Multi-Label Informed Latent Semantic Indexing

Size: px
Start display at page:

Download "Multi-Label Informed Latent Semantic Indexing"

Transcription

1 Multi-Label Informed Latent Semantic Indexing Shipeng Yu 12 Joint work with Kai Yu 1 and Volker Tresp 1 August Siemens Corporate Technology Department of Neural Computation 2 University of Munich Institute for Computer Science First Prev Page 1 Next Last Go Back Full Screen Close Quit

2 Outline Motivation Latent Semantic Indexing Multi-label Informed Latent Semantic Indexing (MLSI) Experimental Results Conclusion and Future works First Prev Page 2 Next Last Go Back Full Screen Close Quit

3 Motivation We are dealing with high-dimensional data in information retrieval. A typical text corpus has more than 10,000 features (words as features)! What are the problems? Noisy features: Effective features are small Learnability: curse of dimensionality Inefficiency: Computational cost is too high How to solve these problems? Dimensionality Reduction Feature selection: Select part of the features Latent semantic indexing (LSI): Learn a feature transformation from high-dimensional input space to a low-dimensional latent space First Prev Page 3 Next Last Go Back Full Screen Close Quit

4 Why MLSI LSI is unsupervised: Unable to use prior knowledge or label information The indexing is not necessarily related to classification tasks We want to have a feature transformation method that can Incorporate label information elegantly Derive both linear and non-linear mappings Explore the dependency between multiple categories This leads to Multi-label informed Latent Semantic Indexing (MLSI). First Prev Page 4 Next Last Go Back Full Screen Close Quit

5 Before We Start... Some notations: We have N documents Document i is denoted as x i X R M Output for the ith document is denoted as y i Y R L X R N M, Y R N L contain the input and output data as follows: X = x 11 x 1M... = xt 1., Y = y 11 y 1L... = yt 1. x N1 x NM x T N y N1 y NL y T N We aim to derive a mapping Ψ : X V such that V R K, K < M First Prev Page 5 Next Last Go Back Full Screen Close Quit

6 Outline Motivation Latent Semantic Indexing Multi-label Informed Latent Semantic Indexing Experimental Results Conclusion and Future works First Prev Page 6 Next Last Go Back Full Screen Close Quit

7 Latent Semantic Indexing LSI finds the best rank-k approximation to the data matrix X. This can be equivalently solved by singular value decomposition (SVD) of X: X = VΣU T We can sort diagonal entries of Σ in decreasing order U = [u 1,..., u K ] gives the K mapping directions Problem: How to incorporate label information into the mappings? First Prev Page 7 Next Last Go Back Full Screen Close Quit

8 Optimization Problem of LSI Alternatively, LSI minimizes the reconstruction error of input data: min A,V X VA 2 F s.t. V T V = I, with V R N K the latent factors, and A R K M the factor loadings. First Prev Page 8 Next Last Go Back Full Screen Close Quit

9 MLSI In MLSI we are minimizing the reconstruction errors of both X and Y: min A,B,V s.t. (1 β) X VA 2 F + β Y VB 2 F V T V = I, V = XW. MLSI is biased by the outputs Y MLSI minimizes the inter-correlation between X and Y MLSI minimizes the intra-correlation within Y (if multiple outputs) First Prev Page 9 Next Last Go Back Full Screen Close Quit

10 Outline Motivation Latent Semantic Indexing Multi-label Informed Latent Semantic Indexing Primal form: Linear mappings Dual form: Non-linear mappings Experimental Results Conclusion and Future works First Prev Page 10 Next Last Go Back Full Screen Close Quit

11 Solution of MLSI The optimization problem is min A,B,V s.t. (1 β) X VA 2 F + β Y VB 2 F V T V = I, V = XW. Following standard Lagrange formulism, we obtain, at the optimum, A and B solely depend on V: A = V T X, B = V T Y. Denote K := (1 β)xx T + βyy T, the minimum value is N i=k+1 λ i. We only need to optimize W since V = XW. First Prev Page 11 Next Last Go Back Full Screen Close Quit

12 MLSI: Primal Form Denote W = [w 1,..., w K ], we turn to an equivalent problem w.r.t. w: max w R M w T X T KXw s.t. w T X T Xw = 1. This leads to the primal form of the MLSI solution: Calculate K = (1 β)xx T + βyy T ; Solve a generalized eigenvalue problem X T KXw = λx T Xw, obtain eigenvectors w 1,..., w K with largest K eigenvalues λ 1... λ K ; Form mapping functions ψ j (x) = λ j w T j x, j = 1,..., K, and finally Ψ(x) = [ψ 1 (x),..., ψ K (x)] T defines the mapping Ψ. MLSI recovers LSI when β = 0. First Prev Page 12 Next Last Go Back Full Screen Close Quit

13 MLSI: Dual Form Dual form is obtained by applying representer theorem and define dual variable α as w = X T α. This leads to the equivalent dual form with respect to α: max α R N α T K x KK x α s.t. α T K 2 xα = 1. K x = XX T, K y = YY T, K = (1 β)k x + βk y. This is a simpler problem for N < M. First Prev Page 13 Next Last Go Back Full Screen Close Quit

14 Primal versus Dual Which form to choose in real world applications? Primal MLSI solves an M M generalized eigenvalue problem more efficient when M < N can only learn a linear mapping for X Dual MLSI solves an N N generalized eigenvalue problem more efficient when N < M (usually true for text data) can learn non-linear mappings using kernel trick First Prev Page 14 Next Last Go Back Full Screen Close Quit

15 Connection to Related Work MLSI is more general to other supervised projection methods. Fisher Discriminant Analysis (FDA) Only deal with binary classification problem Can only handle one output Canonical Correlation Analysis (CCA) Only minimize the correlation between X and Y Ignore intrinsic correlations of both X and Y Partial Least Square (PLS) A penalized CCA Can not generalize well to new data First Prev Page 15 Next Last Go Back Full Screen Close Quit

16 Outline Motivation Latent Semantic Indexing Multi-label Informed Latent Semantic Indexing Experimental Results Conclusion and Future works First Prev Page 16 Next Last Go Back Full Screen Close Quit

17 Experiment Setup The Goal: Evaluate indexing methods for multi-label classification. Data sets Reuters-21578: 1600 documents with 6076 words, 47 categories RCV1: 3588 documents with 5496 words, 79 categories Preprocessing Take categories with at least 50 documents Pick up words that occur at least 5 times in documents Use TFIDF features First Prev Page 17 Next Last Go Back Full Screen Close Quit

18 Methodology We compare three methods: Full Features: Use all features to do classification LSI: Classification with new unsupervised features MLSI: Classification with new supervised features We test two settings for each data set: Setting (I): We pick up 70% categories for classification and employ 5-fold cross-validation with one fold training and 4 folds testing Setting (II): Evaluate the classification performance on the rest 30% categories for previously unseen data with newly derived features First Prev Page 18 Next Last Go Back Full Screen Close Quit

19 Results for Reuters MLSI is significantly better than LSI. First Prev Page 19 Next Last Go Back Full Screen Close Quit

20 Results for RCV1 MLSI is significantly better than Full Features in setting (II). First Prev Page 20 Next Last Go Back Full Screen Close Quit

21 Sensitivity of β for MLSI setting (I) setting (II) First Prev Page 21 Next Last Go Back Full Screen Close Quit

22 Outline Motivation Latent Semantic Indexing Multi-label Informed Latent Semantic Indexing Experimental Results Conclusion and Future works First Prev Page 22 Next Last Go Back Full Screen Close Quit

23 Conclusion MLSI has the following advantages: It is supervised and incorporates label information It considers both the inter-correlation between X and Y, and the intracorrelation of Y Both linear and non-linear mappings are easy to derive It handles multiple outputs simultaneously It takes LSI as a special case (when β = 0) Experimental results are very encouraging. First Prev Page 23 Next Last Go Back Full Screen Close Quit

24 Future Works Compare with other supervised projection methods Automatically set parameter β Try larger data sets Apply the indexing to information retrieval tasks First Prev Page 24 Next Last Go Back Full Screen Close Quit

Multi-Label Informed Latent Semantic Indexing

Multi-Label Informed Latent Semantic Indexing Multi-Label Informed Latent Semantic Indexing Kai Yu, Shipeng Yu, Volker Tresp Siemens AG, Corporate Technology, Information and Communications, Munich, Germany Institute for Computer Science, University

More information

Multi-Output Regularized Projection

Multi-Output Regularized Projection Multi-Output Regularized Projection Kai Yu Shipeng Yu Volker Tresp Corporate Technology Institute for Computer Science Corporate Technology Siemens AG, Germany University of Munich, Germany Siemens AG,

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Introduction Consider a zero mean random vector R n with autocorrelation matri R = E( T ). R has eigenvectors q(1),,q(n) and associated eigenvalues λ(1) λ(n). Let Q = [ q(1)

More information

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 42 Outline 1 Introduction 2 Feature selection

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 6 September 2017 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 Vector Space Model Disadvantages:

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa VS model in practice Document and query are represented by term vectors Terms are not necessarily orthogonal to each other Synonymy: car v.s. automobile Polysemy:

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Variable Latent Semantic Indexing

Variable Latent Semantic Indexing Variable Latent Semantic Indexing Prabhakar Raghavan Yahoo! Research Sunnyvale, CA November 2005 Joint work with A. Dasgupta, R. Kumar, A. Tomkins. Yahoo! Research. Outline 1 Introduction 2 Background

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Supervised Probabilistic Principal Component Analysis

Supervised Probabilistic Principal Component Analysis Supervised Probabilistic Principal Component Analysis Shipeng Yu,2, Kai Yu 2, Volker Tresp 2, Hans-Peter Kriegel, Mingrui Wu 3 Institute for Computer Science, University of Munich, Germany 2 Siemens AG,

More information

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection Instructor: Herke van Hoof (herke.vanhoof@cs.mcgill.ca) Based on slides by:, Jackie Chi Kit Cheung Class web page:

More information

Supervised Learning Coursework

Supervised Learning Coursework Supervised Learning Coursework John Shawe-Taylor Tom Diethe Dorota Glowacka November 30, 2009; submission date: noon December 18, 2009 Abstract Using a series of synthetic examples, in this exercise session

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach Dr. Guangliang Chen February 9, 2016 Outline Introduction Review of linear algebra Matrix SVD PCA Motivation The digits

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

LEC 3: Fisher Discriminant Analysis (FDA)

LEC 3: Fisher Discriminant Analysis (FDA) LEC 3: Fisher Discriminant Analysis (FDA) A Supervised Dimensionality Reduction Approach Dr. Guangliang Chen February 18, 2016 Outline Motivation: PCA is unsupervised which does not use training labels

More information

A Three-Way Model for Collective Learning on Multi-Relational Data

A Three-Way Model for Collective Learning on Multi-Relational Data A Three-Way Model for Collective Learning on Multi-Relational Data 28th International Conference on Machine Learning Maximilian Nickel 1 Volker Tresp 2 Hans-Peter Kriegel 1 1 Ludwig-Maximilians Universität,

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

Information Retrieval

Information Retrieval Introduction to Information CS276: Information and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing Ch. 18 Today s topic Latent Semantic Indexing Term-document matrices

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Linear Dimensionality Reduction Practical Machine Learning (CS294-34) September 24, 2009 Percy Liang Lots of high-dimensional data... face images Zambian President Levy Mwanawasa has won a second term

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines Kernel Methods & Support Vector Machines Mahdi pakdaman Naeini PhD Candidate, University of Tehran Senior Researcher, TOSAN Intelligent Data Miners Outline Motivation Introduction to pattern recognition

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Supervised Learning / Support Vector Machines

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

Lecture VIII Dim. Reduction (I)

Lecture VIII Dim. Reduction (I) Lecture VIII Dim. Reduction (I) Contents: Subset Selection & Shrinkage Ridge regression, Lasso PCA, PCR, PLS Lecture VIII: MLSC - Dr. Sethu Viayakumar Data From Human Movement Measure arm movement and

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces Notes on the framework of Ando and Zhang (2005 Karl Stratos 1 Beyond learning good functions: learning good spaces 1.1 A single binary classification problem Let X denote the problem domain. Suppose we

More information

Transductive Experiment Design

Transductive Experiment Design Appearing in NIPS 2005 workshop Foundations of Active Learning, Whistler, Canada, December, 2005. Transductive Experiment Design Kai Yu, Jinbo Bi, Volker Tresp Siemens AG 81739 Munich, Germany Abstract

More information

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014 Principal Component Analysis and Singular Value Decomposition Volker Tresp, Clemens Otte Summer 2014 1 Motivation So far we always argued for a high-dimensional feature space Still, in some cases it makes

More information

Language Information Processing, Advanced. Topic Models

Language Information Processing, Advanced. Topic Models Language Information Processing, Advanced Topic Models mcuturi@i.kyoto-u.ac.jp Kyoto University - LIP, Adv. - 2011 1 Today s talk Continue exploring the representation of text as histogram of words. Objective:

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

1 Feature Vectors and Time Series

1 Feature Vectors and Time Series PCA, SVD, LSI, and Kernel PCA 1 Feature Vectors and Time Series We now consider a sample x 1,..., x of objects (not necessarily vectors) and a feature map Φ such that for any object x we have that Φ(x)

More information

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Pavel Laskov 1 Blaine Nelson 1 1 Cognitive Systems Group Wilhelm Schickard Institute for Computer Science Universität Tübingen,

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Dimensionality reduction

Dimensionality reduction Dimensionality Reduction PCA continued Machine Learning CSE446 Carlos Guestrin University of Washington May 22, 2013 Carlos Guestrin 2005-2013 1 Dimensionality reduction n Input data may have thousands

More information

On the Equivalence Between Canonical Correlation Analysis and Orthonormalized Partial Least Squares

On the Equivalence Between Canonical Correlation Analysis and Orthonormalized Partial Least Squares On the Equivalence Between Canonical Correlation Analysis and Orthonormalized Partial Least Squares Liang Sun, Shuiwang Ji, Shipeng Yu, Jieping Ye Department of Computer Science and Engineering, Arizona

More information

Leverage Sparse Information in Predictive Modeling

Leverage Sparse Information in Predictive Modeling Leverage Sparse Information in Predictive Modeling Liang Xie Countrywide Home Loans, Countrywide Bank, FSB August 29, 2008 Abstract This paper examines an innovative method to leverage information from

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

Lecture 6 Sept Data Visualization STAT 442 / 890, CM 462

Lecture 6 Sept Data Visualization STAT 442 / 890, CM 462 Lecture 6 Sept. 25-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Dual PCA It turns out that the singular value decomposition also allows us to formulate the principle components

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Large Scale Machine Learning with Stochastic Gradient Descent

Large Scale Machine Learning with Stochastic Gradient Descent Large Scale Machine Learning with Stochastic Gradient Descent Léon Bottou leon@bottou.org Microsoft (since June) Summary i. Learning with Stochastic Gradient Descent. ii. The Tradeoffs of Large Scale Learning.

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

.. CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. CSC 566 Advanced Data Mining Alexander Dekhtyar.. Information Retrieval Latent Semantic Indexing Preliminaries Vector Space Representation of Documents: TF-IDF Documents. A single text document is a

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

Subspace Methods for Visual Learning and Recognition

Subspace Methods for Visual Learning and Recognition This is a shortened version of the tutorial given at the ECCV 2002, Copenhagen, and ICPR 2002, Quebec City. Copyright 2002 by Aleš Leonardis, University of Ljubljana, and Horst Bischof, Graz University

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

Example: Face Detection

Example: Face Detection Announcements HW1 returned New attendance policy Face Recognition: Dimensionality Reduction On time: 1 point Five minutes or more late: 0.5 points Absent: 0 points Biometrics CSE 190 Lecture 14 CSE190,

More information

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface Image Analysis & Retrieval Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv, Spring

More information

Neuroscience Introduction

Neuroscience Introduction Neuroscience Introduction The brain As humans, we can identify galaxies light years away, we can study particles smaller than an atom. But we still haven t unlocked the mystery of the three pounds of matter

More information

vector space retrieval many slides courtesy James Amherst

vector space retrieval many slides courtesy James Amherst vector space retrieval many slides courtesy James Allan@umass Amherst 1 what is a retrieval model? Model is an idealization or abstraction of an actual process Mathematical models are used to study the

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Statistical and Computational Analysis of Locality Preserving Projection

Statistical and Computational Analysis of Locality Preserving Projection Statistical and Computational Analysis of Locality Preserving Projection Xiaofei He xiaofei@cs.uchicago.edu Department of Computer Science, University of Chicago, 00 East 58th Street, Chicago, IL 60637

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

LEC 5: Two Dimensional Linear Discriminant Analysis

LEC 5: Two Dimensional Linear Discriminant Analysis LEC 5: Two Dimensional Linear Discriminant Analysis Dr. Guangliang Chen March 8, 2016 Outline Last time: LDA/QDA (classification) Today: 2DLDA (dimensionality reduction) HW3b and Midterm Project 3 What

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Advanced data analysis

Advanced data analysis Advanced data analysis Akisato Kimura ( 木村昭悟 ) NTT Communication Science Laboratories E-mail: akisato@ieee.org Advanced data analysis 1. Introduction (Aug 20) 2. Dimensionality reduction (Aug 20,21) PCA,

More information

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space to The The A s s in to Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 2, 2009 to The The A s s in 1 Motivation Outline 2 The Mapping the

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Université du Littoral- Calais July 11, 16 First..... to the

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Machine Learning Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1 / 47 Table of contents 1 Introduction

More information

Learning with Singular Vectors

Learning with Singular Vectors Learning with Singular Vectors CIS 520 Lecture 30 October 2015 Barry Slaff Based on: CIS 520 Wiki Materials Slides by Jia Li (PSU) Works cited throughout Overview Linear regression: Given X, Y find w:

More information

Dimensionality Reduction and Principle Components Analysis

Dimensionality Reduction and Principle Components Analysis Dimensionality Reduction and Principle Components Analysis 1 Outline What is dimensionality reduction? Principle Components Analysis (PCA) Example (Bishop, ch 12) PCA vs linear regression PCA as a mixture

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

Correlation Autoencoder Hashing for Supervised Cross-Modal Search

Correlation Autoencoder Hashing for Supervised Cross-Modal Search Correlation Autoencoder Hashing for Supervised Cross-Modal Search Yue Cao, Mingsheng Long, Jianmin Wang, and Han Zhu School of Software Tsinghua University The Annual ACM International Conference on Multimedia

More information

Vector Space Models. wine_spectral.r

Vector Space Models. wine_spectral.r Vector Space Models 137 wine_spectral.r Latent Semantic Analysis Problem with words Even a small vocabulary as in wine example is challenging LSA Reduce number of columns of DTM by principal components

More information

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides CSE 494/598 Lecture-6: Latent Semantic Indexing LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Homework-1 and Quiz-1 Project part-2 released

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Latent Semantic Analysis (Tutorial)

Latent Semantic Analysis (Tutorial) Latent Semantic Analysis (Tutorial) Alex Thomo Eigenvalues and Eigenvectors Let A be an n n matrix with elements being real numbers. If x is an n-dimensional vector, then the matrix-vector product Ax is

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

Kernel Partial Least Squares for Nonlinear Regression and Discrimination

Kernel Partial Least Squares for Nonlinear Regression and Discrimination Kernel Partial Least Squares for Nonlinear Regression and Discrimination Roman Rosipal Abstract This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing

More information

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs

Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Bhargav Kanagal Department of Computer Science University of Maryland College Park, MD 277 bhargav@cs.umd.edu Vikas

More information

Machine Learning (Spring 2012) Principal Component Analysis

Machine Learning (Spring 2012) Principal Component Analysis 1-71 Machine Learning (Spring 1) Principal Component Analysis Yang Xu This note is partly based on Chapter 1.1 in Chris Bishop s book on PRML and the lecture slides on PCA written by Carlos Guestrin in

More information

Tensor Canonical Correlation Analysis and Its applications

Tensor Canonical Correlation Analysis and Its applications Tensor Canonical Correlation Analysis and Its applications Presenter: Yong LUO The work is done when Yong LUO was a Research Fellow at Nanyang Technological University, Singapore Outline Y. Luo, D. C.

More information

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond PCA, ICA and beyond Summer School on Manifold Learning in Image and Signal Analysis, August 17-21, 2009, Hven Technical University of Denmark (DTU) & University of Copenhagen (KU) August 18, 2009 Motivation

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Principal Component Analysis Barnabás Póczos Contents Motivation PCA algorithms Applications Some of these slides are taken from Karl Booksh Research

More information

The Perceptron. Volker Tresp Summer 2016

The Perceptron. Volker Tresp Summer 2016 The Perceptron Volker Tresp Summer 2016 1 Elements in Learning Tasks Collection, cleaning and preprocessing of training data Definition of a class of learning models. Often defined by the free model parameters

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information