Supporting Statistical Hypothesis Testing Over Graphs

Size: px
Start display at page:

Download "Supporting Statistical Hypothesis Testing Over Graphs"

Transcription

1 Supporting Statistical Hypothesis Testing Over Graphs Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tina Eliassi-Rad, Brian Gallagher, Sergey Kirshner, Sebastian Moreno, SVN Vishwananthan, Tao Wang)

2 Social network prediction and mining Nodes: Facebook users Edges: Articulated friendships Example task: Predict user preferences based on friendships (e.g., political views)

3 Exploiting network relationships can improve classification Network autocorrelation (correlation of attributes across linked pairs) is ubiquitous: Citation analysis (Taskar et al. 01, Neville & Jensen 03) Fraud detection (Cortes et al. 01, Neville & Jensen 05) Marketing (Domingos et al. 01, Hill et al. 06) Statistical relational models improve accuracy by jointly classifying related instances

4 Network prediction models < X,Y i =1> < X,Y j =0> Goal: Estimate joint distribution P (Y {X} n,g)... or conditional distribution P (Y i X i, X R, Y R )

5 Network autocorrelation interacts with graph structure to impact accuracy of predictive models

6

7

8 Typical evaluation framework for ML methods Y X1 X2 Y X1 X2 Training set Learn model from training set Dataset Y X1 X2 F(X) Y X1 X2 Score: 77% Test set Apply model to test set Evaluate by comparing predicted labels f(x) to true labels y

9 Training sets Learned models M0 Test sets Dataset M M8... Average error M9

10 Comparison of algorithm performance Sampling How to partition or sample available data into training and test sets? k-fold cross-validation is often used Significance test Is the observed difference in performance significantly greater than what would be expected by random chance? Null hypothesis (H0): Algorithm performance rates are drawn from the same distribution Two-sample t-test is often used Algorithm A Algorithm B

11 Implicit assumption of structured ML Domain consists of a population of independent graph samples Increase in data corresponds to acquiring more graphs When the graphs are independent, we can use straightforward statistical hypothesis tests

12 ... but statistical learning algorithms are often applied to a single network In this case, an increase in dataset size corresponds networks! Social networks! to acquiring a larger Scientific sample networks! from the network... this changes the statistical foundation for analysis and learning Gene/protein networks! World wide web! Organizational networks!

13 How do we sample a single network when evaluating ML algorithms? Test set Training set Training set Training set Common approach Use repeated random sampling to create multiple sets of labeled/ unlabeled nodes

14 How does simple random sampling affect classifier evaluation?

15 Evaluation of paired t-test on network data Type I error: Incorrectly conclude that algorithms are different when they are not Type I Error Rate Observed Type I error Up to 40% of the time algorithms will appear to be different when they are not! Expected Type I error Proportion Labeled J. Neville, B. Gallagher, and T. Eliassi-Rad. Evaluating Statistical Tests for Within-Network Classifiers of Relational Data. In Proceedings of the 9th IEEE International Conference on Data Mining, 2009.

16 Network characteristics that lead to bias Test sets are dependent when network is resampled As the size of the test set increases, the overlap between test sets increases Network instances are dependent Dependencies among instances leads to correlated errors Correlated error increases the variance of algorithm performance Error correlation Real Data Autocorrelation

17 We can analytically evaluate the misestimation of variance and use it to adjust the significance test...

18 Analytical correction reduces Type I error Type I Error Rate RS NCV RS C NCV C Random resampling Random resampling with correction Proportion Labeled T. Wang, J. Neville, B. Gallagher, and T. Eliassi-Rad. Correcting Bias in Statistical Tests for Network Classifier Evaluation. In Proceedings of the 21st European Conference on Machine Learning, 2011.

19 But autocorrelation+structure performance... what about variation in network structure?

20 Training sets Learned models Test sets M0 Network dataset M M8... Average error M9

21 How to generate network samples for statistical hypothesis testing? Sample subnetworks with similar structure Without replacement: N. Ahmed, J. Neville, and R. Kompella Network sampling via edge-based node selection with graph induction. Technical Report , CS Dept, Purdue University. With replacement: H. Eldardiry and J. Neville. A Resampling Technique for Relational Data Graphs. In Proceedings of the 2nd SNA Workshop, 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Randomize observed network T. LaFond and J. Neville. Randomization tests for distinguishing social influence and homophily effects. In Proceedings of the International World Wide Web Conference (WWW), Generate sample networks from probabilistic model S. Moreno, S. Kirshner, J. Neville, and S.V.N. Vishwanathan. Tied Kronecker Product Graph Models to Capture Variance in Network Populations. In Proceedings of the 48th Annual Allerton Conference on Communications, Control and Computing, 2010.

22 To support hypothesis testing, we need to accurately characterize the variability in graph populations... What is the natural variability of graph structure in real-world domains?

23 Purdue Facebook populations Public wall graph Temporal samples, with 1024 nodes & 60 days of posts

24 AddHealth populations Middle and high school social networks 25 networks with nodes

25 Can current graph models capture the variance we observe in real-world domains?

26 Kronecker product graph model (Leskovec & Faloutsos 07) Starting from initiator matrix of nxn Bernoulli parameters... A matrix of size n k is constructed using Kronecker multiplication... Then a network is generated by sampling from the Bernoulli rv in each cell Assuming Bernoulli rvs, the MLE for Θ can be learned from an observed network e.g. Θ = Θ 0.5Θ Θ Θ = = Θ 0.2Θ

27 Exponential random graph model (ERGM) (Frank & Strauss 86) Represents the joint probability over network structures with a log-linear model: Where f(g) is a set of graph features and θ is a vector of weights for the set of features Features count the occurrences of local subgraphs such as k-triangles or k- stars: Triangle 2-Triangle 2-star 3-star

28 Variation of generated graphs: Facebook Original population KPGM ERGM Degree Hop plot Clustering

29 Variation of generated graphs: AddHealth Both models produce surprisingly little variance Degree in their generated graphs Hop plot S. Moreno and J. Neville. An Investigation of the Distributional Characteristics of Generative Graph Models. In Proceedings of the 1st Workshop on Information in Networks, Clustering

30 Let s reconsider the KPGM generation process... as a hierarchy of Bernoulli trials

31 KPGM generation process 1st level Kronecker colors=parameter values, cells=independent parameters

32 KPGM generation process 1st level Kronecker colors=parameter values, cells=independent parameters 2nd level Kronecker

33 KPGM generation process 1st level Kronecker colors=parameter values, cells=independent parameters 2nd level Kronecker 3rd level Kronecker

34 KPGM generation process 1st level Kronecker colors=parameter values, cells=independent parameters 2nd level Kronecker 3rd level Kronecker Graph generation= product of trial results from each level

35 KPGM generation process

36 Low variance is due to large number of independent Bernoulli trials... but we know that dependencies can increase variance, so what if trials are dependent instead?

37 Tied KPGM generation 1st level Kronecker colors=parameter values, cells=independent parameters

38 Tied KPGM generation 1st level Kronecker colors=parameter values, cells=independent parameters 2nd level Kronecker

39 Tied KPGM generation 1st level Kronecker colors=parameter values, cells=independent parameters 2nd level Kronecker 3rd level Kronecker

40 Tied KPGM generation Graph generation= product of trial results from each level

41 KPGM vs. tied KPGM Tied KPGMs exhibit more clustering, probably too much...

42 Mix KPGMs with tkpgms to incorporate dependencies for a portion of the hierarchy

43 Mixed KPGMs S. Moreno, S. Kirshner, J. Neville, and S.V.N. Vishwanathan. Tied Kronecker Product Graph Models to Capture Variance in Network Populations. In Proceedings of the 48th Annual Allerton Conference on Communications, Control and Computing, 2010.

44 Comparison of three models

45 How does parameter tying affect variance?

46 Variation with different mixing proportions 300 graphs with parameters: = Number of levels that are not tied Number of levels that are not tied Number of levels that are not tied Number of levels that are not tied

47 Learning mkpgm models Extending the KPGM parameter estimation algorithm for mkpgms If the mixing level is known, then we can alternate between sampling a permutation and estimating the parameters of the KPGM and tkpgm But, MLE estimation only works well when starting from very close to the true permutation, which is unknown in practice Heuristic approach for mkpgm parameter estimation Note the fractal structure of the mkpgm implies that some subgraphs are generated directly from an (equivalent) KPGM at a local scale We use snowball sampling to identify subgraphs that were likely to have been generated in the same block in the mkpgm model Then we estimate parameters locally within these sampled subgraphs, and combine the set of estimated parameters in a ensemble approach to estimate the overall mkpgm parameters

48 Experimental results: synthetic data mkpgm estimation method is able to recover the correct parameters in synthetic data experiments

49 Experimental results: Facebook data On real data, the estimated mkpgms exhibit more variance, and more accurately capture clustering

50 Towards a statistical hypothesis testing framework for anomaly detection

51 Anomaly detection with mkpgms Approach Learn mkpgm model from representative network Use learned mkpgm to generate empirical sampling distribution of likelihood, for networks drawn from the same population Compute likelihood of new observed network and flag as anomaly those that are very unlikely given sampling distribution above

52 Initial results: Facebook Likelihood based approach is able to distinguish random networks with same density

53 Open questions How to conduct accurate hypothesis tests? Dependencies and heterogeneous structure impact variance estimates and make it difficult to quantify effective sample size and assess significance of differences Thus, we need empirical sampling distribution of network structure... How to accurately model graph populations? There are many generative graph models but evaluation focuses mainly on matching the properties of a single observed network... What is the population? A single large, evolving graph process? or a collection of graphs with similar size/structure? How to evaluate the representativeness of a sample network?

54 Conclusion Relational dependencies can significantly improve predictions through the use of collective inference models......but current methods make assumptions about data and model characteristics that are often not appropriate Link information is heterogeneous, not uniform/stationary Label and attribute information is sparse, not fully labeled Data comprises a single network, not a population of networks In order to best exploit the relational information for prediction, we need to consider graph/data structure carefully and understand its impact on predictive modeling of attributes

55 Questions?

Tied Kronecker Product Graph Models to Capture Variance in Network Populations

Tied Kronecker Product Graph Models to Capture Variance in Network Populations Tied Kronecker Product Graph Models to Capture Variance in Network Populations Sebastian Moreno, Sergey Kirshner +, Jennifer Neville +, SVN Vishwanathan + Department of Computer Science, + Department of

More information

Lifted and Constrained Sampling of Attributed Graphs with Generative Network Models

Lifted and Constrained Sampling of Attributed Graphs with Generative Network Models Lifted and Constrained Sampling of Attributed Graphs with Generative Network Models Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Pablo Robles Granda,

More information

How to exploit network properties to improve learning in relational domains

How to exploit network properties to improve learning in relational domains How to exploit network properties to improve learning in relational domains Jennifer Neville Departments of Computer Science and Statistics Purdue University!!!! (joint work with Brian Gallagher, Timothy

More information

A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation

A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation Pelin Angin Department of Computer Science Purdue University pangin@cs.purdue.edu Jennifer Neville Department of Computer Science

More information

Using Bayesian Network Representations for Effective Sampling from Generative Network Models

Using Bayesian Network Representations for Effective Sampling from Generative Network Models Using Bayesian Network Representations for Effective Sampling from Generative Network Models Pablo Robles-Granda and Sebastian Moreno and Jennifer Neville Computer Science Department Purdue University

More information

Using Bayesian Network Representations for Effective Sampling from Generative Network Models

Using Bayesian Network Representations for Effective Sampling from Generative Network Models Using Bayesian Network Representations for Effective Sampling from Generative Network Models Pablo Robles-Granda and Sebastian Moreno and Jennifer Neville Computer Science Department Purdue University

More information

Semi-supervised learning for node classification in networks

Semi-supervised learning for node classification in networks Semi-supervised learning for node classification in networks Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Paul Bennett, John Moore, and Joel Pfeiffer)

More information

Sampling of Attributed Networks from Hierarchical Generative Models

Sampling of Attributed Networks from Hierarchical Generative Models Sampling of Attributed Networks from Hierarchical Generative Models Pablo Robles Purdue University West Lafayette, IN USA problesg@purdue.edu Sebastian Moreno Universidad Adolfo Ibañez Viña del Mar, Chile

More information

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Hyokun Yun (work with S.V.N. Vishwanathan) Department of Statistics Purdue Machine Learning Seminar November 9, 2011 Overview

More information

Collective classification in large scale networks. Jennifer Neville Departments of Computer Science and Statistics Purdue University

Collective classification in large scale networks. Jennifer Neville Departments of Computer Science and Statistics Purdue University Collective classification in large scale networks Jennifer Neville Departments of Computer Science and Statistics Purdue University The data mining process Network Datadata Knowledge Selection Interpretation

More information

Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs

Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs Hyokun Yun Department of Statistics Purdue University SV N Vishwanathan Departments of Statistics and Computer Science

More information

RaRE: Social Rank Regulated Large-scale Network Embedding

RaRE: Social Rank Regulated Large-scale Network Embedding RaRE: Social Rank Regulated Large-scale Network Embedding Authors: Yupeng Gu 1, Yizhou Sun 1, Yanen Li 2, Yang Yang 3 04/26/2018 The Web Conference, 2018 1 University of California, Los Angeles 2 Snapchat

More information

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley Jure Leskovec (@jure) Joint work with Jaewon Yang, Julian McAuley Given a network, find communities! Sets of nodes with common function, role or property 2 3 Q: How and why do communities form? A: Strength

More information

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan Link Prediction Eman Badr Mohammed Saquib Akmal Khan 11-06-2013 Link Prediction Which pair of nodes should be connected? Applications Facebook friend suggestion Recommendation systems Monitoring and controlling

More information

Overlapping Communities

Overlapping Communities Overlapping Communities Davide Mottin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides GRAPH

More information

How do we compare the relative performance among competing models?

How do we compare the relative performance among competing models? How do we compare the relative performance among competing models? 1 Comparing Data Mining Methods Frequent problem: we want to know which of the two learning techniques is better How to reliably say Model

More information

Hybrid Models for Text and Graphs. 10/23/2012 Analysis of Social Media

Hybrid Models for Text and Graphs. 10/23/2012 Analysis of Social Media Hybrid Models for Text and Graphs 10/23/2012 Analysis of Social Media Newswire Text Formal Primary purpose: Inform typical reader about recent events Broad audience: Explicitly establish shared context

More information

Parameter estimators of sparse random intersection graphs with thinned communities

Parameter estimators of sparse random intersection graphs with thinned communities Parameter estimators of sparse random intersection graphs with thinned communities Lasse Leskelä Aalto University Johan van Leeuwaarden Eindhoven University of Technology Joona Karjalainen Aalto University

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 8, 2018 Decision trees Why Trees? interpretable/intuitive, popular in medical applications because they mimic the way a doctor thinks model

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

Controlling for confounding network properties in hypothesis testing and anomaly detection

Controlling for confounding network properties in hypothesis testing and anomaly detection Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations 8-2016 Controlling for confounding network properties in hypothesis testing and anomaly detection Timothy La Fond Purdue

More information

arxiv: v1 [cs.si] 13 Nov 2014

arxiv: v1 [cs.si] 13 Nov 2014 Anomaly Detection in Dynamic Networks of Varying Size Timothy La Fond 1, Jennifer Neville 1, Brian Gallagher 2 1 Purdue University, 2 Lawrence Livermore National Laboratory {tlafond,neville}@purdue.edu,

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity CS322 Project Writeup Semih Salihoglu Stanford University 353 Serra Street Stanford, CA semih@stanford.edu

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Class Prior Estimation from Positive and Unlabeled Data

Class Prior Estimation from Positive and Unlabeled Data IEICE Transactions on Information and Systems, vol.e97-d, no.5, pp.1358 1362, 2014. 1 Class Prior Estimation from Positive and Unlabeled Data Marthinus Christoffel du Plessis Tokyo Institute of Technology,

More information

Node similarity and classification

Node similarity and classification Node similarity and classification Davide Mottin, Anton Tsitsulin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Some part of this lecture is taken from: http://web.eecs.umich.edu/~dkoutra/tut/icdm14.html

More information

CS224W: Social and Information Network Analysis

CS224W: Social and Information Network Analysis CS224W: Social and Information Network Analysis Reaction Paper Adithya Rao, Gautam Kumar Parai, Sandeep Sripada Keywords: Self-similar networks, fractality, scale invariance, modularity, Kronecker graphs.

More information

Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme. Tanya Braun (Exercises)

Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme. Tanya Braun (Exercises) Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Exercises) Slides taken from the presentation (subset only) Learning Statistical Models From

More information

Learning Task Grouping and Overlap in Multi-Task Learning

Learning Task Grouping and Overlap in Multi-Task Learning Learning Task Grouping and Overlap in Multi-Task Learning Abhishek Kumar Hal Daumé III Department of Computer Science University of Mayland, College Park 20 May 2013 Proceedings of the 29 th International

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Content-based Recommendation

Content-based Recommendation Content-based Recommendation Suthee Chaidaroon June 13, 2016 Contents 1 Introduction 1 1.1 Matrix Factorization......................... 2 2 slda 2 2.1 Model................................. 3 3 flda 3

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth N-fold cross validation Instead of a single test-training split: train test Split data into N equal-sized parts Train and test

More information

Algorithm-Independent Learning Issues

Algorithm-Independent Learning Issues Algorithm-Independent Learning Issues Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007, Selim Aksoy Introduction We have seen many learning

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

Scalable and exact sampling method for probabilistic generative graph models

Scalable and exact sampling method for probabilistic generative graph models Data Min Knowl Disc https://doi.org/10.1007/s10618-018-0566-x Scalable and exact sampling method for probabilistic generative graph models Sebastian Moreno 1 Joseph J. Pfeiffer III 2 Jennifer Neville 3

More information

Unsupervised Learning with Permuted Data

Unsupervised Learning with Permuted Data Unsupervised Learning with Permuted Data Sergey Kirshner skirshne@ics.uci.edu Sridevi Parise sparise@ics.uci.edu Padhraic Smyth smyth@ics.uci.edu School of Information and Computer Science, University

More information

Chapter ML:II (continued)

Chapter ML:II (continued) Chapter ML:II (continued) II. Machine Learning Basics Regression Concept Learning: Search in Hypothesis Space Concept Learning: Search in Version Space Measuring Performance ML:II-96 Basics STEIN/LETTMANN

More information

Measuring Social Influence Without Bias

Measuring Social Influence Without Bias Measuring Social Influence Without Bias Annie Franco Bobbie NJ Macdonald December 9, 2015 The Problem CS224W: Final Paper How well can statistical models disentangle the effects of social influence from

More information

Randomization Tests for Distinguishing Social Influence and Homophily Effects

Randomization Tests for Distinguishing Social Influence and Homophily Effects andomization Tests for Distinguishing Social Influence and Homophily Effects Timothy La Fond and Jennifer Neville Computer Science Department Purdue University West Lafayette, IN 47907 [tlafond neville]@cs.purdue.edu

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

Logic and machine learning review. CS 540 Yingyu Liang

Logic and machine learning review. CS 540 Yingyu Liang Logic and machine learning review CS 540 Yingyu Liang Propositional logic Logic If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.

More information

Modeling of Growing Networks with Directional Attachment and Communities

Modeling of Growing Networks with Directional Attachment and Communities Modeling of Growing Networks with Directional Attachment and Communities Masahiro KIMURA, Kazumi SAITO, Naonori UEDA NTT Communication Science Laboratories 2-4 Hikaridai, Seika-cho, Kyoto 619-0237, Japan

More information

Data Mining. Chapter 5. Credibility: Evaluating What s Been Learned

Data Mining. Chapter 5. Credibility: Evaluating What s Been Learned Data Mining Chapter 5. Credibility: Evaluating What s Been Learned 1 Evaluating how different methods work Evaluation Large training set: no problem Quality data is scarce. Oil slicks: a skilled & labor-intensive

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization

COMP9444: Neural Networks. Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization : Neural Networks Vapnik Chervonenkis Dimension, PAC Learning and Structural Risk Minimization 11s2 VC-dimension and PAC-learning 1 How good a classifier does a learner produce? Training error is the precentage

More information

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Decision Trees CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Classification without Models Well, partially without a model } Today: Decision Trees 2015 Bruno Ribeiro 2 3 Why Trees? } interpretable/intuitive,

More information

Machine Learning. Ensemble Methods. Manfred Huber

Machine Learning. Ensemble Methods. Manfred Huber Machine Learning Ensemble Methods Manfred Huber 2015 1 Bias, Variance, Noise Classification errors have different sources Choice of hypothesis space and algorithm Training set Noise in the data The expected

More information

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS Maya Gupta, Luca Cazzanti, and Santosh Srivastava University of Washington Dept. of Electrical Engineering Seattle,

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 9 Administrativia Next class will be a summary Please email me questions

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Lawrence Livermore National Laboratory Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Keith Henderson and Tina Eliassi-Rad keith@llnl.gov and eliassi@llnl.gov This work was performed

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Prediction of Citations for Academic Papers

Prediction of Citations for Academic Papers 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

A New Space for Comparing Graphs

A New Space for Comparing Graphs A New Space for Comparing Graphs Anshumali Shrivastava and Ping Li Cornell University and Rutgers University August 18th 2014 Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 1 / 38 Main

More information

Resampling Methods CAPT David Ruth, USN

Resampling Methods CAPT David Ruth, USN Resampling Methods CAPT David Ruth, USN Mathematics Department, United States Naval Academy Science of Test Workshop 05 April 2017 Outline Overview of resampling methods Bootstrapping Cross-validation

More information

When is undersampling effective in unbalanced classification tasks?

When is undersampling effective in unbalanced classification tasks? When is undersampling effective in unbalanced classification tasks? Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi 09/09/2015 ECML-PKDD 2015 Porto, Portugal 1/ 23 INTRODUCTION In several binary

More information

Mining Newsgroups Using Networks Arising From Social Behavior by Rakesh Agrawal et al. Presented by Will Lee

Mining Newsgroups Using Networks Arising From Social Behavior by Rakesh Agrawal et al. Presented by Will Lee Mining Newsgroups Using Networks Arising From Social Behavior by Rakesh Agrawal et al. Presented by Will Lee wwlee1@uiuc.edu September 28, 2004 Motivation IR on newsgroups is challenging due to lack of

More information

Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA

Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA Groups of vertices and Core-periphery structure By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA Mostly observed real networks have: Why? Heavy tail (powerlaw most

More information

Exploring the Patterns of Human Mobility Using Heterogeneous Traffic Trajectory Data

Exploring the Patterns of Human Mobility Using Heterogeneous Traffic Trajectory Data Exploring the Patterns of Human Mobility Using Heterogeneous Traffic Trajectory Data Jinzhong Wang April 13, 2016 The UBD Group Mobile and Social Computing Laboratory School of Software, Dalian University

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018)

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec Presented by: Jesse Bettencourt and Harris Chan March 9, 2018 University

More information

Models, Data, Learning Problems

Models, Data, Learning Problems Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Models, Data, Learning Problems Tobias Scheffer Overview Types of learning problems: Supervised Learning (Classification, Regression,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4731 Dr. Mihail Fall 2017 Slide content based on books by Bishop and Barber. https://www.microsoft.com/en-us/research/people/cmbishop/ http://web4.cs.ucl.ac.uk/staff/d.barber/pmwiki/pmwiki.php?n=brml.homepage

More information

Sampling and Estimation in Network Graphs

Sampling and Estimation in Network Graphs Sampling and Estimation in Network Graphs Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ March

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi Boosting CAP5610: Machine Learning Instructor: Guo-Jun Qi Weak classifiers Weak classifiers Decision stump one layer decision tree Naive Bayes A classifier without feature correlations Linear classifier

More information

Loss Functions, Decision Theory, and Linear Models

Loss Functions, Decision Theory, and Linear Models Loss Functions, Decision Theory, and Linear Models CMSC 678 UMBC January 31 st, 2018 Some slides adapted from Hamed Pirsiavash Logistics Recap Piazza (ask & answer questions): https://piazza.com/umbc/spring2018/cmsc678

More information

Pointwise Exact Bootstrap Distributions of Cost Curves

Pointwise Exact Bootstrap Distributions of Cost Curves Pointwise Exact Bootstrap Distributions of Cost Curves Charles Dugas and David Gadoury University of Montréal 25th ICML Helsinki July 2008 Dugas, Gadoury (U Montréal) Cost curves July 8, 2008 1 / 24 Outline

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

A Decision Stump. Decision Trees, cont. Boosting. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. October 1 st, 2007

A Decision Stump. Decision Trees, cont. Boosting. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. October 1 st, 2007 Decision Trees, cont. Boosting Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 1 st, 2007 1 A Decision Stump 2 1 The final tree 3 Basic Decision Tree Building Summarized

More information

Specification and estimation of exponential random graph models for social (and other) networks

Specification and estimation of exponential random graph models for social (and other) networks Specification and estimation of exponential random graph models for social (and other) networks Tom A.B. Snijders University of Oxford March 23, 2009 c Tom A.B. Snijders (University of Oxford) Models for

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

11. Learning graphical models

11. Learning graphical models Learning graphical models 11-1 11. Learning graphical models Maximum likelihood Parameter learning Structural learning Learning partially observed graphical models Learning graphical models 11-2 statistical

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 5: Multi-class and preference learning Juho Rousu 11. October, 2017 Juho Rousu 11. October, 2017 1 / 37 Agenda from now on: This week s theme: going

More information

Learning in Probabilistic Graphs exploiting Language-Constrained Patterns

Learning in Probabilistic Graphs exploiting Language-Constrained Patterns Learning in Probabilistic Graphs exploiting Language-Constrained Patterns Claudio Taranto, Nicola Di Mauro, and Floriana Esposito Department of Computer Science, University of Bari "Aldo Moro" via E. Orabona,

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

A Bayesian Approach to Concept Drift

A Bayesian Approach to Concept Drift A Bayesian Approach to Concept Drift Stephen H. Bach Marcus A. Maloof Department of Computer Science Georgetown University Washington, DC 20007, USA {bach, maloof}@cs.georgetown.edu Abstract To cope with

More information

Unified Modeling of User Activities on Social Networking Sites

Unified Modeling of User Activities on Social Networking Sites Unified Modeling of User Activities on Social Networking Sites Himabindu Lakkaraju IBM Research - India Manyata Embassy Business Park Bangalore, Karnataka - 5645 klakkara@in.ibm.com Angshu Rai IBM Research

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

Introduction to Machine Learning Fall 2017 Note 5. 1 Overview. 2 Metric

Introduction to Machine Learning Fall 2017 Note 5. 1 Overview. 2 Metric CS 189 Introduction to Machine Learning Fall 2017 Note 5 1 Overview Recall from our previous note that for a fixed input x, our measurement Y is a noisy measurement of the true underlying response f x):

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

15-388/688 - Practical Data Science: Decision trees and interpretable models. J. Zico Kolter Carnegie Mellon University Spring 2018

15-388/688 - Practical Data Science: Decision trees and interpretable models. J. Zico Kolter Carnegie Mellon University Spring 2018 15-388/688 - Practical Data Science: Decision trees and interpretable models J. Zico Kolter Carnegie Mellon University Spring 2018 1 Outline Decision trees Training (classification) decision trees Interpreting

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Author: Jaewon Yang, Jure Leskovec 1 1 Venue: WSDM 2013 Presenter: Yupeng Gu 1 Stanford University 1 Background Community

More information

Conditional Marginalization for Exponential Random Graph Models

Conditional Marginalization for Exponential Random Graph Models Conditional Marginalization for Exponential Random Graph Models Tom A.B. Snijders January 21, 2010 To be published, Journal of Mathematical Sociology University of Oxford and University of Groningen; this

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

DM-Group Meeting. Subhodip Biswas 10/16/2014

DM-Group Meeting. Subhodip Biswas 10/16/2014 DM-Group Meeting Subhodip Biswas 10/16/2014 Papers to be discussed 1. Crowdsourcing Land Use Maps via Twitter Vanessa Frias-Martinez and Enrique Frias-Martinez in KDD 2014 2. Tracking Climate Change Opinions

More information