CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0.

Size: px
Start display at page:

Download "CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0."

Transcription

1 CHAPTER 4. INTEGRATION 68 Previously, we chose an antierivative which is correct for the given integran /. However, recall 6 if 0. That is F 0 () f() oesn t hol for apple apple. We have to be sure the function is well efine over the entire interval over which we integrate. Eample 4.8. Consier the function f(). Then the integral over the interval [, ] is apple Figure 4.8: Integrating to fin the shae area uner the curve y on the interval [, ]. Have two shae regions boune by the curve an the -ais. In this case, the area cancels out. The shae area is actually given by apple apple Inefinite integrals So far we know f() F ()+C, F 0 () f(). What function F can we i erentiate to get f? Powers of : n n + n+ + C, (n 6 ),

2 CHAPTER 4. INTEGRATION 69 since n+ n. n + For n, ln + C, since for >0 an for <0, (ln ), (ln ) (ln( )). Special rule: Let us consier the erivative of the logarithm of some general function f(), i.e. This implies that [ln(f())] f() [f()] f 0 () f(). f 0 () ln(f()) + C, f() where C is some arbitrary constant of integration. Hence, if we can calculate integrals by inspection if the integran takes the form f 0 ()/f() by the above formula. Eample 4.9. Consier the the following integral: +5 I Now, if we choose f() +5 +, then f 0 () + 5. So, if we i erentiate ln(f()), in this case we have ln( +5 + ) , by the chain rule. Thus, we know the integral must be I ln( +5 + ) + C, where C is some arbitrary constant of integration. Eample 4.0. Consier the following integral: I +. Now, if we choose f() + then f 0 (). However, the numerator of the integran is. Not to worry, as we can simply re-write or manipulate the initial integral as follows: I Since / is a constant, which we are able to take out of the integral sign, we nee not worry about this an can procee with the integration using what we have learnt above, giving I ln( + ) + C.

3 CHAPTER 4. INTEGRATION 70 To check, we i erentiate the above epression, so which is correct! I apple ln( + ) + C +, This special case is an eample of a metho calle substitution, an is not limite to integrals which give you logarithms. Nevertheless, it is a goo sighter for what s to follow. Together with inspection, it can be etene for other function by choosing suitable substitutions (i.e. f()). Trigonometric functions: cos sin + C, sin cos + C, since ( since (sin ) cos, cos ) sin. Eponential function: e e + C, since (e )e. As with i erentiation, we also have a sum rule for integration, that is (f()+g()) (f) + g(). (4.4) In other wors, the antierivative of a sum is the sum of the antierivatives. Also, Kf() K f(), (4.5) where K is a constant, i.e. a constant can be taken outsie of the integration sign. Eample 4.. ( ) C. NOTE: Do not forget the constant C when the integral is inefinite! Eample 4.. ( )( 4 + ) C.

4 CHAPTER 4. INTEGRATION 7 Eample C. 4.. Substitution We can use substitution to convert a complicate integral into a simple one. Eample 4.4. Consier the inefinite integral with integran ( + ) 00. We make the substitution u + ) u i.e. u. So we calculate the integral as follows: ( + ) 00 u 00 u u 00 u 0 ( + )0 + C. We can check the result by performing the following i erentiation: apple 0 ( + )0 + C 0 0 ( + )00 ( + ) 00, Eample 4.5. Suppose we have the integran ( + ) 50. Let us try the substitution So we have u +, so u ) u i.e. u. ( + ) 50 (u )u 50 u u 5 u u 50 u 5 u5 5 u5 + C 5 ( + )5 5 ( + )5 + C apple 5 ( + )5 5 ( + )5 + C ( + ) 5 ( + ) 50 ( + ) 50,

5 CHAPTER 4. INTEGRATION 7 Eample 4.6. Consier the integran /( ln ). Let us try u ln ) u i.e. u. Thus, we calculate the integral as ln u u u u ln u + C ln ln + C. (ln ln ) ln, Eample 4.7. Consier the integran /( + p ). Let us try the substitution Di erentiating we have u + p ) p u. u ) u (u )u. Therefore, we calculate the integral as + p u (u ) u u u u u u u ln u + C ( + p ) ln + p + C. ( + p ) ln + p + C p p ( + p ) +p p ( + p ) Eample 4.8. Consier the integran sin( + ). Let us try the substitution So integrate as follows: u + ) u i.e. u. sin + sin uu cos u + C cos( + ) + C. apple cos( + ) + C + sin( + ) sin( + ). + p.

6 CHAPTER 4. INTEGRATION 7 Eample 4.9. Consier the integran sin /. Let us try the substitution u So we calculate the integral as follows: ) u i.e. u. sin sin u ( ) u sin uu cos u + C cos + C. apple cos + C sin sin, How o we fin a suitable substitution? Usually by observation an using our knowlege of i erentiation. Or we put If we have then we can write u f(), For instance, in the case then we know that (ln ) So we write the integral as ln Therefore we know u ln will work! u f 0 () ) u f 0 (). [f()] f 0 (), [f()] f 0 (). ln, i.e. (ln ). (ln ) ln (ln ). ln Similarly we know, i.e. so the integral from eample 4.9 can be written as sin sin, ) u.

7 CHAPTER 4. INTEGRATION 74 Also, from eample 4.4, we have ( + ) 00 since ( + ) ( + ) 00 ( + ), ) ( + ) ) let u +, which is the same as what we trie earlier. En Lecture 7.

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Definition (Inefinite

More information

Connecting Algebra to Calculus Indefinite Integrals

Connecting Algebra to Calculus Indefinite Integrals Connecting Algebra to Calculus Inefinite Integrals Objective: Fin Antierivatives an use basic integral formulas to fin Inefinite Integrals an make connections to Algebra an Algebra. Stanars: Algebra.0,

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Integration: Using the chain rule in reverse

Integration: Using the chain rule in reverse Mathematics Learning Centre Integration: Using the chain rule in reverse Mary Barnes c 999 University of Syney Mathematics Learning Centre, University of Syney Using the Chain Rule in Reverse Recall that

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

1 Applications of the Chain Rule

1 Applications of the Chain Rule November 7, 08 MAT86 Week 6 Justin Ko Applications of the Chain Rule We go over several eamples of applications of the chain rule to compute erivatives of more complicate functions. Chain Rule: If z =

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Math 20B. Lecture Examples.

Math 20B. Lecture Examples. Math 20B. Lecture Eamples. (7/8/08) Comple eponential functions A comple number is an epression of the form z = a + ib, where a an b are real numbers an i is the smbol that is introuce to serve as a square

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

C6-1 Differentiation 2

C6-1 Differentiation 2 C6-1 Differentiation 2 the erivatives of sin, cos, a, e an ln Pre-requisites: M5-4 (Raians), C5-7 (General Calculus) Estimate time: 2 hours Summary Lea-In Learn Solve Revise Answers Summary The erivative

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Additional Exercises for Chapter 10

Additional Exercises for Chapter 10 Aitional Eercises for Chapter 0 About the Eponential an Logarithm Functions 6. Compute the area uner the graphs of i. f() =e over the interval [ 3, ]. ii. f() =e over the interval [, 4]. iii. f() = over

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

3.7 Indeterminate Forms - l Hôpital s Rule

3.7 Indeterminate Forms - l Hôpital s Rule 3.7. INDETERMINATE FORMS - L HÔPITAL S RULE 4 3.7 Indeterminate Forms - l Hôpital s Rule 3.7. Introduction An indeterminate form is a form for which the answer is not predictable. From the chapter on lits,

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4 CHAPTER SEVEN 7. SOLUTIONS 6 Solutions for Section 7.. 5.. 4. 5 t t + t 5 5. 5. 6. t 8 8 + t4 4. 7. 6( 4 4 ) + 4 = 4 + 4. 5q 8.. 9. We break the antierivative into two terms. Since y is an antierivative

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Logarithmic, Exponential and Other Transcendental Functions

Logarithmic, Exponential and Other Transcendental Functions Logarithmic, Eponential an Other Transcenental Fnctions 5: The Natral Logarithmic Fnction: Differentiation The Definition First, yo mst know the real efinition of the natral logarithm: ln= t (where > 0)

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

WJEC Core 2 Integration. Section 1: Introduction to integration

WJEC Core 2 Integration. Section 1: Introduction to integration WJEC Core Integration Section : Introuction to integration Notes an Eamples These notes contain subsections on: Reversing ifferentiation The rule for integrating n Fining the arbitrary constant Reversing

More information

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique MS2: IT Mathematics Integration Two Techniques of Integration John Carroll School of Mathematical Sciences Dublin City University Integration by Substitution: The Technique Integration by Substitution:

More information

1 The Derivative of ln(x)

1 The Derivative of ln(x) Monay, December 3, 2007 The Derivative of ln() 1 The Derivative of ln() The first term or semester of most calculus courses will inclue the it efinition of the erivative an will work out, long han, a number

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

Higher. Further Calculus 149

Higher. Further Calculus 149 hsn.uk.net Higher Mathematics UNIT 3 OUTCOME 2 Further Calculus Contents Further Calculus 49 Differentiating sinx an cosx 49 2 Integrating sinx an cosx 50 3 The Chain Rule 5 4 Special Cases of the Chain

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

Lecture 16: The chain rule

Lecture 16: The chain rule Lecture 6: The chain rule Nathan Pflueger 6 October 03 Introuction Toay we will a one more rule to our toolbo. This rule concerns functions that are epresse as compositions of functions. The iea of a composition

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.eu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.eu/terms. Lecture 8.0 Fall 2006 Unit

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 8 First Orer Linear Differential Equations We now turn our attention to the problem of constructing analytic solutions of ifferential equations; that is to say,solutions that can be epresse in

More information

Table of Contents Derivatives of Logarithms

Table of Contents Derivatives of Logarithms Derivatives of Logarithms- Table of Contents Derivatives of Logarithms Arithmetic Properties of Logarithms Derivatives of Logarithms Example Example 2 Example 3 Example 4 Logarithmic Differentiation Example

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Math 114 Notes. 1 Reference. David Stein. February 29, Trigonometric Identities. 1.2 Logarithmic Identities. sin(u) = 1.

Math 114 Notes. 1 Reference. David Stein. February 29, Trigonometric Identities. 1.2 Logarithmic Identities. sin(u) = 1. Math 4 Notes Davi Stein February 9, 06 eference. Trigonometric Ientities sin(u) = csc(u) cos(u) = sec(u) tan(u) = csc(u) csc(u) = sin(u) sec(u) = cos(u) cot(u) = tan(u) tan(u) = sin(u) cos(u) sin(u) =

More information

MA Midterm Exam 1 Spring 2012

MA Midterm Exam 1 Spring 2012 MA Miterm Eam Spring Hoffman. (7 points) Differentiate g() = sin( ) ln(). Solution: We use the quotient rule: g () = ln() (sin( )) sin( ) (ln()) (ln()) = ln()(cos( ) ( )) sin( )( ()) (ln()) = ln() cos(

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

Transformations of Random Variables

Transformations of Random Variables Transformations of Ranom Variables September, 2009 We begin with a ranom variable an we want to start looking at the ranom variable Y = g() = g where the function g : R R. The inverse image of a set A,

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

MTH 133 Solutions to Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11.

MTH 133 Solutions to Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11. MTH Solutions to Eam February, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the eam, check that you have pages through. Show all

More information

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus Mathca Lecture #5 In-class Worksheet Plotting an Calculus At the en of this lecture, you shoul be able to: graph expressions, functions, an matrices of ata format graphs with titles, legens, log scales,

More information

II. First variation of functionals

II. First variation of functionals II. First variation of functionals The erivative of a function being zero is a necessary conition for the etremum of that function in orinary calculus. Let us now tackle the question of the equivalent

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 6 First Orer Linear Differential Equations A linear first orer orinary ifferential equation is a ifferential equation of the form ( a(xy + b(xy = c(x. Here y represents the unknown function, y

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Breakout Session 13 Solutions

Breakout Session 13 Solutions Problem True or False: If f = 2, then f = 2 False Any time that you have a function of raise to a function of, in orer to compute the erivative you nee to use logarithmic ifferentiation or something equivalent

More information

Math Review for Physical Chemistry

Math Review for Physical Chemistry Chemistry 362 Spring 27 Dr. Jean M. Stanar January 25, 27 Math Review for Physical Chemistry I. Algebra an Trigonometry A. Logarithms an Exponentials General rules for logarithms These rules, except where

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Lecture 3Section 7.3 The Logarithm Function, Part II

Lecture 3Section 7.3 The Logarithm Function, Part II Lectre 3Section 7.3 The Logarithm Fnction, Part II Jiwen He Section 7.2: Highlights 2 Properties of the Log Fnction ln = t t, ln = 0, ln e =. (ln ) = > 0. ln(y) = ln + ln y, ln(/y) = ln ln y. ln ( r) =

More information

Lesson 50 Integration by Parts

Lesson 50 Integration by Parts 5/3/07 Lesson 50 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

Electric Charge and Electrostatic Force

Electric Charge and Electrostatic Force PHY 049 Lecture Notes Chapter : Page 1 of 8 Electric Charge an Electrostatic Force Contemporary vision: all forces of nature can be viewe as interaction between "charges", specific funamental properties

More information

DT7: Implicit Differentiation

DT7: Implicit Differentiation Differentiation Techniques 7: Implicit Differentiation 143 DT7: Implicit Differentiation Moel 1: Solving for y Most of the functions we have seen in this course are like those in Table 1 (an the first

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

Single Variable Calculus Warnings

Single Variable Calculus Warnings Single Variable Calculus Warnings These notes highlight number of common, but serious, first year calculus errors. Warning. The formula g(x) = g(x) is vali only uner the hypothesis g(x). Discussion. In

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Transcendental Functions

Transcendental Functions 78 Chapter 9 Transcenental Functions º½ 9 Transcenental Functions ÁÒÚ Ö ÙÒØ ÓÒ Informally, two functions f an g are inverses if each reverses, or unoes, the other More precisely: DEFINITION 9 Two functions

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

Chapter 6: Integration: partial fractions and improper integrals

Chapter 6: Integration: partial fractions and improper integrals Chapter 6: Integration: partial fractions an improper integrals Course S3, 006 07 April 5, 007 These are just summaries of the lecture notes, an few etails are inclue. Most of what we inclue here is to

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivatives 40. Introuction So far much of the term has been spent fining erivatives or rates of change. But in some circumstances we alreay know the rate of change an we wish to etermine the original

More information

M151B Practice Problems for Exam 1

M151B Practice Problems for Exam 1 M151B Practice Problems for Eam 1 Calculators will not be allowed on the eam. Unjustified answers will not receive credit. 1. Compute each of the following its: 1a. 1b. 1c. 1d. 1e. 1 3 4. 3. sin 7 0. +

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

Antiderivatives and Initial Value Problems

Antiderivatives and Initial Value Problems Antierivatives an Initial Value Problems Warm up If f (x) =2x, whatisf (x)? Can you think of another function that f (x) coul be? If f (x) =3x 2 +, what is f (x)? Can you think of another function that

More information

Theorem (Change of Variables Theorem):

Theorem (Change of Variables Theorem): Avance Higher Notes (Unit ) Prereqisites: Integrating (a + b) n, sin (a + b) an cos (a + b); erivatives of tan, sec, cosec, cot, e an ln ; sm/ifference rles; areas ner an between crves. Maths Applications:

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

3.3 The Chain Rule CHAPTER 3. RULES FOR DERIVATIVES 63

3.3 The Chain Rule CHAPTER 3. RULES FOR DERIVATIVES 63 CHAPTER 3. RULES FOR DERIVATIVES 63 3.3 The Chain Rule Comments. The Chain Rule is the most interesting one we have learne so far, an it is one of the most complicate we will learn. It is one of the rules

More information