been constructed. Multiple MHD experiments currently underway in FY02 Magnetic Toroidal Facility (MTOR) has been constructed Multiple MHD experiments currently underway in FY02 MHD effects on fluid flow and heat transfer are dominant issues for liquid metal walls Extensive

More information

Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket

Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket I. Ricapito 1), P. Calderoni 1), A. Ibarra 2), C. Moreno 2), Y. Poitevin

More information

Preliminary FLiNaK Mobilization Measurements and Implications for FLiNaBe Safety

Preliminary FLiNaK Mobilization Measurements and Implications for FLiNaBe Safety Preliminary FLiNaK Mobilization Measurements and Implications for FLiNaBe Safety B.J. Merrill, T.D. Marshall, G.R. Smolik INEEL Fusion Safety Program ALPS/APEX Meeting, Scottsdale, AZ, November 4-9, 2001

More information

Fusion Development Facility (FDF) Mission and Concept

Fusion Development Facility (FDF) Mission and Concept Fusion Development Facility (FDF) Mission and Concept Presented by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION University of California Los Angeles FNST Workshop

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

Tritium Control and Safety

Tritium Control and Safety Tritium Control and Safety Brad Merrill Fusion Safety Program 1 st APEX Electronic Meeting, February 6, 2003 Presentation Outline Temperature & tritium control approach TMAP model of solid wall AFS/Flibe

More information

In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI

In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU January 11-13, 2005 at Tokyo, JAPAN In-Vessel Tritium Inventory in Fusion DEMO Plant at JAERI Hirofumi

More information

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond

Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Fusion: The Ultimate Energy Source for the 21 st Century and Beyond Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA)

More information

ENEA Experience in PbLi Technologies

ENEA Experience in PbLi Technologies ENEA Experience in PbLi Technologies DCLL WORKSHOP- Tritium extraction technologies for EU DCLL M. Utili (ENEA) marco.utili@enea.it 14-15 November 2014 DCLL BB: Tritium extraction from Pb-16Li Tritium

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL)

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) 22 nd Topical Meeting on the Technology of Fusion Energy (TOFE) Philadelphia, PA August 22-25, 2016

More information

Neutronics analysis of inboard shielding capability for a DEMO fusion reactor

Neutronics analysis of inboard shielding capability for a DEMO fusion reactor *Manuscript Click here to view linked References Neutronics analysis of inboard shielding capability for a DEMO fusion reactor Songlin Liu a, Jiangang Li a, Shanliang Zheng b, Neil Mitchell c a Institute

More information

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER P. Satyamurthy Bhabha Atomic Research Centre, India P. Satyamurthy,

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

ARIES-AT Blanket and Divertor Design (The Final Stretch)

ARIES-AT Blanket and Divertor Design (The Final Stretch) ARIES-AT Blanket and Divertor Design (The Final Stretch) The ARIES Team Presented by A. René Raffray and Xueren Wang ARIES Project Meeting University of Wisconsin, Madison June 19-21, 2000 Presentation

More information

Fusion Nuclear Science - Pathway Assessment

Fusion Nuclear Science - Pathway Assessment Fusion Nuclear Science - Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNS-Pathways Assessment 1. Determination of DEMO/power plant parameters and requirements,

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

Aiming at Fusion Power Tokamak

Aiming at Fusion Power Tokamak Aiming at Fusion Power Tokamak Design Limits of a Helium-cooled Large Area First Wall Module Clement Wong General Atomics International Workshop on MFE Roadmapping in the ITER Era Princeton University,

More information

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems

Elements of Strategy on Modelling Activities in the area of Test Blanket Systems Elements of Strategy on Modelling Activities in the area of Test Blanket Systems I. Ricapito, TBM & MD Project Team, ITER Department, F4E, Barcelona (Spain) Barcelona, Sept 17 th 2014 Information Day FPA-611

More information

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA

ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA ELECTROMAGNETIC LIQUID METAL WALL PHENOMENA BY BOB WOOLLEY 15-19 FEBRUARY 1999 APEX-6 MEETING LIQUID WALLS A sufficiently thick, flowing, liquid first wall and tritium breeding blanket which almost completely

More information

Perspective on Fusion Energy

Perspective on Fusion Energy Perspective on Fusion Energy Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA) President, Council of Energy Research

More information

Plasma and Fusion Research: Regular Articles Volume 10, (2015)

Plasma and Fusion Research: Regular Articles Volume 10, (2015) Possibility of Quasi-Steady-State Operation of Low-Temperature LHD-Type Deuterium-Deuterium (DD) Reactor Using Impurity Hole Phenomena DD Reactor Controlled by Solid Boron Pellets ) Tsuguhiro WATANABE

More information

JUPITER-II. Thermofluids and Thermomechanics Tasks and Facilities. Led by UCLA in collaboration with SNL, ORNL, PPPL, ANL

JUPITER-II. Thermofluids and Thermomechanics Tasks and Facilities. Led by UCLA in collaboration with SNL, ORNL, PPPL, ANL JUPITER-II Thermofluids and Thermomechanics Tasks and Facilities Led by UCLA in collaboration with SNL, ORNL, PPPL, ANL Prepared by M. Abdou, N. Morley, A. Ying Presented to VLT/PAC, December 4, 2000 at

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

Summary Tritium Day Workshop

Summary Tritium Day Workshop Summary Tritium Day Workshop Presentations by M. Abdou, A. Loarte, L. Baylor, S. Willms, C. Day, P. Humrickhouse, M. Kovari 4th IAEA DEMO Programme Workshop November 18th, 2016 - Karlsruhe, Germany Overall

More information

Tritium processing system for the ITER Li/V Blanket Test Module

Tritium processing system for the ITER Li/V Blanket Test Module Fusion Engineering and Design 39 40 (1998) 859 864 Tritium processing system for the ITER Li/V Blanket Test Module Dai-Kai Sze a, *, Thanh Q. Hua a, Mohamad A. Dagher b, Lester M. Waganer c, Mohamed A.

More information

Design of a Tritium Mitigation and Control System for Fluoride-salt-cooled Hightemperature THESIS

Design of a Tritium Mitigation and Control System for Fluoride-salt-cooled Hightemperature THESIS Design of a Tritium Mitigation and Control System for Fluoride-salt-cooled Hightemperature Reactor Systems THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in

More information

Tritium Safety of Russian Test Blanket Module

Tritium Safety of Russian Test Blanket Module Tritium Safety of Russian Test Blanket Module V.K. Kapyshev, V.G. Kovalenko, Y.S. Strebkov N.A. Dollezhal Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000, Russia Abstract

More information

MSR concepts. Jan Leen Kloosterman, TU Delft. Molten Salt Reactor Experiment https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment

MSR concepts. Jan Leen Kloosterman, TU Delft. Molten Salt Reactor Experiment https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment MSR concepts Jan Leen Kloosterman, TU Delft 2 Molten Salt Reactor Experiment 1965-1969 https://en.wikipedia.org/wiki/molten Salt_Reactor_Experiment See movie: http://energyfromthorium.com/2016/10/16/ornl

More information

Preliminary Safety Analysis of CH HCSB TBM

Preliminary Safety Analysis of CH HCSB TBM Preliminary Safety Analysis of CH HCSB TBM Presented by: Chen Zhi SWIP ITER TBM Workshop, China Vienna, Austria, IAEA, July 10-14, 2006 1 Introduction Calculation model Outline Review of CH HCSB TBM preliminary

More information

The PPCS In-Vessel Component Concepts (focused on Breeding Blankets)

The PPCS In-Vessel Component Concepts (focused on Breeding Blankets) International School of Fusion reactor Technology Erice, July 26 August 1, 2004 The PPCS In-Vessel Component Concepts (focused on Breeding Blankets) Presented by L. Giancarli Commissariat à l Energie Atomique,

More information

Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells

Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells Electrical Resistivity Changes with Neutron Irradiation and Implications for W Stabilizing Shells L. El-Guebaly Fusion Technology Institute University of Wisconsin-Madison With input from: C. Kessel (PPPL)

More information

Advanced Heat Sink Material for Fusion Energy Devices

Advanced Heat Sink Material for Fusion Energy Devices University of California, San Diego UCSD-ENG-107 Advanced Heat Sink Material for Fusion Energy Devices A. R. Raffray, J. E. Pulsifer and M. S. Tillack August 31, 2002 Fusion Division Center for Energy

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION

More information

Basics of breeding blanket technology

Basics of breeding blanket technology Basics of breeding blanket technology Dr Fabio CISMONDI Karlsruher Institut für Technologie (KIT) Institut für Neutronenphysik und Reaktortechnik e-mail: fabio.cismondi@kit.edu www.kit.edu Development

More information

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor FIP/3-4Rb FIP/3-4Ra DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, Y. Someya, H. Utoh, N. Asakura, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Transmutation of Minor Actinides in a Spherical

Transmutation of Minor Actinides in a Spherical 1 Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor Feng Kaiming Zhang Guoshu Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research

More information

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS Federal Environmental, Industrial and Nuclear Supervision Service Scientific and Engineering Centre for Nuclear and Radiation Safety Scientific and Engineering Centre for Nuclear and Radiation Safety Member

More information

MHD Analysis of Dual Coolant Pb-17Li Blanket for ARIES-CS

MHD Analysis of Dual Coolant Pb-17Li Blanket for ARIES-CS MHD Analysis of Dual Coolant Pb-17Li Blanket for ARIES-CS C. Mistrangelo 1, A. R. Raffray 2, and the ARIES Team 1 Forschungszentrum Karlsruhe, 7621 Karlsruhe, Germany, mistrangelo@iket.fzk.de 2 University

More information

Design of structural components and radial-build for FFHR-d1

Design of structural components and radial-build for FFHR-d1 Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China and Korea February 26-28, 2013 at Kyoto University in Uji, JAPAN 1 Design of structural components

More information

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices The replacement of the first wall with a flowing thick liquid offers the advantages of high power density, high reliability and

More information

Neutron Testing: What are the Options for MFE?

Neutron Testing: What are the Options for MFE? Neutron Testing: What are the Options for MFE? L. El-Guebaly Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/uwneutronicscenterofexcellence Contributors: M. Sawan

More information

Fusion/transmutation reactor studies based on the spherical torus concept

Fusion/transmutation reactor studies based on the spherical torus concept FT/P1-7, FEC 2004 Fusion/transmutation reactor studies based on the spherical torus concept K.M. Feng, J.H. Huang, B.Q. Deng, G.S. Zhang, G. Hu, Z.X. Li, X.Y. Wang, T. Yuan, Z. Chen Southwestern Institute

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING HIGH TEMPERATURE THERMAL HYDRAULICS MODELING OF A MOLTEN SALT: APPLICATION TO A MOLTEN SALT FAST REACTOR (MSFR) P. R. Rubiolo, V. Ghetta, J. Giraud, M. Tano Retamales CNRS/IN2P3/LPSC - Grenoble Workshop

More information

Study on supporting structures of magnets and blankets for a heliotron-type type fusion reactors

Study on supporting structures of magnets and blankets for a heliotron-type type fusion reactors JA-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU, Jan. 11-13, 2005, Tokyo, Japan. Study on supporting structures of magnets and blankets for a heliotron-type

More information

Status of Engineering Effort on ARIES-CS Power Core

Status of Engineering Effort on ARIES-CS Power Core Status of Engineering Effort on ARIES-CS Power Core Presented by A. René Raffray University of California, San Diego With contributions from L. El-Guebaly, S. Malang, B. Merrill, X. Wang and the ARIES

More information

Conceptual design study for heat exhaust management in the ARC fusion pilot plant

Conceptual design study for heat exhaust management in the ARC fusion pilot plant Conceptual design study for heat exhaust management in the ARC fusion pilot plant A.Q. Kuang 1, N.M. Cao 1, A.J. Creely 1, C.A. Dennett 2, J. Hecla 2, B. LaBombard 1, R.A. Tinguely 1, E.A. Tolman 1, H.

More information

Thermo-fluid and Thermo-mechanical Analysis of He-cooled Flat Plate and T- tube Divertor Concepts

Thermo-fluid and Thermo-mechanical Analysis of He-cooled Flat Plate and T- tube Divertor Concepts Thermo-fluid and Thermo-mechanical Analysis of He-cooled Flat Plate and T- tube Divertor Concepts Presented by: X.R. Wang R. Raffray, S. Malang and the ARIES Team Japan-US Workshop on Fusion Power Plant

More information

Comparison of 2 Lead-Bismuth Spallation Neutron Targets

Comparison of 2 Lead-Bismuth Spallation Neutron Targets Comparison of 2 Lead-Bismuth Spallation Neutron Targets Keith Woloshun, Curtt Ammerman, Xiaoyi He, Michael James, Ning Li, Valentina Tcharnotskaia, Steve Wender Los Alamos National Laboratory P.O. Box

More information

Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR

Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR MIT NUCLEAR REACTOR LABORATORY AN MIT INTERDEPARTMENTAL CENTER Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR David Carpenter Group Leader, Reactor Experiments 10/27/15

More information

D- 3 He HA tokamak device for experiments and power generations

D- 3 He HA tokamak device for experiments and power generations D- He HA tokamak device for experiments and power generations US-Japan Fusion Power Plant Studies Contents University of Tokyo, Japan January -, 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism,

More information

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN

CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN 37 CHAPTER 3 MODELLING AND ANALYSIS OF THE PACKED COLUMN Absorption in a chemical process refers to a mass transfer between gas and liquid which transfers one or more components from the gas phase to the

More information

Assessment on safety and security for fusion plant

Assessment on safety and security for fusion plant Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China and Korea February 26-28, 2013 at Kyoto University in Uji, JAPAN Assessment on safety and security

More information

The European Commission s science and knowledge service

The European Commission s science and knowledge service The European Commission s science and knowledge service Joint Research Centre EU activities in the MSR project O. Beneš JRC Karlsruhe ITU One of the 7 research institutes of the European Commission s Joint

More information

Neutronic Activation Analysis for ITER Fusion Reactor

Neutronic Activation Analysis for ITER Fusion Reactor Neutronic Activation Analysis for ITER Fusion Reactor Barbara Caiffi 100 Congresso Nazionale SIF 1 Outlook Nuclear Fusion International Thermonuclear Experimental Reactor (ITER) Neutronics Computational

More information

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER DESIGN OF A SHELL AND TUBE HEAT EXCHANGER Swarnotpal Kashyap Department of Chemical Engineering, IIT Guwahati, Assam, India 781039 ABSTRACT Often, in process industries the feed stream has to be preheated

More information

Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development

Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development Smaller & Sooner: How a new generation of superconductors can accelerate fusion s development Dennis Whyte MIT Nuclear Science & Engineering Plasma Science Fusion Center June 2012 American Security Project

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Issues for Neutron Calculations for ITER Fusion Reactor

Issues for Neutron Calculations for ITER Fusion Reactor Introduction Issues for Neutron Calculations for ITER Fusion Reactor Erik Nonbøl and Bent Lauritzen Risø DTU, National Laboratory for Sustainable Energy Roskilde, Denmark Outline 1. Fusion development

More information

GA A22689 SLOW LINER FUSION

GA A22689 SLOW LINER FUSION GA A22689 SLOW LINER FUSION by AUGUST 1997 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any

More information

Numerical Simulation of Detritiation System for NIFS with Commercial Catalyst and Adsorbent

Numerical Simulation of Detritiation System for NIFS with Commercial Catalyst and Adsorbent J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Numerical Simulation of Detritiation System for NIFS with Commercial Catalyst and Adsorbent K. Munakata a,*, K. Hara a, T. Sugiyama b, K. Kotoh c, M. Tanaka

More information

Japan-US Workshop on Fusion Power Plants Related Advanced Technologies with participants from China and Korea (Kyoto University, Uji, Japan, 26-28

Japan-US Workshop on Fusion Power Plants Related Advanced Technologies with participants from China and Korea (Kyoto University, Uji, Japan, 26-28 Japan-US Workshop on Fusion Power Plants Related Advanced Technologies with participants from China and Korea (Kyoto University, Uji, Japan, 26-28 Feb. 2013) 2/22 FFHR-d1 R c = 15.6 m B c = 4.7 T P fusion

More information

Tritium Breeding and Power Multiplication Issues in Liquid Wall Concepts. Mahmoud Youssef UCLA. Presented at APEX Group Meeting, SNL, July 27-29, 1998

Tritium Breeding and Power Multiplication Issues in Liquid Wall Concepts. Mahmoud Youssef UCLA. Presented at APEX Group Meeting, SNL, July 27-29, 1998 Tritium Breeding and Power Multiplication Issues in Liquid Wall Concepts Mahmoud Youssef UCLA Presented at APEX Group Meeting, SNL, July 27-29, 1998 Objective Assess the impact of Li-6 enrichment on: -

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

Concept of Multi-function Fusion Reactor

Concept of Multi-function Fusion Reactor Concept of Multi-function Fusion Reactor Presented by Songtao Wu Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui, 230031, P.R. China 1. Motivation 2. MFFR Concept

More information

FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids

FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids Flow Control Large scale test sections with water/koh working liquid Penetrations (e.g. modified

More information

Sh ield Performance and Magnet Protection in Thick Liquid Wa lconcepts. Mah moud Youssef UCLA

Sh ield Performance and Magnet Protection in Thick Liquid Wa lconcepts. Mah moud Youssef UCLA Sh ield Performance and Magnet Protection in Thick Liquid Wa lconcepts Mah moud Youssef UCLA Presented at the 5th APEX Group Meeting, UCLA, November 2-4, 998 Outlines Evaluate dam age param eters at key

More information

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor 1 FIP/3-4Ra Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor N. Asakura 1, K. Hoshino 1, H. Utoh 1, K. Shinya 2, K. Shimizu 3, S. Tokunaga 1, Y.Someya 1, K. Tobita 1, N. Ohno

More information

5. Thick Liquid Blanket Concept 5.1 Introduction Ralph Moir 5.2 Idea Description and Rationale Alice Ying/ Ralph Moir/ Karani Gulec 5.2.

5. Thick Liquid Blanket Concept 5.1 Introduction Ralph Moir 5.2 Idea Description and Rationale Alice Ying/ Ralph Moir/ Karani Gulec 5.2. 5. Thick Liquid Blanket Concept 5. Introduction Ralph Moir 5. Idea Description and Rationale Alice Ying/ Ralph Moir/ Karani Gulec 5.. General Perspective 5.. Applications to Tokamaks 5..3 Applications

More information

Design Windows and Economic Aspect of Helical Reactor

Design Windows and Economic Aspect of Helical Reactor Design Windows and Economic Aspect of Helical Reactor Y. Kozaki, S. Imagawa, A. Sagara National Institute for Fusion Science, Toki, Japan Japan-US Workshop, Kashiwa, March 16-18,2009 - Background and Objectives

More information

Reduced-Size LHD-Type Fusion Reactor with D-Shaped Magnetic Surface )

Reduced-Size LHD-Type Fusion Reactor with D-Shaped Magnetic Surface ) Reduced-Size LHD-Type Fusion Reactor with D-Shaped Magnetic Surface ) Tsuguhiro WATANABE National Institute for Fusion Science, Toki 509-59, Japan (Received 6 December 011 / Accepted 1 June 01) A new winding

More information

Modelling of a once-through MSR without online fuel processing

Modelling of a once-through MSR without online fuel processing Modelling of a once-through MSR without online fuel processing Kien Trinh University of Cambridge The 4 th Annual Serpent Users Group Meetings 19 th September 2014 OUTLINE 1 Background & motivation 2 The

More information

Influence of High Magnetic Field on Fusion Reactor Blanket Processes

Influence of High Magnetic Field on Fusion Reactor Blanket Processes FT/P5-7 Influence of High Magnetic Field on Fusion Reactor Blanket Processes G. Kizane, J. Tiliks, A. Vitins, E. Kolodinska Laboratory of Radiation Chemistry of Solids, University of Latvia 4 blvd. Kronvalda,

More information

MELCOR model development for ARIES Safety Analysis

MELCOR model development for ARIES Safety Analysis MELCOR model development for ARIES Safety Analysis Paul Humrickhouse Brad Merrill INL ARIES Meeting UCSD San Diego, CA January 23 rd -24 th, 2012 Presentation Outline Status of MELCOR modeling for ARIES-ACT

More information

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor

Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor Superconducting Magnet Design and R&D with HTS Option for the Helical DEMO Reactor N. Yanagi, A. Sagara and FFHR-Team S. Ito 1, H. Hashizume 1 National Institute for Fusion Science 1 Tohoku University

More information

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics Critical Gaps between Tokamak Physics and Nuclear Science (Step 1: Identifying critical gaps) (Step 2: Options to fill the critical gaps initiated) (Step 3: Success not yet) Clement P.C. Wong General Atomics

More information

Working Paper for Materials, Activation, Tritium, and Transport (MATT) Group

Working Paper for Materials, Activation, Tritium, and Transport (MATT) Group Working Paper for Materials, Activation, Tritium, and Transport (MATT) Group TRITIUM CONTROL AND CAPTURE IN SALT-COOLED FISSION AND FUSION REACTORS: STATUS, CHALLENGES, and PATH FORWARD Integrated Research

More information

Provisional scenario of radioactive waste management for DEMO

Provisional scenario of radioactive waste management for DEMO US-Japan Workshop on Fusion power plants and Related advanced technologies 13-14 March 2014 UCSD, USA Provisional scenario of radioactive waste management for DEMO Youji Someya Japan Atomic Energy Agency,

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information