Univerza na Primorskem FAMNIT, MFI STATISTIKA 2 Seminarska naloga

Size: px
Start display at page:

Download "Univerza na Primorskem FAMNIT, MFI STATISTIKA 2 Seminarska naloga"

Transcription

1 Univerza na Primorskem FAMNIT, MFI STATISTIKA 2 Seminarska naloga Naloge so edini način preverjanja znanja pri predmetu Statistika. Vsaka naloga je vredna 10 točk, natančna pravila ocenjevanja pa so navedena na spletni strani predmeta.

2 1. Naj bodo ξ 1, ξ 2,..., ξ n neodvisne z ξ k exp1) za k = 1, 2,..., n. Označite ξ = ξ ξ n. Za 1 k n definirajte η k = Za fiksen 1 k n 1 naj bo ξ k ξ ξ n. η i = ξ i ξ k + ξ k ξ n za i = k, k + 1,..., n. a. Izračunajte gostoto vektorja η 1, η 2,..., η n 1, ξ). b. Pokažite, da sta slučajna vektorja η 1,..., η k 1 ) in η k,..., η n ) neodvisna. 2. Slučajne spremenljivke X, Y in Z naj imajo gosototo 1 πγ n 1 ) Γ n xy z2 ) n e x/2 e y/2 2 2 )2n za x > 0, y > 0 in xy z 2 > 0. a. Pokažite, da sta slučajni spremenljivki X in Y neodvisni. Kakšni sta porazdelitvi X in Y? b. Definirajte slučajne spremenljivke U, V in W s predpisom ) ) 1 U W X Z =. W V Z Y Ali sta slučajni spremenljivki U in V neodvisni? Kot znano privzemite, da je Jacobijeva determinanta preslikave x, y, z) Φ 1 y, x, z) xy z2 enaka xy z 2 ) 3. Preverite to slednje. 2

3 3. Suppose Z is a random vector whose components are independent standard normal random variables and let A be a rectangular matrix such that AA T is invertible. Prove that the density of X = AZ + µ is still given by the formula 1 f X x) = exp 2π) detaa 1 ) n/2 T 2 x µ)t AA T ) 1 x µ). ) 4. Suppose X is a multivariate normal vector with expectation µ and variance Σ. Write ) ) X1 Σ11 Σ X = and Σ = 12. X 2 Σ 21 Σ 22 Assume Σ is invertible. Compute the conditional density of X 2 given X 1 = x 1 by using the usual formula Hint: Use the inversion lemma Σ 1 = f X2 X 1 =x 1 x 2 ) = f Xx) f X1 x 1 ). Σ 11 Σ 12 Σ 1 22 Σ 21 ) 1 Σ 11 Σ 12 Σ 1 22 Σ 21 ) 1 Σ 12 Σ 1 22 Σ 1 22 Σ 21 Σ 11 Σ 12 Σ 1 22 Σ 21 ) 1 Σ 22 Σ 21 Σ 1 11 Σ 12 ) 1 Compare this proof to the slicker one using independence of linear transformations of multivariate normal vectors. Comment. 5. Let X be a n p data matrix from N p µ, Σ). This means that the rows of X are independent p-dimensional vectors with the above distribution. Let a, b be fixed p dimensional vectors and c a fixed n-dimensional vector. Find the conditional distribution of Y 2 = Xb given Y 1 = c T Xa. Hint: You can either do it the hard way computing all the covariances, or show that ) I cct Xa c T c is independent of Y 1. ) 3

4 6. Suppose X 1, X 2,..., X n are i.i.d. observations from a multivariate normal distribution Nµ, Σ) where Σ is known. Further assume that R is a given matrix and r a given vector. For a given vector r use the likelihood ratio procedure to produce a test statistic for H 0 : Rµ = r vs. H 1 : Rµ r. Find the exact distribution of the likelihood ratio test statistic under H Vrstice v matriki X naj bodo med sabo neodvisni večrazsežni normalni vektorji z matematičnim upanjem 0 in varianco Σ. Predpostavite, da je vektor ɛ neodvisen od X z Eɛ) = 0 in varɛ) = σ 2 I. Predpostavite, da je Y = Xβ + ɛ. a. Pokažite, da sta običajni cenilki ˆβ in ˆσ 2 iz linearne regresije še vedno nepristranski. b. Privzemite, da je ɛ večrazsežen normalen. Izračunajte var ˆβ i ). Namig: Oglejte si Theorem v K. V. Mardia, J. T. Kent and J. M. Bibby, Multivariate Analysis, Academic Press, c. Privzemite, da je ɛ večrazsežen normalen. Kakšna je porazdelitev cenilke ˆσ 2? 8. Naj bosta θ i ) i 1 in ξ i ) i 1 zaporedji slučajnih vektorjev dimenzij k in l, ki zadoščajo enačbam θ n+1 = a 1,n + A 1,n θ n + B 1,n η 1,n+1 + C 1,n η 2,n+1 ξ n+1 = a 2,n + A 2,n θ n + B 2,n η 1,n+1 + C 2,n η 2,n+1, kjer so a 1,n, a 2,n vektorji dimenzij k in l, A 1,n, A 2,n matrike domenzij k k in l k, B 1,n, B 2,n matrike dimenzij k k and l k, C 1,n in C 2,n matrike dimenzij k l and l l, ter η 1,n and η 2,n i.i.d. zaporedji z porazdelitvama N0, I k ) in N0, I l ), ki sta neodvisni. Privzemite, da je θ 0, ξ 0 ) večrazsežen normalen vektor neodvisen od zaporedij η i,j ) j 1, i = 1, 2,..., tako da je ) ) )) θ0 µ0 Σ11 Σ N, 12. ξ 0 ν 0 Σ 21 Σ 22 4

5 a. Pokažite, da je pogojna porazdelitev θ n in θ n, ξ n+1 ) T in θ n+1, ξ n+1 ) T glede na ξ 1, ξ 2,..., ξ n ) večrazsežna normalna. Porazdelitve ni potrebno eksplicitno opisati. b. Označite µ n = Eθ n ξ 1, ξ 2,..., ξ n ) in γ n = var{θ n ξ 1, ξ 2,..., ξ n }. Vemo, da je µ n najboljša napoved θ n na podlagi ξ 1, ξ 2,..., ξ n. Pokažite, da veljajo naslednje rekurzijske formule, pri čemer vedno privzemite, da lahko vedno obrnete matrike, ki jih je potrebno obrniti. µ n+1 = [a 1,n + A 1,n µ n ] + [B 1,n B T 2,n + C 1,n C T 2,n + A 1,n γ n A T 2,n] [B 2,n B T 2,n + C 2,n C T 2,n + A 2,n γ n A T 2,n] 1 [ξ n+1 a 2,n A 2,n µ n ] γ n+1 = [A 1,n γ n A T 1,n + B 1,n B T 1,n + C 1,n C T 1,n] [B 1,n B T 2,n + C 1,n C T 2,n + A 1,n γ n A T 2,n][B 2,n B T 2,n + C 2,n C T 2,n + A 2,n γ n A T 2,n] 1 [B 1,n B T 2,n + C 1,n C T 2,n + A 1,n γ n A T 2,n] T. Opomba: Te rekurzijske formule so znane kot Kalman-Bucyjev filter. Namigi: i) Če je Z = X, Y)T slučajni vektor, tak da je pogojna porazdelitev Z glede na W večrazsežna normalna s parametri ) )) µ0 Σ11 Σ N, 12. ν 0 Σ 21 Σ 22 Pokažite, da je pogojna porazdelitev Y glede na X, W večrazsežna normalna s parametroma EY X, W) = EY W) + Σ 21 Σ 1 11 X EX W)) var{y X, W} = Σ 22 Σ 21 Σ 1 11 Σ 12. 5

6 ii) Naj bo Eθ n+1 ξ 1, ξ 2,..., ξ n+1 ) = Eθ n+1 ξ 1, ξ 2,..., ξ n ), ξ n+1 ) Uporabite i). c. Zakaj mislite, je uporabljena beseda filter? d. Kako bi simulirali večrazsežne normalne vektorje z danimi parametri? e. Predpostavite, da so vse matrike neodvisne od n. Simulirajte ustrezna zaporedja in ocene µ n za majhne dimenzije, recimo 2. Prikažite razultate z ustreznimi grafi. 9. Pogosto srečamo v statistiki problem manjkajočih opazovanih vrednosti. Obstaja mnogo metod, kako korektno oceniti parametre. Ogledali si bomo poseben primer EM expectation maximization) algoritma, ki je eden od pristopov. a. Prepostavite, da so vaše opazovane vrednosti neodvisni p-razsežni normalni vektorji X 1, X 2,..., X n s parametri µ in Σ. Ocenite parametra po metodi največjega verjetja, če ni manjkajočih podatkov. b. Predpostavite, da nekatere komponente opazovanih vektorjev manjkajo. Prepostavite, da so podatki manjkajo naključno in neodvisno od X 1,..., X n, vendar tako, da nikoli ne manjkajo vse komponente. Označimo z x 1, x 2,..., x n opazovane vrednosti z manjkajočimi podatki). EM algoritem ima dva koraka: i) E-korak: Naj bo l c µ, Σ x 1, x 2,..., x n ) logaritemska funkcija verjetja, če imamo vse podatke. Indeks c pomeni complete. Te funkcije ne moremo izračunati, če kakšen podatek manjka. Kaj storiti? Označimo z y 1, y 2,..., y n dejansko opazovane škrbaste vektorje. Izberimo začeten približek za parametra µ in Σ, recimo µ 0 in Σ 0. Izračunajmo pogojno matematično upanje Qµ, Σ, µ 0, Σ 0 ) = E l c µ, Σ X 1, X 2,..., X n ) ) y 1,..., y n. Pri tem privzemamo, da so X 1, X 2,..., X n porazdeljeni večrazsežno normalno s parametroma µ 0 in Σ 0. 6

7 ii) M-korak: Naslednja približka µ 1 in Σ 1 za neznana parametra dobimo tako, da maksimiziramo funkcijo Qµ, Σ, µ 0, Σ 0 ) po µ in Σ. Koraka E in M potem ponavljamo. Ponovimo E-korak z novimi približki za parameter in pridelamo nove približke z M-korakom. V mnogo primerih glej Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977). Maximum likelihood from incomplete data via the EM algorithm with discussion), Journal of the Royal Statistical Society B, 39, 1-38) zaporedni približki konvergirajo proti neki limiti, ki je potem naša ocena za parametre. Na kratko komentirajte, kaj mislite o tem postopku? Se vam zdi smiseln? Zakaj? c. Opišite, s čim se nadomestijo manjkajoče vrednosti v primeru večrazsežne normalne porazdelitve. Utemeljite vaše izjave. Lahko se omejite na primer p = 2. Kako smiseln se vam zdi zdaj EM algoritem? Na kratko komentirajte. d. Naj bo p = 2. Generirajte vzorec velikosti n = 400. Za vsak k = 1, 2,..., n naj manjka ena od komponent z verjetnostjo 1/10 in sicer manjkajoči podatek izberite naključno z verjetnostjo 1/2. Sprogramirajte EM algoritem in ugotovite ali zaporedni približki res konvergirajo. Primerjajte limitne ocene s tistimi, ki bi jih dobili z metodo največjega verjetja samo na podlagi podatkov, kjer ne manjka nobena komponenta. Komentar? Literatura: Geoffrey J. McLachlan, Thriyambakam Krishnan, The EM Algorithm and Extensions, Wiley Series in Probability and Statistics, Suppose a linear model Y = Xβ + ɛ where ɛ N0, σ 2 I). Write X = [X 1 ; X 2 ] where X 1 are the first p 1 columns of X and X 2 are the last p 2 columns. Similarly split β T = β T 1 ; β T 2 ). a. If X 1X 2 = 0 show that the two subcomponents ˆβ 1 and ˆβ 2 of the BLUE ˆβ are independent. 7

8 b. Find the distribution of U = Y X 1 ˆβ1 ) T Y X 1 ˆβ1 ). 11. Suppose Y = Xβ+ɛ where ɛ N0, σ 2 I). Show that for the internally studentised residuals r i defined as r i = ˆɛ i ˆσ 1 h ii. the expression r 2 i /n p) has the Beta1/2, n p 1)/2) distribution where p = rankx). Hints: i) Recall that the Betap, q) distribution is defined as the distribution of U/U + V ) where U and V are independent, and U Gammap, λ), V Gammaq, λ). ii) Let e i be the n-dimensional vector whose only nonzero component is a 1 in the i th position, and note that ˆɛ i = e T i I H)Y. iii) Define P = I H and P 1 = Pe i e T i P/1 h ii ), and U = Y P 1 Y, V = Y P P 1 )Y. Show that U and V are independent and have Gamma distributions. iv) Show that r 2 i /n p) = U/U + V ) to conclude the proof. 12. Suppose Y = Xβ + ɛ with Eɛ) = 0 and varɛ) = σ 2 I. Assume X is of full rank. To test the hypothesis H 0 : β i = 0 vs. H 1 : β i 0 one has two possibilities: i) Use the t = ˆβ i /ˆσ c ii where c ii is the i-th diagonal element of X T X) 1 and reject H 0 if t t n p 1 α/2) for a given α 0, 1). ii) Test H 0 : Xβ ω vs. H 1 : Xβ RangeX)\ω 8

9 where ω is the subspace spanned by columns of X other than the i-th one and then use the quadratic forms approach based on Cochran s theorem, and reject H 0 if the appropriate F F 1,n p 1 α) for a given α 0, 1). Prove that for a given α the two tests are the same: more precisely, you will need to show that Q 1 Q 0 = ˆβ 2 i /c ii. Hints: i) Prove that the estimate of β i does not change if you replace the i-th column in X by its orthogonal projection onto the orthogonal complement of the space spanned by the other columns while the estimates of other β s will in general change). ii) Express the quadratic forms Q 0 and Q 1 in terms of these new estimates using orthogonality. 13. Assume that the data x 1, x 2,..., x n are an i.i.d. sample from the multivariate normal distribution of the form ) )) µ 1) Σ11 Σ X 1 N µ 2), 12. Σ 21 Σ 22 Assume that the parameters µ and Σ are unknown. Assume the following theorem: If Ap p) is a given symmetric positive definite matrix then the positive definite matrix Σ that maximizes the expression 1 exp 12 detσ) Tr Σ 1 A )) n/2 is the matrix Σ = 1 n A. The testing problem is H 0 : Σ 12 = 0 versus H 1 : Σ a. Find the maximum likelihood estimates of µ and Σ in the unconstrained case. b. Find the maximum likelihood estimates of µ and Σ in the constrained case. 9

10 c. Write the likelihood ratio statistic for the testing problem as explicitly as possible. d. What can you say about the distribution of the likelihood ratio statistic if H 0 is true. e. Simulate by computer the distribution of the test statistics under H 0 in case when the vectors are 2-dimensional. Comment. 14. Raschev model za analizo binarnih podatkov specificira, da velja P X ij = x ij, 1 i m, 1 j n) = i,j e α i δ j )x ij 1 + e α i δ j ) za parametre α = α 1,..., α m ) in δ = δ 1,..., δ n ). a. Na predavanjih smo našli nabor zadostnih statistik. Pokažite, da so te statistike zadostne brez uporabe faktorizacijskega izreka. b. V porazdelitvi spremenjivk X ij se nič ne spremeni, če vsakemu parametru prištejemo isto konstanto. Rečemo, da sta paramtera α in δ nedoločljiva. Ali lahko govorimo o zadostnih statistikah tudi v tem primeru? Utemeljite! c. Naj bo za vse 1 j n x j = m x ij. i=1 Pokažite, da je pogojna porazdelitev {X ij : 1 i m, 1 j n} glede na X 1,..., X n ) neodvisna od parametra δ. d. Ali lahko uporabite ugotovitev v točki c., da ocenite parameter α? Pomislite na metodo največjega verjetja. Ker so parametri nedoločljivi, lahko umetno dodate zahtevo, da je α 1 + +α m = 0. e. Napišite program, ki bo na podatkih v rasch-data.txt ocenil parameter α. 15. Abstraktno lahko formuliramo, da je vektorska) statistika T X) zadostna, če za vsak θ Ω in za vsako omejeno Borelovo funkcijo φ velja E θ φx) T X) ) = Φφ T X) ) 10

11 za neko funkcijo Φ φ, ki ni odvisna od paramtera θ. Predpostavite, da ima X gostoto fx, θ) in da velja fx, θ) = gt x), θ) hx) za neki ustrezni funkciji g in h. Pokazati želimo, da je ta pogoj zadosten za to, da je statistika T X) zadostna. a. Privzemite najprej, da je h gostota neke porazdelitve. Naj bo Y slučajna spremenljivka s to gostoto. Utemeljite, da velja za neko Borelovo funkcijo Φ φ. E φy ) T Y ) ) = Φ φ T Y )) b. Utemeljite, da je za zadostnost dovolj, če pokažemo, da je za vsako omejeno Borelovo funkcijo ψ in za vsak θ Ω c. Utemeljite, da je E θ φx)ψt X)) )) = Eθ Φφ T X))ψT X) ). E θ Φφ T X))ψT X)) = E Φ φ T Y )) ψt Y )) gt Y ), θ) ). Namig: Napišite prvo upanje kot integral in upoštevajte, da je h gostota spremenljivke Y. d. Utemeljite, da je E Φ φ T Y )) ψt Y )) gt Y ), θ) ) = E φy ) ψt Y )) gt Y ), θ) ). e. Pokažite, da je E φy ) ψt Y )) gt Y ), θ) ) = E θ φx) ψt X)) ) in sklepajte, da je T X) zadostna statistika. f. Prevedite primer, ko h ni gostota na primer, ko h je gostota. 16. Eksponentne družine porazdelitev opisujejo gostote glede na neko referenčno mero ν v našem primeru ali Lebesgueovo mero ali mero, ki šteje) r ) fx, θ) = cθ)hx) exp c i θ)t i x). 11 i=1

12 a. Pokažite, da je T X) = T 1 X),..., T r X)) zadostna statistika. b. Privzemite, da je r = 1 in naj bo c 1 θ) = θ za enodimenzionalni parameter θ a, b). Kot znano privzemite, da obstaja od θ neodvisna σ-končna mera ν T na R, da velja P θ T X) A) = cθ)e θt dν T t). Kot znano tudi privzemite, da je funkcija z gt)e zt dν T t) holomorfna na traku Rez) a, b) za vsako funkcijo g, za katero je gt) e zt dν T t) < za vsak θ a, b). Če je za tako funkcijo E θ gt X)) = 0 za vse θ a, b), lahko enakost prepišemo v gt)e zt dν T t) = 0, A iz česar sledi gx) + e zt dν T t) = gx) e zt dν T t). Za fiksen θ 0 a, b) definirajte verjetnostni meri P in Q s predpisom P A) = 1 g + x) e θ0t dν T t) in QA) = 1 g x) e θ0t dν T t) a a kjer je a ustrezna končna konstanta, ki obstaja po predpostavki. Na podlagi holomorfnosti in s pomočjo izreka o edinosti za karakteristične funkcije sklepajte, da sta meri P in Q enaki. c. Na podlagi b. sklepajte, da je g + = g skoraj gotovo glede na ν T, torej je gt X)) = 0 skoraj gotovo glede na ν. e. Posplošite izrek z indukcijo na primer, ko je r > 1 in velja a i < θ i < b i. 12

13 f. Posplošite izrek na primer, ko so funkcije c 1,..., c r splošne, vendar take, da ima zaloga vrednosti funkcije c = c 1,..., c r ), ki slika Ω v R r, neprazno notranjost. g. Preverite, da ta izrek da kompletnost statistik za izbran nabor standardnih porazdelitev Poisson, normalna, gama) Suppose {px, θ), θ Θ R k } is a regular) family of distributions. Define the vector valued score function s as the column vector with components sx, θ) = θ logpx, θ)) = gradlogpx, θ)). and the Fisher information matrix as Iθ) = vars). Remark: If px, θ) = 0 define log px, θ)) = 0. a. Let tx) be an unbiased estimator of θ based on the likelihood function, i.e. E θ tx)) = θ. Prove that Deduce that covs, t) = I. Es) = 0 and Est T ) = I. Remark: Make liberal assumptions about interchanging integration and differentiation. b. Let a, c be two arbitrary k-dimensional vectors. Prove that corr 2 a T t, c T s ) = a T c) 2 a T vart)a c T Iθ)c. The correlation coefficient squared is always less or equal 1. Maximize the expression for the correlation coefficient over c and deduce the Rao-Cramèr inequality. 1 Povzeto po: Mark J. Shervish, Theory of Statistics, Springer, 1996, str

14 18. Naj bodo X 1, X 2,..., X n neodvisni večrazsežni normalni vektorji za enako porazdelitvijo Nµ, I). Poiščite najboljšo nepristransko cenilko za izraz µ T µ + 1 T µ, kjer je 1 T = 1, 1,..., 1). Utemeljite vsak korak. 19. Assume the data pairs y 1, z 1 ),..., y n, z n ) are an i.i.d. sample from the distribution with density for y > 0 and σ > 0. fy, z, θ, σ) = e y 1 e z θy) 2yσ 2 2πyσ a. Find the maximum likelihood estimators of θ and σ 2. Are the estimators unbiased? b. Find the exact standard errors of ˆθ and ˆσ 2. c. Compute the Fisher information matrix. d. Find the standard errors of the maximum likelihood estimators using the Fisher information matrix. Comment on your findings. e. Can you find a sufficient statistic for the parameter θ, σ). Can you use them to improve your unbiased estimators? Can you prove that the two unbiased estimators have the least variance among all unbiased estimators? Compare the variance to the Rao-Cramèr bound. 2 14

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Take-home final examination February 1 st -February 8 th, 019 Instructions You do not need to edit the solutions Just make sure the handwriting is legible The final solutions should

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

ECE 275B Homework # 1 Solutions Winter 2018

ECE 275B Homework # 1 Solutions Winter 2018 ECE 275B Homework # 1 Solutions Winter 2018 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2 < < x n Thus,

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

ECE 275B Homework # 1 Solutions Version Winter 2015

ECE 275B Homework # 1 Solutions Version Winter 2015 ECE 275B Homework # 1 Solutions Version Winter 2015 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2

More information

DA Freedman Notes on the MLE Fall 2003

DA Freedman Notes on the MLE Fall 2003 DA Freedman Notes on the MLE Fall 2003 The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can be found in the references cited below. Calculus. Let f be a smooth, scalar

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

Solutions. Name and surname: Instructions

Solutions. Name and surname: Instructions Uiversity of Ljubljaa, Faculty of Ecoomics Quatitative fiace ad actuarial sciece Probability ad statistics Writte examiatio September 4 th, 217 Name ad surame: Istructios Read the problems carefull before

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TEHNOLOGIJE. Ekstremne porazdelitve za odvisne spremenljivke

UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TEHNOLOGIJE. Ekstremne porazdelitve za odvisne spremenljivke UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TEHNOLOGIJE Zaključna naloga Ekstremne porazdelitve za odvisne spremenljivke (Extremal Distributions for Dependent Variables)

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices Lecture 3: Simple Linear Regression in Matrix Format To move beyond simple regression we need to use matrix algebra We ll start by re-expressing simple linear regression in matrix form Linear algebra is

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Final Examination Statistics 200C. T. Ferguson June 11, 2009

Final Examination Statistics 200C. T. Ferguson June 11, 2009 Final Examination Statistics 00C T. Ferguson June, 009. (a) Define: X n converges in probability to X. (b) Define: X m converges in quadratic mean to X. (c) Show that if X n converges in quadratic mean

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

2018 2019 1 9 sei@mistiu-tokyoacjp http://wwwstattu-tokyoacjp/~sei/lec-jhtml 11 552 3 0 1 2 3 4 5 6 7 13 14 33 4 1 4 4 2 1 1 2 2 1 1 12 13 R?boxplot boxplotstats which does the computation?boxplotstats

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data

Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data Applied Mathematical Sciences, Vol 3, 009, no 54, 695-70 Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data Evelina Veleva Rousse University A Kanchev Department of Numerical

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

STA 2101/442 Assignment 3 1

STA 2101/442 Assignment 3 1 STA 2101/442 Assignment 3 1 These questions are practice for the midterm and final exam, and are not to be handed in. 1. Suppose X 1,..., X n are a random sample from a distribution with mean µ and variance

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

MLES & Multivariate Normal Theory

MLES & Multivariate Normal Theory Merlise Clyde September 6, 2016 Outline Expectations of Quadratic Forms Distribution Linear Transformations Distribution of estimates under normality Properties of MLE s Recap Ŷ = ˆµ is an unbiased estimate

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Statistics Ph.D. Qualifying Exam: Part II November 3, 2001

Statistics Ph.D. Qualifying Exam: Part II November 3, 2001 Statistics Ph.D. Qualifying Exam: Part II November 3, 2001 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your

More information

EM Algorithm II. September 11, 2018

EM Algorithm II. September 11, 2018 EM Algorithm II September 11, 2018 Review EM 1/27 (Y obs, Y mis ) f (y obs, y mis θ), we observe Y obs but not Y mis Complete-data log likelihood: l C (θ Y obs, Y mis ) = log { f (Y obs, Y mis θ) Observed-data

More information

Principles of Statistics

Principles of Statistics Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 81 Paper 4, Section II 28K Let g : R R be an unknown function, twice continuously differentiable with g (x) M for

More information

Gaussian Models (9/9/13)

Gaussian Models (9/9/13) STA561: Probabilistic machine learning Gaussian Models (9/9/13) Lecturer: Barbara Engelhardt Scribes: Xi He, Jiangwei Pan, Ali Razeen, Animesh Srivastava 1 Multivariate Normal Distribution The multivariate

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini April 27, 2018 1 / 1 Table of Contents 2 / 1 Linear Algebra Review Read 3.1 and 3.2 from text. 1. Fundamental subspace (rank-nullity, etc.) Im(X ) = ker(x T ) R

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

MEI Exam Review. June 7, 2002

MEI Exam Review. June 7, 2002 MEI Exam Review June 7, 2002 1 Final Exam Revision Notes 1.1 Random Rules and Formulas Linear transformations of random variables. f y (Y ) = f x (X) dx. dg Inverse Proof. (AB)(AB) 1 = I. (B 1 A 1 )(AB)(AB)

More information

Canonical Correlation Analysis of Longitudinal Data

Canonical Correlation Analysis of Longitudinal Data Biometrics Section JSM 2008 Canonical Correlation Analysis of Longitudinal Data Jayesh Srivastava Dayanand N Naik Abstract Studying the relationship between two sets of variables is an important multivariate

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

Lecture 1: Introduction

Lecture 1: Introduction Principles of Statistics Part II - Michaelmas 208 Lecturer: Quentin Berthet Lecture : Introduction This course is concerned with presenting some of the mathematical principles of statistical theory. One

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

BIOS 2083 Linear Models c Abdus S. Wahed

BIOS 2083 Linear Models c Abdus S. Wahed Chapter 5 206 Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions H. V. Poor Princeton University March 17, 5 Exercise 1: Let {h k,l } denote the impulse response of a

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

1 Complete Statistics

1 Complete Statistics Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X P θ, θ Θ. Let (X (1),..., X (n) ) denote the order statistics. Definition 1. A statistic T = T (X) is complete if E θ g(t

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Master s Written Examination - Solution

Master s Written Examination - Solution Master s Written Examination - Solution Spring 204 Problem Stat 40 Suppose X and X 2 have the joint pdf f X,X 2 (x, x 2 ) = 2e (x +x 2 ), 0 < x < x 2

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016 Linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark October 5, 2016 1 / 16 Outline for today linear models least squares estimation orthogonal projections estimation

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Last lecture 1/35. General optimization problems Newton Raphson Fisher scoring Quasi Newton

Last lecture 1/35. General optimization problems Newton Raphson Fisher scoring Quasi Newton EM Algorithm Last lecture 1/35 General optimization problems Newton Raphson Fisher scoring Quasi Newton Nonlinear regression models Gauss-Newton Generalized linear models Iteratively reweighted least squares

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Hypothesis Testing Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA An Example Mardia et al. (979, p. ) reprint data from Frets (9) giving the length and breadth (in

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Large Sample Properties of Estimators in the Classical Linear Regression Model

Large Sample Properties of Estimators in the Classical Linear Regression Model Large Sample Properties of Estimators in the Classical Linear Regression Model 7 October 004 A. Statement of the classical linear regression model The classical linear regression model can be written in

More information

Stochastic Design Criteria in Linear Models

Stochastic Design Criteria in Linear Models AUSTRIAN JOURNAL OF STATISTICS Volume 34 (2005), Number 2, 211 223 Stochastic Design Criteria in Linear Models Alexander Zaigraev N. Copernicus University, Toruń, Poland Abstract: Within the framework

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Chapter 4 Euclid Space

Chapter 4 Euclid Space Chapter 4 Euclid Space Inner Product Spaces Definition.. Let V be a real vector space over IR. A real inner product on V is a real valued function on V V, denoted by (, ), which satisfies () (x, y) = (y,

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part : Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

10. Linear Models and Maximum Likelihood Estimation

10. Linear Models and Maximum Likelihood Estimation 10. Linear Models and Maximum Likelihood Estimation ECE 830, Spring 2017 Rebecca Willett 1 / 34 Primary Goal General problem statement: We observe y i iid pθ, θ Θ and the goal is to determine the θ that

More information

WLS and BLUE (prelude to BLUP) Prediction

WLS and BLUE (prelude to BLUP) Prediction WLS and BLUE (prelude to BLUP) Prediction Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 21, 2018 Suppose that Y has mean X β and known covariance matrix V (but Y need

More information

ECE 275A Homework 6 Solutions

ECE 275A Homework 6 Solutions ECE 275A Homework 6 Solutions. The notation used in the solutions for the concentration (hyper) ellipsoid problems is defined in the lecture supplement on concentration ellipsoids. Note that θ T Σ θ =

More information

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean.

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean. Economics 573 Problem Set 5 Fall 00 Due: 4 October 00 1. In random sampling from any population with E(X) = and Var(X) =, show (using Chebyshev's inequality) that sample mean converges in probability to..

More information

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1 Adaptive Filtering and Change Detection Bo Wahlberg (KTH and Fredrik Gustafsson (LiTH Course Organization Lectures and compendium: Theory, Algorithms, Applications, Evaluation Toolbox and manual: Algorithms,

More information