Accelerators. Lecture V. Oliver Brüning. school/lecture5

Size: px
Start display at page:

Download "Accelerators. Lecture V. Oliver Brüning. school/lecture5"

Transcription

1 Accelerators Lecture V Oliver Brüning AB/ABP school/lecture5

2 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else?

3 LEP Precision Experiment: LEP: E = 45.6 GeV Z -.3% LEP2: E = 8.5 GeV (m = 9 GeV) Z +/- W -.% (m = 8.5 GeV) W E = GeV? Limits: 2 π R = 27 km P > 2 MW U > 2.8 GeV P > 4 kw ( MW) σ γ

4 Luminosity N b, max : L LEP: LEP2: 2 Np σ x σ n b y TMCI, beam-beam heat loss I = e N f b b rev =.3 -. ma I tot : RF power (P = U I) 8 ma n b= 8-2 bunches / beam σ: σ x σ y synchrotron radiation closed orbit γ quantum excitations coupling vertical dispersion

5 Beam Separation for e - /e+ Lorentz Equation: F = e *E +e* v x B Electrostatic Separation Positive Voltage e - e + Negative Voltage 4 meter Sparking: +/- 5 kvolt

6 Horizontal Orbit: Vertical Orbit: LEP Orbit beam offset in quadrupoles: energy error Lake Geneva moon beam offset in quadrupoles beam separation orbit deflection depends on particle energy vertical dispersion [D(s)] σ = ε β + δ y y 2 y 2 D small vertical beam size relies on good orbit 994: 3 vertical orbit corrections in physics

7 Average Luminosity L n b I e + σ x σ I e - y beam size is determined by synchrotron radiation and optics constant Beam Lifetime: I(t) = I e -t/ τ I t Residual gas pressure -8 P < Torr [atmosphere: P = 75 Torr] Compton scattering

8 Thermal and Synchroton Radiation Photons: Compton Scattering Beam Gas Torr - τ = Beam thermal photons Beam synchrotron photons g τ = tp 2 hours 8 hours τ = 34 hours sp Total τ = tot 4 hours

9 LHC - Hardware 7 TeV p-p Collider: discovery potential (Higgs) LEP Tunnel: π (2 R = 27 km) B = 8.4 T Superconducting Magnets: f(t, B, I) I = 7 A T =.9 K magnet quench! double bore; L = 5 m field quality Cooling: superfluid He 3 ktons coldmass; 9 Tons He p-p and Ion Beams: (Pb; Ca) 4 Experiments (2 + 2)

10 LHC Layout 2 Ring Layout: RF IP4 CMS TOTEM IP5 extraction IP6 collimation machine protection IP3 beam beam2 IP7 IP2 ALICE injection b IP ATLAS IP8 LHCb injection b2 2 in magnet design 4 proton experiments + ion experiment beam cross over in 4 IR s

11 Circular Accelerators uniform B field: R = const. r = m Q γ B v p = Q B L 2π E / c for E >> E realistic synchrotron: B field is not uniform: drift space for installation different types of magnets space for experiments etc E = Q c 2π B d l high beam energy requires: high magnetic field large packing factor F

12 Why 8.4 Tesla? required maximum dipole field: B γ 2π B[T] =.3 p[gev/c] F L[meter] Physics: p = 7 GeV/c LEP tunnel: L = 27 meter arcs: L = 222 meter only 8% of the arc are filled with dipoles: F =.8 B max = 8.38 T iron saturation: 2 Tesla 4 earth:.3 * Tesla

13 Power Consumption LEP: B =.35 Tesla I = 45A; R = m Ω ca. 5 magnets P = R I 2 P = 2 kw / magnet P = MW LHC: B I B max = 8.38 T I = 28 A (current density!) P > 78 MW / magnet ca. 5 magnets P > 39 GW superconducting technology! 8.4 T is at the limit of available technology!

14 Bending Magnet saturation B magnetic induction H magnetic field amplification process does not work for fields above 2 Tesla! field quality control via pole face shape does not work for the LHC magnets! use the coil design to determine the field quality cosine field distribution in the magnet cross section generates a uniform vertical dipole field coil precision and stability is a major concern for superconducting magnets!

15 Superconducting Magnets a a y r I B I φ x r > a: B = µ I [-sin( φ), cos( φ), ] 2 π r µ r < a: j r B = [-sin( φ), cos( φ), ] 2 Overlap the two cylinders: A r p x y r 2 B φ φ 2 2 r cos( ) - r cos( ) = d r sin( φ ) - r sin( φ 2 2 ) = B y = const. C B x = j = in C

16 Coil Winding: vacuum pipe beam superconducting cable Superconducting Cable: Persistent Currents: = -c rot E wire cable NbTi + Cu B Ι Ι e B t e

17 LHC - Beam Parameter L = N 2 p ε β n b f rev 2 π Beam-Beam Interaction: Beam Size: Q magnet quality + N b ε < 5-3 aperture N = p ε β: quadrupole strength + β =.5 meter n = 2835 b I beam =.5 A aperture Beam Power E = 3 MJ = 2 kg TnT Synchrotron Radiation P =.5 W/m

18 Summary LHC Magnet Technology: B = 8.4 T; Beam Energy: E = 7 TeV; field errors quench performance beam losses Bunch Current: N p = ; beam-beam limit Beam Current: I =.5 A; synchrotron radiation collective effects

19 Other Projects Tevatron: Chicago, USA p / p E = TeV km; ring; B = 4.5 T; T = 4.2 K n = 6 36; I = 2 ma; range: 6 b beam HERA: e / p E =.9 TeV 99 Hamburg, Germany RHIC: 6.3 km; 2 rings; B = 5.5 T; T = 4.4 K n = 8; I =.5 ma; range: 2 b beam Au/Au; p / p New York, USA E =.25 TeV 999 b 3.8 km; 2 rings; B = 3.5 T; T = 4 K n = 57 4; I = 3 µ A; range: 7 beam LHC: B = 8.4 T; T =.9 K; range = 6; I =.5 A beam

20 Future VLHC: magnet technology 95 km; 2 ring; B = 2 T; n = km; 2 ring; B = 2 T; n = 3 Muon Collider: muon source muon lifetime (τ = 2.2 µ s ) lepton collider without synchrotron radiation Linear Collider: USA / Japan Germany CERN 5 GeV / 3 TeV NC SC NC; 2 beams

21 Linear Collider No Bending Field: reduced synchrotron radiation Beam Size: σ / γ High Frequency: E = - e e A t high frequency λ = c f small structure Tesla: NLC: CLIC:.3 GHz.4 GHz 3 GHz alignment and wakefields

22 What Else? High Energy Physics Nuclear + Atomic Physics: LEAR: anti-hydrogen Synchrotron Radiation Sources: solid state physics chemestry biology Hospitals: cancer treatment Industry: surface treatment sterilisation nuclear waste disposal

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug ! " # # $ ' ( # # $ %& ) Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug. 2009. http://www.ippp.dur.ac.uk/workshops/09/sussp65/programme/

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

Overview. Basic Accelerator Principles : units and equations. acceleration concepts. storage rings. trajectory stability.

Overview. Basic Accelerator Principles : units and equations. acceleration concepts. storage rings. trajectory stability. Overview Basic Accelerator Principles : units and equations acceleration concepts storage rings trajectory stability collider concept vacuum requirements synchrotron radiation design parameters for the

More information

The Large Hadron Collider Lyndon Evans CERN

The Large Hadron Collider Lyndon Evans CERN The Large Hadron Collider Lyndon Evans CERN 1.9 K 2.728 K T The coldest ring in the universe! L.R. Evans 1 The Large Hadron Collider This lecture. LHC Technologies Magnets Cryogenics Radiofrequency Vacuum

More information

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN The LHC Collider STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN Outline of Talk The LHC Stored energy and protection systems 2008 start-up 2008 accident

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

Physics at Accelerators

Physics at Accelerators Physics at Accelerators Course outline: The first 4 lectures covers the physics principles of accelerators. Preliminary plan: Lecture 1: Accelerators, an introduction. Acceleration principles. Lecture

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna The LHC Part 1 Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna Organizzazione Part 1 Part 2 Part 3 Introduction Energy challenge Luminosity

More information

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1 LHC & ATLAS The largest particle physics experiment in the world 1 CERN A laboratory for the world Torsten Gustavson CERN was founded in 1954 There were 12 member states in the beginning. 2 OBSERVERS:

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Particle Physics Columbia Science Honors Program

Particle Physics Columbia Science Honors Program Particle Physics Columbia Science Honors Program Week 10: LHC and Experiments April 8th, 2017 Inês Ochoa, Nevis Labs, Columbia University 1 Course Policies Attendance: Up to four excused absences (two

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

Why do we accelerate particles?

Why do we accelerate particles? Why do we accelerate particles? (1) To take existing objects apart 1803 J. Dalton s indivisible atom atoms of one element can combine with atoms of other element to make compounds, e.g. water is made of

More information

Machine Protection Systems

Machine Protection Systems Machine Protection Systems Jörg Wenninger CERN Beams Department Operations group Special CERN CAS, Feb. 2009 Introduction Beam induced damage CERN accelerators risks Beam dumps Passive protection Failure

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

The LHC: the energy, cooling, and operation. Susmita Jyotishmati The LHC: the energy, cooling, and operation Susmita Jyotishmati LHC design parameters Nominal LHC parameters Beam injection energy (TeV) 0.45 Beam energy (TeV) 7.0 Number of particles per bunch 1.15

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS Arnaud Devred CEA/Saclay Snowmass Lectures on Magnets, Revisited July 2001 1 Contents Accelerator Magnet Technologies On the Use of Superconducting

More information

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Pedro Castro Introduction to Particle Accelerators DESY, July 2010 What you will see Pedro Castro

More information

An Introduction to Particle Accelerators. v short

An Introduction to Particle Accelerators. v short An Introduction to Particle Accelerators v1.42 - short LHC FIRST BEAM 10-sep-2008 Introduction Part 1 Particle accelerators for HEP LHC: the world biggest accelerator, both in energy and size (as big as

More information

Plans for the LHC Luminosity Upgrade Summary of the CARE-HHHAPD-LUMI-05 workshop

Plans for the LHC Luminosity Upgrade Summary of the CARE-HHHAPD-LUMI-05 workshop Plans for the LHC Luminosity Upgrade Summary of the APD-LUMI-05 workshop Walter Scandale CERN AT department LHC project seminar Geneva, 10 November 2005 We acknowledge the support of the European Community-Research

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

Why are particle accelerators so inefficient?

Why are particle accelerators so inefficient? Why are particle accelerators so inefficient? Philippe Lebrun CERN, Geneva, Switzerland Workshop on Compact and Low-Consumption Magnet Design for Future Linear and Circular Colliders CERN, 9-12 October

More information

17/01/17 F. Ould-Saada

17/01/17 F. Ould-Saada Chapter 3 3.1 Why Do We Need Accelerators? 3.1.1 The Center-of-Mass (c.m.) System 3.1.2 The Laboratory System 3.1.3 Fixed Target Accelerator and Collider 3.2 Linear and Circular Accelerators 3.2.1 Linear

More information

3. Particle accelerators

3. Particle accelerators 3. Particle accelerators 3.1 Relativistic particles 3.2 Electrostatic accelerators 3.3 Ring accelerators Betatron // Cyclotron // Synchrotron 3.4 Linear accelerators 3.5 Collider Van-de-Graaf accelerator

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

LHC Collimation and Loss Locations

LHC Collimation and Loss Locations BLM Audit p. 1/22 LHC Collimation and Loss Locations BLM Audit Th. Weiler, R. Assmann, C. Bracco, V. Previtali, S Redaelli Accelerator and Beam Department, CERN BLM Audit p. 2/22 Outline Introduction /

More information

Accelerator development

Accelerator development Future Colliders Stewart T. Boogert John Adams Institute at Royal Holloway Office : Wilson Building (RHUL) W251 Email : sboogert@pp.rhul.ac.uk Telephone : 01784 414062 Lectures aims High energy physics

More information

The CERN Accelerator School holds courses in all of the member states of CERN. 2013, Erice, Italy

The CERN Accelerator School holds courses in all of the member states of CERN. 2013, Erice, Italy The CERN Accelerator School holds courses in all of the member states of CERN 2013, Erice, Italy Superconductivity for Accelerators Numerous changes in last weeks Background RF Magnets Technology Case

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

Accelerators and Colliders

Accelerators and Colliders Accelerators and Colliders References Robert Mann: An introduction to particle physics and the standard model Tao Han, Collider Phenomenology, http://arxiv.org/abs/hep-ph/0508097 Particle Data Group, (J.

More information

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group RING-RING DESIGN Miriam Fitterer, CERN - KIT for the LHeC study group LHeC Design Options LHeC Design Options Linac-Ring LHeC Design Options Linac-Ring Ring-Ring Point 4 P Z4 5 P M4 5 P X4 6 Point 5 P

More information

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM JINR BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM W.Höfle, G.Kotzian, E.Montesinos, M.Schokker, D.Valuch (CERN) V.M. Zhabitsky (JINR) XXII Russian Particle Accelerator Conference 27.9-1.1. 21, Protvino

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

Lepton beam polarisation for the HERA experiments ZEUS and H1

Lepton beam polarisation for the HERA experiments ZEUS and H1 Lepton beam polarisation for the HERA experiments ZEUS and H1 Polarisation at collider machines The HERA storage ring The HERA polarimeters The collider experiments ZEUS and H1 The HERA II upgrade Data

More information

8 lectures on accelerator physics

8 lectures on accelerator physics 8 lectures on accelerator physics Lectures can be found at Lecture 1 and 2: Introduction Why do we accelerate? What are the important parameters for characterizing accelerators Lecture 3 and 4: Examples

More information

100 TeV Collider Magnets

100 TeV Collider Magnets 100 TeV Collider Magnets Alexander Zlobin Fermilab 1st CFHEP Symposium on circular collider physics 23-25 February 2014 IHEP, Beijing (China) Introduction v Circular collider energy scales with the strength

More information

SC magnets for Future HEHIHB Colliders

SC magnets for Future HEHIHB Colliders SC magnets for Future HEHIHB Colliders presented by L. Bottura WAMS, Archamps, March 22-23,2004 Overview Few selected examples of drivers for R&D in the next 10 years LHC upgrades scenarios (why? how?)

More information

TLEP White Paper : Executive Summary

TLEP White Paper : Executive Summary TLEP White Paper : Executive Summary q TLEP : A first step in a long- term vision for particle physics In the context of a global project CERN implementation A. Blondel J. Osborne and C. Waajer See Design

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

SMR/ Summer School on Particle Physics June LHC Accelerators and Experiments (part I) Marzio Nessi CERN, Switzerland

SMR/ Summer School on Particle Physics June LHC Accelerators and Experiments (part I) Marzio Nessi CERN, Switzerland SMR/1847-2 Summer School on Particle Physics 11-22 June 2007 LHC Accelerators and Experiments (part I) Marzio Nessi CERN, Switzerland CERN-RRB-2004-152 LHC Accelerators and Experiments (part I) ICTP Marzio

More information

Lecture 1 and 2: Introduction Why do we accelerate? What are the important parameters for characterizing accelerators Lecture 3 and 4: Examples

Lecture 1 and 2: Introduction Why do we accelerate? What are the important parameters for characterizing accelerators Lecture 3 and 4: Examples 5 lectures on accelerator physics + 3 invited lectures Lectures can be found at Lecture 1 and 2: Introduction Why do we accelerate? What are the important parameters for characterizing accelerators Lecture

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 28th July 2014 Pedro Castro / MPY Accelerator Physics 28 th July 2014

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

STATUS OF BEPC AND PLAN OF BEPCII

STATUS OF BEPC AND PLAN OF BEPCII STATUS OF BEPC AND PLAN OF BEPCII C. Zhang for BEPCII Team Institute of High Energy Physics, P.O.Box 918, Beijing 139, China Abstract The status of the Beijing Electron-Positron Collider (BEPC) and plans

More information

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d.

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d. 3.2.2 Magnets The characteristics for the two types of combined function magnets,bd and BF, are listed in table t322_a. Their cross-sections are shown, together with the vacuum chamber, in Figure f322_a.

More information

Beam Loss Monitors, Specification

Beam Loss Monitors, Specification H.Burkhardt, BI Review, Mon. 19/11/2001 Beam Loss Monitors, Specification BLM main scope and challenges types of BLM Collimation, Special, Arc Sensitivity and Time Resolution Summary largely based on work

More information

Introduction to Accelerator Physics

Introduction to Accelerator Physics Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 24th July 2017 DESY CERN Pedro Castro Introduction to Accelerator Physics

More information

e + e - Linear Collider

e + e - Linear Collider e + e - Linear Collider Disclaimer This talk was lifted from an earlier version of a lecture by N.Walker Eckhard Elsen DESY DESY Summer Student Lecture 3 rd August 2006 1 Disclaimer II Talk is largely

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

RF System Calibration Using Beam Orbits at LEP

RF System Calibration Using Beam Orbits at LEP EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL DIVISION CERN-SL-22-28 OP LEP Energy Working Group 2/1 RF System Calibration Using Beam Orbits at LEP J. Wenninger Abstract The target for beam energy

More information

Engines of Discovery

Engines of Discovery Engines of Discovery R.S. Orr Department of Physics University of Toronto Berkley 1930 1 MeV Geneva 20089 14 TeV Birth of Particle Physics and Accelerators 1909 Geiger/Marsden MeV a backscattering - Manchester

More information

Putting it all together

Putting it all together Putting it all together Werner Herr, CERN (Version n.n) http://cern.ch/werner.herr/cas24/lectures/praha review.pdf 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00

More information

PHYS 3446 Lecture #15

PHYS 3446 Lecture #15 PHYS 3446 Lecture #15 Monday, Oct. 30, 2006 Dr. 1. Particle Accelerators Electro-static Accelerators Cyclotron Accelerators Synchrotron Accelerators 2. Elementary Particle Properties Forces and their relative

More information

The LHC accelerator: Technology and First Commissioning

The LHC accelerator: Technology and First Commissioning The LHC accelerator: Technology and First Commissioning Rüdiger Schmidt - CERN 430. WE-Heraeus-Seminar on "Accelerators and Detectors at the Technology Frontier" The LHC: Just another collider? Collision

More information

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP I DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP K. Myznikov, A. Ageyev, V. Sytnik, I. Bogdanov, S. Kozub, E. Kashtanov, A. Orlov, V. Sytchev,

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

ACCELERATOR PHYSICS AND TECHNOLOGY OF THE LHC

ACCELERATOR PHYSICS AND TECHNOLOGY OF THE LHC ACCELERATOR PHYSICS AND TECHNOLOGY OF THE LHC R.Schmidt CERN, 1211 Geneva 23, Switzerland open-2000-148 09/Aug/2000 Abstract The Large Hadron Collider, to be installed in the 26 km long LEP tunnel, will

More information

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva LHC Detectors and their Physics Potential Nick Ellis PH Department, CERN, Geneva 1 Part 1 Introduction to the LHC Detector Requirements & Design Concepts 2 What is the Large Hadron Collider? Circular proton-proton

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

EP228 Particle Physics

EP228 Particle Physics EP8 Particle Physics Topic 3 Department of Engineering Physics University of Gaziantep Course web page www.gantep.edu.tr/~bingul/ep8 Dec 01 Page 1 Outline 1. Introduction. Electrostatic (DC) Accelerators

More information

LHC operation in 2015 and prospects for the future

LHC operation in 2015 and prospects for the future LHC operation in 2015 and prospects for the future Moriond Workshop La Thuile March 2016 Jörg Wenninger CERN Beams Department Operation group / LHC For the LHC commissioning and operation teams 1 Moriond

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS Arnaud Devred CEA/Saclay Snowmass Lectures on Magnets, Revisited July 2001 1 Contents Tools of Particle Physics Accelerator Types Accelerator Components Synchrotron-Type

More information

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Lecture 1: S. D. Holmes, An Introduction to Accelerators for High Energy Physics I. Introduction to the Course

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION CERN-SL-2000-070 CLIC Note 463 AP Multi-TeV CLIC Photon Collider Option H. Burkhardt Considerations for an option of γγ collisions at multi-tev

More information

CERN & the High Energy Frontier

CERN & the High Energy Frontier CERN & the High Energy Frontier Emmanuel Tsesmelis CERN Directorate Office Corfu Summer Institute 13th Hellenic School & Workshop on Elementary Particle Physics & Gravity Corfu, Greece 1 September 2013

More information

A Very Large Lepton Collider in a VLHC tunnel

A Very Large Lepton Collider in a VLHC tunnel A Very Large Lepton Collider in a VLHC tunnel Tanaji Sen Fermilab, Batavia, IL Design strategy Intensity Limitations RF and Optics parameters: Arc, IR Lifetime Scaling the beam-beam parameter Luminosity,

More information

Introduction to Transverse Beam Dynamics

Introduction to Transverse Beam Dynamics Introduction to Transverse Beam Dynamics B.J. Holzer CERN, Geneva, Switzerland Abstract In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring.

More information

The Large Hadron Collider, and New Avenues in Elementary Particle Physics. Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015

The Large Hadron Collider, and New Avenues in Elementary Particle Physics. Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015 The Large Hadron Collider, and New Avenues in Elementary Particle Physics Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015 CERN European Center for Nuclear Research LHC Large Hadron Collider

More information

PBL SCENARIO ON ACCELERATORS: SUMMARY

PBL SCENARIO ON ACCELERATORS: SUMMARY PBL SCENARIO ON ACCELERATORS: SUMMARY Elias Métral Elias.Metral@cern.ch Tel.: 72560 or 164809 CERN accelerators and CERN Control Centre Machine luminosity Transverse beam dynamics + space charge Longitudinal

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 27th July 2015 Pedro Castro / MPY Introduction to Accelerator Physics

More information

Cable-in-Conduit Dipoles to enable a Future Hadron Collider

Cable-in-Conduit Dipoles to enable a Future Hadron Collider Cable-in-Conduit Dipoles to enable a Future Hadron Collider Saeed Assadi, Jeff Breitschopf, Daniel Chavez, James Gerity, Joshua Kellams, Peter McIntyre, and Kyle Shores Accelerator Research Lab Texas A&M

More information

The Large Hadron electron Collider (LHeC) at the LHC

The Large Hadron electron Collider (LHeC) at the LHC The Large Hadron electron Collider (LHeC) at the LHC F. Zimmermann, F. Bordry, H. H. Braun, O.S. Brüning, H. Burkhardt, A. Eide, A. de Roeck, R. Garoby, B. Holzer, J.M. Jowett, T. Linnecar, K. H. Mess,

More information

PUBLICATION. The Global Future Circular Colliders Effort

PUBLICATION. The Global Future Circular Colliders Effort CERN-ACC-SLIDES-2016-0016 Future Circular Collider PUBLICATION The Global Future Circular Colliders Effort Benedikt, Michael (CERN) et al. 09 August 2016 The research leading to this document is part of

More information

Chapter 4. Accelerators and collider experiments. 4.1 Particle accelerators: motivations

Chapter 4. Accelerators and collider experiments. 4.1 Particle accelerators: motivations Chapter 4 Accelerators and collider experiments This chapter gives an introduction to particle accelerators and detectors as well as to data analysis tools relevant in this context. This involves the definition

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 9 Fall 2018 Semester Prof. Matthew Jones Particle Accelerators In general, we only need classical electrodynamics to discuss particle

More information

LHC Commissioning in 2008

LHC Commissioning in 2008 LHC Commissioning in 2008 Mike Lamont AB/OP Schedule slides c/o Lyn Evans (MAC 14/6/07) Status: Installation & equipment commissioning LHC commissioning - CMS June 07 2 Procurement problems of remaining

More information

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Acknowledgements: O. Brüning, S. Fartoukh, M. Giovannozzi, G. Iadarola, M. Lamont, E. Métral, N. Mounet, G. Papotti, T. Pieloni,

More information

Status of the LHC Machine

Status of the LHC Machine Status of the LHC Machine J. Wenninger CERN Beams Department Operation Group Acknowledgements to R. Schmidt for some slides and many discussions. 1 Outline Introduction Commissioning 2008 Incident of September

More information

Alignment in Circular Colliders and Specific Requirements for LHC

Alignment in Circular Colliders and Specific Requirements for LHC Alignment in Circular Colliders and Specific Requirements for LHC J-B. Jeanneret CERN AB/ABP IWAA 2004, CERN October 2004 Outline Closed orbit and tolerances Magnetic issues at LHC Aperture issues Survey

More information

Beam losses versus BLM locations at the LHC

Beam losses versus BLM locations at the LHC Geneva, 12 April 25 LHC Machine Protection Review Beam losses versus BLM locations at the LHC R. Assmann, S. Redaelli, G. Robert-Demolaize AB - ABP Acknowledgements: B. Dehning Motivation - Are the proposed

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Overview of Acceleration

Overview of Acceleration Overview of Acceleration R B Palmer, Scott Berg, Steve Kahn (presented by Steve Kahn) Nufact-04 RF Frequency Acc types and System Studies Linacs RLA s FFAG s Injection/Extraction US Study 2a acceleration

More information

LHC upgrade based on a high intensity high energy injector chain

LHC upgrade based on a high intensity high energy injector chain LHC upgrade based on a high intensity high energy injector chain Walter Scandale CERN AT department PAF n. 6 CERN, 15 September 2005 luminosity and energy upgrade Phase 2: steps to reach maximum performance

More information

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1 O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1 CERN Meyrin, Switzerland E-mail: oliver.bruning@cern.ch, edward.nissen@cern.ch, dario.pellegrini@cern.ch, daniel.schulte@cern.ch,

More information